Comparison of the Single Cell Immune Landscape between Subjects with High Mycobacterium tuberculosis Bacillary Loads during Active Pulmonary Tuberculosis and Household Members with Latent Tuberculosis Infection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Subjects
2.2. Definitions
2.2.1. Active PTB
2.2.2. Quantification of Mycobacterial Load and Severity
2.3. Specimen Collection and Processing
2.4. Cell Staining and Measurement and CyTOF
2.5. Mass Cytometry
2.6. T-SPOT.TB Assay
2.7. Statistical Analyses
3. Results
3.1. Participant Baseline Characteristics
3.2. CyTOF Analysis Revealed Differential Immune Profiles in Subjects with Active PTB and Those with LTBI
4. Discussion
4.1. NK Cells and NK T Cells, Important Innate Immune Cells against Tuberculosis
4.2. Impacts of B Cells and Th Cells in Pulmonary Tuberculosis
4.3. Clinical Translation, Limitations, and Future Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Swaminathan, S.; Rekha, B. Pediatric tuberculosis: Global overview and challenges. Clin. Infect. Dis. 2010, 50, S184–S194. [Google Scholar] [CrossRef]
- Schito, M.; Hanna, D.; Zumla, A. Tuberculosis eradication versus control. Int. J. Infect. Dis. 2017, 56, 10–13. [Google Scholar] [CrossRef]
- Shah, M.; Dorman, S.E. Latent tuberculosis infection. N. Engl. J. Med. 2021, 385, 2271–2280. [Google Scholar] [CrossRef]
- Sia, J.K.; Rengarajan, J. Immunology of Mycobacterium tuberculosis infections. Microbiol. Spectr. 2019, 7. [Google Scholar] [CrossRef]
- Esaulova, E.; Das, S.; Singh, D.K.; Choreño-Parra, J.A.; Swain, A.; Arthur, L.; Rangel-Moreno, J.; Ahmed, M.; Singh, B.; Gupta, A.; et al. The immune landscape in tuberculosis reveals populations linked to disease and latency. Cell Host Microbe 2021, 29, 165–178. [Google Scholar] [CrossRef]
- Chedid, C.; Andrieu, T.; Kokhreidze, E.; Tukvadze, N.; Biswas, S.; Ather, M.F.; Uddin, M.K.M.; Banu, S.; De Maio, F.; Delogu, G.; et al. In-depth immunophenotyping with mass cytometry during tb treatment reveals new T-cell subsets associated with culture conversion. Front. Immunol. 2022, 13, 853572. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.H.; Kim, H.J.; Park, J.E.; Lee, Y.H.; Choi, S.H.; Seo, H.; Yoo, S.S.; Lee, S.Y.; Cha, S.I.; Park, J.Y.; et al. CyTOF analysis for differential immune cellular profiling between latent tuberculosis infection and active tuberculosis. Tuberculosis 2023, 140, 102344. [Google Scholar] [CrossRef] [PubMed]
- Behbehani, G.K. Applications of mass cytometry in clinical medicine: The promise and perils of clinical CyTOF. Clin. Lab. Med. 2017, 37, 945–964. [Google Scholar] [CrossRef]
- Chevrier, S.; Crowell, H.L.; Zanotelli, V.R.T.; Engler, S.; Robinson, M.D.; Bodenmiller, B. Compensation of signal spillover in suspension and imaging mass cytometry. Cell Syst. 2018, 6, 612–620. [Google Scholar] [CrossRef] [PubMed]
- Roy Chowdhury, R.; Vallania, F.; Yang, Q.; Lopez Angel, C.J.; Darboe, F.; Penn-Nicholson, A.; Rozot, V.; Nemes, E.; Malherbe, S.T.; Ronacher, K.; et al. A multi-cohort study of the immune factors associated with M. tuberculosis infection outcomes. Nature 2018, 560, 644–648. [Google Scholar] [CrossRef]
- Yang, Q.; Zhang, M.; Chen, Q.; Chen, W.; Wei, C.; Qiao, K.; Ye, T.; Deng, G.; Li, J.; Zhu, J.; et al. Cutting edge: Characterization of human tissue-resident memory t cells at different infection sites in patients with tuberculosis. J. Immunol. 2020, 204, 2331–2336. [Google Scholar] [CrossRef]
