PKD2: An Important Membrane Protein in Organ Development
Abstract
:1. Introduction
2. PKD2 and Left–Right Asymmetry
3. PKD2 and Kidney
3.1. Function of PKD2 in Mouse Kidney
3.1.1. PKD2 Regulates Intracellular Calcium Homeostasis in Renal Cells
3.1.2. PKD2 Regulates Cell Proliferation in Mouse Kidney
3.1.3. PKD2 Regulates Cell Proliferation through Calcium Signaling
3.1.4. PKD2 Interacts with Transcription Factors to Regulate Cell Proliferation
3.1.5. PKD2 Regulates Cell Proliferation through Energy Metabolism
3.1.6. PKD2 Maintains the Polarity of Cells
3.1.7. PKD2 Is Involved in the Development of Cilia in Mouse Kidneys
3.2. Function of PKD2 in Zebrafish Kidney
3.3. Progress in Clinical Drug Research on ADPKD
4. PKD2 and Cardiovascular
4.1. PKD2 Regulates Cardiac Development
4.1.1. PKD2 Is Involved in the Formation of the Atrioventricular Valves
4.1.2. PKD2 Is Involved in Cardiac Contraction and Relaxation
4.1.3. PKD2 Is Involved in Cardiac Protection under Stress
4.2. PKD2 Is Involved in Vascular Development
4.2.1. PKD2 Is Involved in the Establishment of Vascular and Lymphatic Networks
4.2.2. PKD2 Regulates Vascular Pressure by Sensing Mechanical Forces Generated by Blood Flow
5. PKD2 and Reproduction and Mating
6. Other Diverse Functions of PKD2
6.1. Pkd2 Regulates the Development of Body Axis in Zebrafish
6.2. PKD2 Is Involved in the Development of Skeletal System in Mice
6.3. Function of PKD2 in Nervous System
7. Perspectives
Different Function of PKD2 | Associated Proteins | Post Translational Modifications | Brief Mechanism | Reference |
---|---|---|---|---|
Left–right asymmetry | Bicc1, Ccr4, Dand5, Nodal, Lefty2, Pitx2 | N/A | PKD2 regulates calcium signaling in the left-side cells of the LRO, leading to the degradation of Dand5 mRNA and the activation of nodal signaling, which ultimately establishes left–right asymmetry in internal organs. | [45,46,47,48,49,50] |
Regulation of intracellular calcium homeostasis | Ryanodine receptors | Phosphorylation of Ser812 by Casein Kinase II | PKD2 on cilia responds to mechanical signals, leading to calcium release from the endoplasmic reticulum via Ryanodine receptors. | [74] |
kidneys | ||||
Regulation of cell proliferation in kidneys | Adenylyl cyclase 5/6, CREB, HEXIM1, cAMP, PKA, VEGF, ERK | Phosphorylation of Ser158 of HEXIM1 | Decreased intracellular calcium in Pkd2 mutant kidneys reduces calcium-mediated inhibition of adenylyl cyclase, increasing cAMP levels, enhancing PKA activity, and stimulating cell proliferation. | [77,78,79,80,81,82,83,84,85] |
Interaction with transcription factors | ID2, E2F, Rb | Phosphorylation of PKD2 (S812) | Phosphorylated PKD2 interacts with ID2, preventing it from inhibiting p21 activation, leading to reduced CDK2 activity and enhanced cell proliferation through E2F transcription factors. | [86,87,88] |
Regulation of energy metabolism | Mitofusin 2 (MFN2) | N/A | PKD2 regulates mitochondrial function and calcium transfer efficiency, enhancing respiration and promoting cell proliferation. Reduced MFN2 expression can restore mitochondrial calcium transfer. | [89] |
Maintenance of cell polarity | β-catenin, Axin2, c-Myc, E-cadherin | N/A | In Pkd2 mutant mice, increased expression of β-catenin, Axin2, and c-Myc indicates disrupted canonical Wnt signaling. This disruption leads to elevated cytoplasmic β-catenin levels, which impede renal epithelial polarization due to loss of E-cadherin-mediated cell–cell contacts. | [105] |
Maintenance of renal structure in zebrafish | Scribble, GSK-3β, YAP | Phosphorylation at the N-terminal site of Pkd2 | Pkd2 is located at the basal lateral membrane of the pronephric duct in zebrafish. Knockdown of Pkd2 reduces Scribble levels, inhibiting the Hippo signaling pathway and causing YAP to translocate to the nucleus, promoting glomerular cyst formation. Mislocalization affects structural integrity and function. | [99] |
Cardiovascular system | ||||
Regulation of valve formation in zebrafish | Camk2g, Klf2a | N/A | In zebrafish, early blood flow in the heart generates mechanical signals that are transduced by Pkd2 in atrioventricular endocardial cells. This regulates intracellular calcium ion concentration, activating Camk2g, which promotes Klf2a expression and valve formation. | [38,106,107] |
Regulation of cardiac calcium signaling | RyR2, cardiac troponin I, phospholamban | N/A | In mouse cardiomyocytes, PKD2 interacts with RyR2, inhibiting its channel activity in the presence of calcium. This leads to decreased calcium concentration in the sarcoplasmic reticulum, enhancing PKA-mediated phosphorylation of cardiac troponin I and reducing phospholamban dephosphorylation, which alters myocardial contractility. | [180] |
Cardiac protection during stress | Chromogranin B (CGB), ANP, BNP | Not specified | In stressed mice, PKD2 levels increase, correlating with elevated left ventricular mass and natriuretic peptides (ANP and BNP). PKD2-deficient mice fail to upregulate protective atrial natriuretic peptide, leading to persistent elevated left ventricular mass after stress cessation. | [112] |
Regulation of vascular pressure through sensing mechanical forces | Calcium, calmodulin, protein kinase B, protein kinase C, α1-adrenoceptors | SUMOylation | PKD2, located in cilia of vascular endothelial cells, senses fluid shear stress, activating a pathway that includes calcium influx and nitric oxide production, leading to vascular dilation and reduced blood pressure. In arterial myocytes, PKD2 channels are activated by intravascular pressure, inducing sodium currents that result in vasoconstriction. SUMO-PKD2 localization to the cell membrane is regulated by intravascular pressure, which stabilizes vascular pressure through controlling PKD2 abundance. In heterozygous Pkd2 mice, oxidative stress impairs relaxation function. | [121,124] |
Regulation of body axis development | sec23A, sec23B, sec24C, sec24D, Pde1a | N/A | Loss of Pkd2 function in zebrafish leads to dorsal curvature of the body axis, potentially due to excessive type II collagen accumulation in notochord sheath cells. PKD2 maintains calcium ion homeostasis and modulates collagen gene expression through the phosphoinositide 3-kinase signaling pathway. Overexpression of Pde1a reduces cAMP levels, mitigating axial curvature. | [154,155] |
Funding
Conflicts of Interest
References
- Mochizuki, T.; Wu, G.; Hayashi, T.; Xenophontos, S.L.; Veldhuisen, B.; Saris, J.J.; Reynolds, D.M.; Cai, Y.; Gabow, P.A.; Pierides, A.; et al. PKD2, a gene for polycystic kidney disease that encodes an integral membrane protein. Science 1996, 272, 1339–1342. [Google Scholar] [CrossRef] [PubMed]
- Shaw, C.; Simms, R.J.; Pitcher, D.; Sandford, R. Epidemiology of patients in England and Wales with autosomal dominant polycystic kidney disease and end-stage renal failure. Nephrol. Dial. Transplant. 2014, 29, 1910–1918. [Google Scholar] [CrossRef] [PubMed]
- Cornec-Le Gall, E.; Torres, V.E.; Harris, P.C. Genetic Complexity of Autosomal Dominant Polycystic Kidney and Liver Diseases. J. Am. Soc. Nephrol. 2018, 29, 13–23. [Google Scholar] [CrossRef]