- Li, Q.; Wang, J.; Zhang, M.; Tang, Y.; Lu, H. Discovery of CD3(+) CD19(+) cells, a novel lymphocyte subset with a potential role in human immunodeficiency virus-Mycobacterium tuberculosis coinfection, using mass cytometry. Clin. Transl. Med. 2021, 11, e681. [Google Scholar] [CrossRef]
- Eom, J.S.; Kim, I.; Kim, W.Y.; Jo, E.J.; Mok, J.; Kim, M.H.; Lee, K.; Kim, K.U.; Park, H.K.; Lee, M.K. Household tuberculosis contact investigation in a tuberculosis-prevalent country: Are the tuberculin skin test and interferon-gamma release assay enough in elderly contacts? Medicine 2018, 97, e9681. [Google Scholar] [CrossRef]
- Forbes, B.A.; Hall, G.S.; Miller, M.B.; Novak, S.M.; Rowlinson, M.C.; Salfinger, M.; Somoskövi, A.; Warshauer, D.M.; Wilson, M.L. Practical guidance for clinical microbiology laboratories: Mycobacteria. Clin. Microbiol. Rev. 2018, 31, e00038-17. [Google Scholar] [CrossRef]
- Kajihara, A.; Morita, T.; Kato, Y.; Konaka, H.; Murakami, T.; Yamaguchi, Y.; Koyama, S.; Takamatsu, H.; Nishide, M.; Maeda, Y.; et al. The proliferative activity levels of each immune cell population evaluated by mass cytometry are linked to the clinical phenotypes of systemic lupus erythematosus. Int. Immunol. 2023, 35, 27–41. [Google Scholar] [CrossRef]
- Mazurek, G.H.; Jereb, J.; Vernon, A.; LoBue, P.; Goldberg, S.; Castro, K. Updated guidelines for using Interferon Gamma Release Assays to detect Mycobacterium tuberculosis infection—United States, 2010. MMWR. Recomm. Rep. 2010, 59, RR-5. [Google Scholar]
- Kay, A.W.; Strauss-Albee, D.M.; Blish, C.A. Application of mass cytometry (CyTOF) for functional and phenotypic analysis of natural killer cells. Methods Mol. Biol. 2016, 1441, 13–26. [Google Scholar]
- Vogt, S.; Mattner, J. NKT cells contribute to the control of microbial infections. Front. Cell. Infect. Microbiol. 2021, 11, 718350. [Google Scholar] [CrossRef] [PubMed]
- Correia-Neves, M.; Nigou, J.; Mousavian, Z.; Sundling, C.; Källenius, G. Immunological hyporesponsiveness in tuberculosis: The role of mycobacterial glycolipids. Front. Immunol. 2022, 13, 1035122. [Google Scholar] [CrossRef] [PubMed]
- Bennstein, S.B. Unraveling natural killer T-cells development. Front. Immunol. 2018, 8, 1950. [Google Scholar] [CrossRef] [PubMed]
- Kared, H.; Martelli, S.; Ng, T.P.; Pender, S.L.; Larbi, A. CD57 in human natural killer cells and T-lymphocytes. Cancer Immunol. Immunother. 2016, 65, 441–452. [Google Scholar] [CrossRef] [PubMed]
- Sada-Ovalle, I.; Torre-Bouscoulet, L.; Valdez-Vázquez, R.; Martínez-Cairo, S.; Zenteno, E.; Lascurain, R. Characterization of a cytotoxic CD57+ T cell subset from patients with pulmonary tuberculosis. Clin. Immunol. 2006, 121, 314–323. [Google Scholar] [CrossRef] [PubMed]
- Ruibal, P.; Voogd, L.; Joosten, S.A.; Ottenhoff, T.H.M. The role of donor-unrestricted T-cells, innate lymphoid cells, and NK cells in anti-mycobacterial immunity. Immunol. Rev. 2021, 301, 30–47. [Google Scholar] [CrossRef] [PubMed]
- Sharma, M.; Zhang, S.; Niu, L.; Lewinsohn, D.M.; Zhang, X.; Huang, S. Mucosal-associated invariant T cells develop an innate-like transcriptomic program in anti-mycobacterial responses. Front. Immunol. 2020, 11, 1136. [Google Scholar] [CrossRef] [PubMed]