- Chebib, F.T.; Torres, V.E. Autosomal Dominant Polycystic Kidney Disease: Core Curriculum 2016. Am. J. Kidney Dis. 2016, 67, 792–810. [Google Scholar] [CrossRef]
- Ong, A.C.; Ward, C.J.; Butler, R.J.; Biddolph, S.; Bowker, C.; Torra, R.; Pei, Y.; Harris, P.C. Coordinate expression of the autosomal dominant polycystic kidney disease proteins, polycystin-2 and polycystin-1, in normal and cystic tissue. Am. J. Pathol. 1999, 154, 1721–1729. [Google Scholar] [CrossRef] [PubMed]
- Mahboob, M.; Rout, P.; Leslie, S.W.; Bokhari, S.R.A. Autosomal Dominant Polycystic Kidney Disease. In StatPearls; StatPearls: Treasure Island, FL, USA, 2024. [Google Scholar]
- Zhang, M.; Ma, Y.; Ye, X.; Zhang, N.; Pan, L.; Wang, B. TRP (transient receptor potential) ion channel family: Structures, biological functions and therapeutic interventions for diseases. Signal Transduct. Target. Ther. 2023, 8, 261. [Google Scholar] [CrossRef]
- Grieben, M.; Pike, A.C.; Shintre, C.A.; Venturi, E.; El-Ajouz, S.; Tessitore, A.; Shrestha, L.; Mukhopadhyay, S.; Mahajan, P.; Chalk, R.; et al. Structure of the polycystic kidney disease TRP channel Polycystin-2 (PC2). Nat. Struct. Mol. Biol. 2017, 24, 114–122. [Google Scholar] [CrossRef]
- Celic, A.; Petri, E.T.; Demeler, B.; Ehrlich, B.E.; Boggon, T.J. Domain mapping of the polycystin-2 C-terminal tail using de novo molecular modeling and biophysical analysis. J. Biol. Chem. 2008, 283, 28305–28312. [Google Scholar] [CrossRef]
- Cai, Y.; Maeda, Y.; Cedzich, A.; Torres, V.E.; Wu, G.; Hayashi, T.; Mochizuki, T.; Park, J.H.; Witzgall, R.; Somlo, S. Identification and characterization of polycystin-2, the PKD2 gene product. J. Biol. Chem. 1999, 274, 28557–28565. [Google Scholar] [CrossRef]
- Wilkes, M.; Madej, M.G.; Kreuter, L.; Rhinow, D.; Heinz, V.; De Sanctis, S.; Ruppel, S.; Richter, R.M.; Joos, F.; Grieben, M.; et al. Molecular insights into lipid-assisted Ca(2+) regulation of the TRP channel Polycystin-2. Nat. Struct. Mol. Biol. 2017, 24, 123–130. [Google Scholar] [CrossRef]
- Shen, P.S.; Yang, X.; DeCaen, P.G.; Liu, X.; Bulkley, D.; Clapham, D.E.; Cao, E. The Structure of the Polycystic Kidney Disease Channel PKD2 in Lipid Nanodiscs. Cell 2016, 167, 763–773.e11. [Google Scholar] [CrossRef] [PubMed]
- Su, Q.; Hu, F.; Ge, X.; Lei, J.; Yu, S.; Wang, T.; Zhou, Q.; Mei, C.; Shi, Y. Structure of the human PKD1-PKD2 complex. Science 2018, 361, eaat9819. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Perrett, S.; Kim, K.; Ibarra, C.; Damiano, A.E.; Zotta, E.; Batelli, M.; Harris, P.C.; Reisin, I.L.; Arnaout, M.A.; Cantiello, H.F. Polycystin-2, the protein mutated in autosomal dominant polycystic kidney disease (ADPKD), is a Ca2+-permeable nonselective cation channel. Proc. Natl. Acad. Sci. USA 2001, 98, 1182–1187. [Google Scholar] [CrossRef] [PubMed]
- Koulen, P.; Cai, Y.; Geng, L.; Maeda, Y.; Nishimura, S.; Witzgall, R.; Ehrlich, B.E.; Somlo, S. Polycystin-2 is an intracellular calcium release channel. Nat. Cell Biol. 2002, 4, 191–197. [Google Scholar] [CrossRef] [PubMed]
- Kleene, S.J.; Kleene, N.K. The native TRPP2-dependent channel of murine renal primary cilia. Am. J. Physiol. Renal Physiol. 2017, 312, F96–F108. [Google Scholar] [CrossRef]
- Liu, X.; Vien, T.; Duan, J.; Sheu, S.H.; DeCaen, P.G.; Clapham, D.E. Polycystin-2 is an essential ion channel subunit in the primary cilium of the renal collecting duct epithelium. Elife 2018, 7, 33183. [Google Scholar] [CrossRef]
- Kottgen, M.; Buchholz, B.; Garcia-Gonzalez, M.A.; Kotsis, F.; Fu, X.; Doerken, M.; Boehlke, C.; Steffl, D.; Tauber, R.; Wegierski, T.; et al. TRPP2 and TRPV4 form a polymodal sensory channel complex. J. Cell Biol. 2008, 182, 437–447. [Google Scholar] [CrossRef]
- Djenoune, L.; Mahamdeh, M.; Truong, T.V.; Nguyen, C.T.; Fraser, S.E.; Brueckner, M.; Howard, J.; Yuan, S. Cilia function as calcium-mediated mechanosensors that instruct left-right asymmetry. Science 2023, 379, 71–78. [Google Scholar] [CrossRef]
- Katoh, T.A.; Omori, T.; Mizuno, K.; Sai, X.; Minegishi, K.; Ikawa, Y.; Nishimura, H.; Itabashi, T.; Kajikawa, E.; Hiver, S.; et al. Immotile cilia mechanically sense the direction of fluid flow for left-right determination. Science 2023, 379, 66–71. [Google Scholar] [CrossRef]
- Chowdhury, P.; Sinha, D.; Poddar, A.; Chetluru, M.; Chen, Q. A mechanosensitive channel Pkd2 modulates the assembly of myosin II and actin filaments in the cytokinetic contractile ring. bioRxiv 2024. [Google Scholar] [CrossRef]
- Koyano, T.; Fujimoto, T.; Onishi, K.; Matsuyama, M.; Fukushima, M.; Kume, K. Pkd2, mutations linking to autosomal dominant polycystic kidney disease, localizes to the endoplasmic reticulum and regulates calcium signaling in fission yeast. Genes Cells 2023, 28, 811–820. [Google Scholar] [CrossRef] [PubMed]
- Malla, M.; Sinha, D.; Chowdhury, P.; Bisesi, B.T.; Chen, Q. The cytoplasmic tail of the mechanosensitive channel Pkd2 regulates its internalization and clustering in eisosomes. J. Cell Sci. 2023, 136, jcs260598. [Google Scholar] [CrossRef] [PubMed]
- Poddar, A.; Hsu, Y.Y.; Zhang, F.; Shamma, A.; Kreais, Z.; Muller, C.; Malla, M.; Ray, A.; Liu, A.P.; Chen, Q. Membrane stretching activates calcium permeability of a putative channel Pkd2 during fission yeast cytokinesis. Mol. Biol. Cell 2022, 33, ar134. [Google Scholar] [CrossRef] [PubMed]
- Sinha, D.; Ivan, D.; Gibbs, E.; Chetluru, M.; Goss, J.; Chen, Q. Correction: Fission yeast polycystin Pkd2p promotes cell size expansion and antagonizes the Hippo-related SIN pathway. J. Cell Sci. 2022, 135, jcs260446. [Google Scholar] [CrossRef]
- Morris, Z.; Sinha, D.; Poddar, A.; Morris, B.; Chen, Q. Fission yeast TRP channel Pkd2p localizes to the cleavage furrow and regulates cell separation during cytokinesis. Mol. Biol. Cell 2019, 30, 1791–1804. [Google Scholar] [CrossRef]
- Huang, J.; Tao, H.; Chen, J.; Shen, Y.; Lei, J.; Pan, J.; Yan, C.; Yan, N. Structure-guided discovery of protein and glycan components in native mastigonemes. Cell 2024, 187, 1733–1744.e12. [Google Scholar] [CrossRef]
- Das, P.; Mekonnen, B.; Alkhofash, R.; Ingle, A.V.; Workman, E.B.; Feather, A.; Zhang, G.; Chasen, N.; Liu, P.; Lechtreck, K.F. The Small Interactor of PKD2 protein promotes the assembly and ciliary entry of the Chlamydomonas PKD2-mastigoneme complexes. J. Cell Sci. 2024, 137, jcs261497. [Google Scholar] [CrossRef]
- Liu, P.; Lou, X.; Wingfield, J.L.; Lin, J.; Nicastro, D.; Lechtreck, K. Chlamydomonas PKD2 organizes mastigonemes, hair-like glycoprotein polymers on cilia. J. Cell Biol. 2020, 219, e202001122. [Google Scholar] [CrossRef]
- Huang, K.; Diener, D.R.; Mitchell, A.; Pazour, G.J.; Witman, G.B.; Rosenbaum, J.L. Function and dynamics of PKD2 in Chlamydomonas reinhardtii flagella. J. Cell Biol. 2007, 179, 501–514. [Google Scholar] [CrossRef]
- Sekimoto, H. Sexual reproduction and sex determination in green algae. J. Plant Res. 2017, 130, 423–431. [Google Scholar] [CrossRef]