- Garand, M.; Goodier, M.; Owolabi, O.; Donkor, S.; Kampmann, B.; Sutherland, J.S. Functional and phenotypic changes of natural killer cells in whole blood during Mycobacterium tuberculosis infection and disease. Front. Immunol. 2018, 9, 257. [Google Scholar] [CrossRef] [PubMed]
- Joosten, S.A.; van Meijgaarden, K.E.; Del Nonno, F.; Baiocchini, A.; Petrone, L.; Vanini, V.; Smits, H.H.; Palmieri, F.; Goletti, D.; Ottenhoff, T.H. Patients with tuberculosis have a dysfunctional circulating b-cell compartment, which normalizes following successful treatment. PLoS Pathog. 2016, 12, e1005687. [Google Scholar] [CrossRef]
- Phuah, J.Y.; Mattila, J.T.; Lin, P.L.; Flynn, J.L. Activated B cells in the granulomas of nonhuman primates infected with Mycobacterium tuberculosis. Am. J. Pathol. 2012, 181, 508–514. [Google Scholar] [CrossRef]
- Zhang, M.; Zeng, G.; Yang, Q.; Zhang, J.; Zhu, X.; Chen, Q.; Suthakaran, P.; Zhang, Y.; Deng, Q.; Liu, H.; et al. Anti-tuberculosis treatment enhances the production of IL-22 through reducing the frequencies of regulatory B cell. Tuberculosis 2014, 94, 238–244. [Google Scholar] [CrossRef]
- Zhang, M.; Zheng, X.; Zhang, J.; Zhu, Y.; Zhu, X.; Liu, H.; Zeng, M.; Graner, M.W.; Zhou, B.; Chen, X. CD19+ CD1d+ CD5+ B cell frequencies are increased in patients with tuberculosis and suppress Th17 responses. Cell. Immunol. 2012, 274, 89–97. [Google Scholar] [CrossRef]
- Achkar, J.M.; Chan, J.; Casadevall, A. Role of B cells and antibodies in acquired immunity against Mycobacterium tuberculosis. Cold Spring Harb. Perspect. Med. 2014, 5, a018432. [Google Scholar] [CrossRef]
- Kozakiewicz, L.; Phuah, J.; Flynn, J.; Chan, J. The role of B cells and humoral immunity in Mycobacterium tuberculosis infection. Adv. Exp. Med. Biol. 2013, 783, 225–250. [Google Scholar]
- Mosmann, T.R.; Cherwinski, H.; Bond, M.W.; Giedlin, M.A.; Coffman, R.L. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J. Immunol. 1986, 136, 2348–2357. [Google Scholar] [CrossRef]
- Mogues, T.; Goodrich, M.E.; Ryan, L.; LaCourse, R.; North, R.J. The relative importance of T cell subsets in immunity and immunopathology of airborne Mycobacterium tuberculosis infection in mice. J. Exp. Med. 2001, 193, 271–280. [Google Scholar] [CrossRef]
- Jung, Y.J.; LaCourse, R.; Ryan, L.; North, R.J. Virulent but not avirulent Mycobacterium tuberculosis can evade the growth inhibitory action of a T helper 1-dependent, nitric oxide Synthase 2-independent defense in mice. J. Exp. Med. 2002, 196, 991–998. [Google Scholar] [CrossRef]
- Umemura, M.; Yahagi, A.; Hamada, S.; Begum, M.D.; Watanabe, H.; Kawakami, K.; Suda, T.; Sudo, K.; Nakae, S.; Iwakura, Y.; et al. IL-17-mediated regulation of innate and acquired immune response against pulmonary Mycobacterium bovis bacille Calmette-Guerin infection. J. Immunol. 2007, 178, 3786–3796. [Google Scholar] [CrossRef]
- Shen, H.; Chen, Z.W. The crucial roles of Th17-related cytokines/signal pathways in M. tuberculosis infection. Cell. Mol. Immunol. 2018, 15, 216–225. [Google Scholar] [CrossRef] [PubMed]
- Lyadova, I.V.; Panteleev, A.V. Th1 and Th17 cells in tuberculosis: Protection, pathology, and biomarkers. Mediat. Inflamm. 2015, 2015, 854507. [Google Scholar] [CrossRef] [PubMed]