- Bataille, S.; Demoulin, N.; Devuyst, O.; Audrezet, M.P.; Dahan, K.; Godin, M.; Fontes, M.; Pirson, Y.; Burtey, S. Association of PKD2 (polycystin 2) mutations with left-right laterality defects. Am. J. Kidney Dis. 2011, 58, 456–460. [Google Scholar] [CrossRef] [PubMed]
- Pennekamp, P.; Karcher, C.; Fischer, A.; Schweickert, A.; Skryabin, B.; Horst, J.; Blum, M.; Dworniczak, B. The ion channel polycystin-2 is required for left-right axis determination in mice. Curr. Biol. 2002, 12, 938–943. [Google Scholar] [CrossRef]
- Bisgrove, B.W.; Snarr, B.S.; Emrazian, A.; Yost, H.J. Polaris and Polycystin-2 in dorsal forerunner cells and Kupffer’s vesicle are required for specification of the zebrafish left-right axis. Dev. Biol. 2005, 287, 274–288. [Google Scholar] [CrossRef]
- Vick, P.; Kreis, J.; Schneider, I.; Tingler, M.; Getwan, M.; Thumberger, T.; Beyer, T.; Schweickert, A.; Blum, M. An Early Function of Polycystin-2 for Left-Right Organizer Induction in Xenopus. iScience 2018, 2, 76–85. [Google Scholar] [CrossRef] [PubMed]
- Pei, Y.; Watnick, T.; He, N.; Wang, K.; Liang, Y.; Parfrey, P.; Germino, G.; St George-Hyslop, P. Somatic PKD2 mutations in individual kidney and liver cysts support a “two-hit” model of cystogenesis in type 2 autosomal dominant polycystic kidney disease. J. Am. Soc. Nephrol. 1999, 10, 1524–1529. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Amsterdam, A.; Pazour, G.J.; Cole, D.G.; Miller, M.S.; Hopkins, N. A genetic screen in zebrafish identifies cilia genes as a principal cause of cystic kidney. Development 2004, 131, 4085–4093. [Google Scholar] [CrossRef]
- Juan, T.; Ribeiro da Silva, A.; Cardoso, B.; Lim, S.; Charteau, V.; Stainier, D.Y.R. Multiple pkd and piezo gene family members are required for atrioventricular valve formation. Nat. Commun. 2023, 14, 214. [Google Scholar] [CrossRef] [PubMed]
- Gao, Z.; Joseph, E.; Ruden, D.M.; Lu, X. Drosophila Pkd2 is haploid-insufficient for mediating optimal smooth muscle contractility. J. Biol. Chem. 2004, 279, 14225–14231. [Google Scholar] [CrossRef] [PubMed]
- Djenoune, L.; Berg, K.; Brueckner, M.; Yuan, S. A change of heart: New roles for cilia in cardiac development and disease. Nat. Rev. Cardiol. 2022, 19, 211–227. [Google Scholar] [CrossRef]
- Li, Y.; Klena, N.T.; Gabriel, G.C.; Liu, X.; Kim, A.J.; Lemke, K.; Chen, Y.; Chatterjee, B.; Devine, W.; Damerla, R.R.; et al. Global genetic analysis in mice unveils central role for cilia in congenital heart disease. Nature 2015, 521, 520–524. [Google Scholar] [CrossRef]
- Chen, Z.; Drummond, I.A. Polycystin-2, mechanosensing, and left-right asymmetry in autosomal dominant polycystic kidney disease. Kidney Int. 2023, 104, 638–640. [Google Scholar] [CrossRef] [PubMed]
- Shook, D.R.; Majer, C.; Keller, R. Pattern and morphogenesis of presumptive superficial mesoderm in two closely related species, Xenopus laevis and Xenopus tropicalis. Dev. Biol. 2004, 270, 163–185. [Google Scholar] [CrossRef]
- Little, R.B.; Norris, D.P. Right, left and cilia: How asymmetry is established. Semin. Cell Dev. Biol. 2021, 110, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Yoshiba, S.; Shiratori, H.; Kuo, I.Y.; Kawasumi, A.; Shinohara, K.; Nonaka, S.; Asai, Y.; Sasaki, G.; Belo, J.A.; Sasaki, H.; et al. Cilia at the node of mouse embryos sense fluid flow for left-right determination via Pkd2. Science 2012, 338, 226–231. [Google Scholar] [CrossRef] [PubMed]
- Yuan, S.; Zhao, L.; Brueckner, M.; Sun, Z. Intraciliary calcium oscillations initiate vertebrate left-right asymmetry. Curr. Biol. 2015, 25, 556–567. [Google Scholar] [CrossRef]
- Mizuno, K.; Shiozawa, K.; Katoh, T.A.; Minegishi, K.; Ide, T.; Ikawa, Y.; Nishimura, H.; Takaoka, K.; Itabashi, T.; Iwane, A.H.; et al. Role of Ca(2+) transients at the node of the mouse embryo in breaking of left-right symmetry. Sci. Adv. 2020, 6, eaba1195. [Google Scholar] [CrossRef]
- Maerker, M.; Getwan, M.; Dowdle, M.E.; McSheene, J.C.; Gonzalez, V.; Pelliccia, J.L.; Hamilton, D.S.; Yartseva, V.; Vejnar, C.; Tingler, M.; et al. Bicc1 and Dicer regulate left-right patterning through post-transcriptional control of the Nodal inhibitor Dand5. Nat. Commun. 2021, 12, 5482. [Google Scholar] [CrossRef]
- Minegishi, K.; Rothe, B.; Komatsu, K.R.; Ono, H.; Ikawa, Y.; Nishimura, H.; Katoh, T.A.; Kajikawa, E.; Sai, X.; Miyashita, E.; et al. Fluid flow-induced left-right asymmetric decay of Dand5 mRNA in the mouse embryo requires a Bicc1-Ccr4 RNA degradation complex. Nat. Commun. 2021, 12, 4071. [Google Scholar] [CrossRef]
- Takao, D.; Nemoto, T.; Abe, T.; Kiyonari, H.; Kajiura-Kobayashi, H.; Shiratori, H.; Nonaka, S. Asymmetric distribution of dynamic calcium signals in the node of mouse embryo during left-right axis formation. Dev. Biol. 2013, 376, 23–30. [Google Scholar] [CrossRef]
- Nakamura, T.; Hamada, H. Left-right patterning: Conserved and divergent mechanisms. Development 2012, 139, 3257–3262. [Google Scholar] [CrossRef]
- Rogers, K.W.; Lord, N.D.; Gagnon, J.A.; Pauli, A.; Zimmerman, S.; Aksel, D.C.; Reyon, D.; Tsai, S.Q.; Joung, J.K.; Schier, A.F. Nodal patterning without Lefty inhibitory feedback is functional but fragile. Elife 2017, 6, e28785. [Google Scholar] [CrossRef] [PubMed]
- Shiratori, H.; Hamada, H. The left-right axis in the mouse: From origin to morphology. Development 2006, 133, 2095–2104. [Google Scholar] [CrossRef] [PubMed]
- Ryan, A.K.; Blumberg, B.; Rodriguez-Esteban, C.; Yonei-Tamura, S.; Tamura, K.; Tsukui, T.; de la Pena, J.; Sabbagh, W.; Greenwald, J.; Choe, S.; et al. Pitx2 determines left-right asymmetry of internal organs in vertebrates. Nature 1998, 394, 545–551. [Google Scholar] [CrossRef] [PubMed]
- Shiratori, H.; Sakuma, R.; Watanabe, M.; Hashiguchi, H.; Mochida, K.; Sakai, Y.; Nishino, J.; Saijoh, Y.; Whitman, M.; Hamada, H. Two-step regulation of left-right asymmetric expression of Pitx2: Initiation by nodal signaling and maintenance by Nkx2. Mol. Cell 2001, 7, 137–149. [Google Scholar] [CrossRef]
- Piedra, M.E.; Icardo, J.M.; Albajar, M.; Rodriguez-Rey, J.C.; Ros, M.A. Pitx2 participates in the late phase of the pathway controlling left-right asymmetry. Cell 1998, 94, 319–324. [Google Scholar] [CrossRef]
- Yoshioka, H.; Meno, C.; Koshiba, K.; Sugihara, M.; Itoh, H.; Ishimaru, Y.; Inoue, T.; Ohuchi, H.; Semina, E.V.; Murray, J.C.; et al. Pitx2, a bicoid-type homeobox gene, is involved in a lefty-signaling pathway in determination of left-right asymmetry. Cell 1998, 94, 299–305. [Google Scholar] [CrossRef]
- Logan, M.; Pagan-Westphal, S.M.; Smith, D.M.; Paganessi, L.; Tabin, C.J. The transcription factor Pitx2 mediates situs-specific morphogenesis in response to left-right asymmetric signals. Cell 1998, 94, 307–317. [Google Scholar] [CrossRef]
- Shiratori, H.; Yashiro, K.; Shen, M.M.; Hamada, H. Conserved regulation and role of Pitx2 in situs-specific morphogenesis of visceral organs. Development 2006, 133, 3015–3025. [Google Scholar] [CrossRef]
- Bergmann, C.; Guay-Woodford, L.M.; Harris, P.C.; Horie, S.; Peters, D.J.M.; Torres, V.E. Polycystic kidney disease. Nat. Rev. Dis. Prim. 2018, 4, 50. [Google Scholar] [CrossRef]