- Brighenti, S.; Ordway, D.J. Regulation of immunity to tuberculosis. Microbiol. Spectr. 2016, 4, TBTB2-0006-2016. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Liu, R.; Shin, M.S.; Trentalange, M.; Allore, H.; Nassar, A.; Kang, I.; Pober, J.S.; Montgomery, R.R. CyTOF supports efficient detection of immune cell subsets from small samples. J. Immunol. Methods 2014, 415, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Subrahmanyam, P.B.; Maecker, H.T. CyTOF Measurement of immunocompetence across major immune cell types. Curr. Protoc. Cytom. 2017, 82, 9.54.1–9.54.12. [Google Scholar] [CrossRef]
- Li, Q.; Li, J.; Tian, J.; Zhu, B.; Zhang, Y.; Yang, K.; Ling, Y.; Hu, Y. IL-17 and IFN-γ production in peripheral blood following BCG vaccination and Mycobacterium tuberculosis infection in human. Eur. Rev. Med. Pharmacol. Sci. 2012, 16, 2029–2036. [Google Scholar] [PubMed]
- Li, Y.; Mateu, E.; Díaz, I. Impact of cryopreservation on viability, phenotype, and functionality of porcine PBMC. Front. Immunol. 2021, 12, 765667. [Google Scholar] [CrossRef] [PubMed]
Parameter (s) | PTB (n = 12) | LTBI (n = 17) | Healthy (n = 3) | |
---|---|---|---|---|
Non-Progression to PTB (n = 11) | Progression to PTB (n = 6) | |||
Age, years | 48.9 ± 15.1 | 30.6 ± 7.7 | 43.4 ± 9.8 | 33.7 ± 9.4 |
Female, n (%) | 8 (66.7) | 7 (63.6) | 6 (100) | 1 (33.3) |
Duration from onset of symptoms (days) | 18 ± 9 | N/A | N/A | N/A |
Fever, n (%) | 12 (100) | N/A | N/A | N/A |
Weight loss, n (%) | 12 (100) | N/A | N/A | N/A |
Cough, n (%) | 12 (100) | N/A | N/A | N/A |
Sweating, n (%) | 11 (91.7) | N/A | N/A | N/A |
Lymphadenopathy, n (%) | 8 (66.7) | N/A | N/A | N/A |
Chest radiographic distribution | ||||
Lesions localized within one-third of the unilateral lung zone | 5 (41.7) | N/A | N/A | N/A |
Lesions localized over one-third of the unilateral lung zone | 3 (25.0) | N/A | N/A | N/A |
Lesion enhanced as bilateral lung zones | 4 (33.3) | N/A | N/A | N/A |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kamolratanakul, S.; Ariyanon, W.; Udompornpitak, K.; Bhunyakarnjanarat, T.; Leelahavanichkul, A.; Dhitavat, J.; Wilairatana, P.; Chancharoenthana, W. Comparison of the Single Cell Immune Landscape between Subjects with High Mycobacterium tuberculosis Bacillary Loads during Active Pulmonary Tuberculosis and Household Members with Latent Tuberculosis Infection. Cells 2024, 13, 362. https://doi.org/10.3390/cells13040362
Kamolratanakul S, Ariyanon W, Udompornpitak K, Bhunyakarnjanarat T, Leelahavanichkul A, Dhitavat J, Wilairatana P, Chancharoenthana W. Comparison of the Single Cell Immune Landscape between Subjects with High Mycobacterium tuberculosis Bacillary Loads during Active Pulmonary Tuberculosis and Household Members with Latent Tuberculosis Infection. Cells. 2024; 13(4):362. https://doi.org/10.3390/cells13040362
Chicago/Turabian StyleKamolratanakul, Supitcha, Wassawon Ariyanon, Kanyarat Udompornpitak, Thansita Bhunyakarnjanarat, Asada Leelahavanichkul, Jittima Dhitavat, Polrat Wilairatana, and Wiwat Chancharoenthana. 2024. "Comparison of the Single Cell Immune Landscape between Subjects with High Mycobacterium tuberculosis Bacillary Loads during Active Pulmonary Tuberculosis and Household Members with Latent Tuberculosis Infection" Cells 13, no. 4: 362. https://doi.org/10.3390/cells13040362