- Koptides, M.; Deltas, C.C. Autosomal dominant polycystic kidney disease: Molecular genetics and molecular pathogenesis. Hum. Genet. 2000, 107, 115–126. [Google Scholar] [CrossRef]
- Happe, H.; Peters, D.J. Translational research in ADPKD: Lessons from animal models. Nat. Rev. Nephrol. 2014, 10, 587–601. [Google Scholar] [CrossRef]
- Sieben, C.J.; Harris, P.C. Experimental Models of Polycystic Kidney Disease: Applications and Therapeutic Testing. Kidney360 2023, 4, 1155–1173. [Google Scholar] [CrossRef] [PubMed]
- Lindstrom, N.O.; McMahon, J.A.; Guo, J.; Tran, T.; Guo, Q.; Rutledge, E.; Parvez, R.K.; Saribekyan, G.; Schuler, R.E.; Liao, C.; et al. Conserved and Divergent Features of Human and Mouse Kidney Organogenesis. J. Am. Soc. Nephrol. 2018, 29, 785–805. [Google Scholar] [CrossRef] [PubMed]
- Pennekamp, P.; Bogdanova, N.; Wilda, M.; Markoff, A.; Hameister, H.; Horst, J.; Dworniczak, B. Characterization of the murine polycystic kidney disease (Pkd2) gene. Mamm. Genome 1998, 9, 749–752. [Google Scholar] [CrossRef] [PubMed]
- Guillaume, R.; Trudel, M. Distinct and common developmental expression patterns of the murine Pkd2 and Pkd1 genes. Mech. Dev. 2000, 93, 179–183. [Google Scholar] [CrossRef] [PubMed]
- Yoder, B.K.; Hou, X.; Guay-Woodford, L.M. The polycystic kidney disease proteins, polycystin-1, polycystin-2, polaris, and cystin, are co-localized in renal cilia. J. Am. Soc. Nephrol. 2002, 13, 2508–2516. [Google Scholar] [CrossRef]
- Nauli, S.M.; Alenghat, F.J.; Luo, Y.; Williams, E.; Vassilev, P.; Li, X.; Elia, A.E.; Lu, W.; Brown, E.M.; Quinn, S.J.; et al. Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells. Nat. Genet. 2003, 33, 129–137. [Google Scholar] [CrossRef]
- Wu, G.; Markowitz, G.S.; Li, L.; D’Agati, V.D.; Factor, S.M.; Geng, L.; Tibara, S.; Tuchman, J.; Cai, Y.; Park, J.H.; et al. Cardiac defects and renal failure in mice with targeted mutations in Pkd2. Nat. Genet. 2000, 24, 75–78. [Google Scholar] [CrossRef]
- Lanner, J.T.; Georgiou, D.K.; Joshi, A.D.; Hamilton, S.L. Ryanodine receptors: Structure, expression, molecular details, and function in calcium release. Cold Spring Harb. Perspect Biol. 2010, 2, a003996. [Google Scholar] [CrossRef]
- Sammels, E.; Devogelaere, B.; Mekahli, D.; Bultynck, G.; Missiaen, L.; Parys, J.B.; Cai, Y.; Somlo, S.; De Smedt, H. Polycystin-2 activation by inositol 1,4,5-trisphosphate-induced Ca2+ release requires its direct association with the inositol 1,4,5-trisphosphate receptor in a signaling microdomain. J. Biol. Chem. 2010, 285, 18794–18805. [Google Scholar] [CrossRef]
- Padhy, B.; Xie, J.; Wang, R.; Lin, F.; Huang, C.L. Channel Function of Polycystin-2 in the Endoplasmic Reticulum Protects against Autosomal Dominant Polycystic Kidney Disease. J. Am. Soc. Nephrol. 2022, 33, 1501–1516. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Vassilev, P.M.; Li, X.; Kawanabe, Y.; Zhou, J. Native polycystin 2 functions as a plasma membrane Ca2+-permeable cation channel in renal epithelia. Mol. Cell. Biol. 2003, 23, 2600–2607. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.; Anyatonwu, G.; Okuhara, D.; Lee, K.B.; Yu, Z.; Onoe, T.; Mei, C.L.; Qian, Q.; Geng, L.; Wiztgall, R.; et al. Calcium dependence of polycystin-2 channel activity is modulated by phosphorylation at Ser812. J. Biol. Chem. 2004, 279, 19987–19995. [Google Scholar] [CrossRef] [PubMed]
- Chang, M.Y.; Parker, E.; Ibrahim, S.; Shortland, J.R.; Nahas, M.E.; Haylor, J.L.; Ong, A.C. Haploinsufficiency of Pkd2 is associated with increased tubular cell proliferation and interstitial fibrosis in two murine Pkd2 models. Nephrol. Dial Transplant. 2006, 21, 2078–2084. [Google Scholar] [CrossRef] [PubMed]
- Burtey, S.; Riera, M.; Ribe, E.; Pennekamp, P.; Passage, E.; Rance, R.; Dworniczak, B.; Fontes, M. Overexpression of PKD2 in the mouse is associated with renal tubulopathy. Nephrol. Dial Transplant. 2008, 23, 1157–1165. [Google Scholar] [CrossRef]
- Belibi, F.A.; Reif, G.; Wallace, D.P.; Yamaguchi, T.; Olsen, L.; Li, H.; Helmkamp, G.M., Jr.; Grantham, J.J. Cyclic AMP promotes growth and secretion in human polycystic kidney epithelial cells. Kidney Int. 2004, 66, 964–973. [Google Scholar] [CrossRef]
- Yamaguchi, T.; Pelling, J.C.; Ramaswamy, N.T.; Eppler, J.W.; Wallace, D.P.; Nagao, S.; Rome, L.A.; Sullivan, L.P.; Grantham, J.J. cAMP stimulates the in vitro proliferation of renal cyst epithelial cells by activating the extracellular signal-regulated kinase pathway. Kidney Int. 2000, 57, 1460–1471. [Google Scholar] [CrossRef]
- Yanda, M.K.; Liu, Q.; Cebotaru, V.; Guggino, W.B.; Cebotaru, L. Role of calcium in adult onset polycystic kidney disease. Cell Signal. 2019, 53, 140–150. [Google Scholar] [CrossRef]
- Ortiz-Capisano, M.C.; Ortiz, P.A.; Harding, P.; Garvin, J.L.; Beierwaltes, W.H. Decreased intracellular calcium stimulates renin release via calcium-inhibitable adenylyl cyclase. Hypertension 2007, 49, 162–169. [Google Scholar] [CrossRef]
- Spirli, C.; Okolicsanyi, S.; Fiorotto, R.; Fabris, L.; Cadamuro, M.; Lecchi, S.; Tian, X.; Somlo, S.; Strazzabosco, M. ERK1/2-dependent vascular endothelial growth factor signaling sustains cyst growth in polycystin-2 defective mice. Gastroenterology 2010, 138, 360–371.e7. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, Y.; Dang, L.; Geng, M.; Sun, Y.; Lu, Y.; Fang, Z.; Xiong, H.; Chen, Y. Integrative Cistromic and Transcriptomic Analyses Identify CREB Target Genes in Cystic Renal Epithelial Cells. J. Am. Soc. Nephrol. 2021, 32, 2529–2541. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Liu, Z.; Cao, X.; Lu, Y.; Mi, Z.; He, C.; Liu, J.; Zheng, Z.; Li, M.J.; Li, T.; et al. Activation of P-TEFb by cAMP-PKA signaling in autosomal dominant polycystic kidney disease. Sci. Adv. 2019, 5, eaaw3593. [Google Scholar] [CrossRef] [PubMed]
- Burtey, S.; Riera, M.; Ribe, E.; Pennenkamp, P.; Rance, R.; Luciani, J.; Dworniczak, B.; Mattei, M.G.; Fontes, M. Centrosome overduplication and mitotic instability in PKD2 transgenic lines. Cell Biol. Int. 2008, 32, 1193–1198. [Google Scholar] [CrossRef]
- Park, E.Y.; Sung, Y.H.; Yang, M.H.; Noh, J.Y.; Park, S.Y.; Lee, T.Y.; Yook, Y.J.; Yoo, K.H.; Roh, K.J.; Kim, I.; et al. Cyst formation in kidney via B-Raf signaling in the PKD2 transgenic mice. J. Biol. Chem. 2009, 284, 7214–7222. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Luo, Y.; Starremans, P.G.; McNamara, C.A.; Pei, Y.; Zhou, J. Polycystin-1 and polycystin-2 regulate the cell cycle through the helix-loop-helix inhibitor Id2. Nat. Cell Biol. 2005, 7, 1202–1212. [Google Scholar] [CrossRef]
- Bhunia, A.K.; Piontek, K.; Boletta, A.; Liu, L.; Qian, F.; Xu, P.N.; Germino, F.J.; Germino, G.G. PKD1 induces p21(waf1) and regulation of the cell cycle via direct activation of the JAK-STAT signaling pathway in a process requiring PKD2. Cell 2002, 109, 157–168. [Google Scholar] [CrossRef]
- Fan, L.X.; Li, X.; Magenheimer, B.; Calvet, J.P.; Li, X. Inhibition of histone deacetylases targets the transcription regulator Id2 to attenuate cystic epithelial cell proliferation. Kidney Int. 2012, 81, 76–85. [Google Scholar] [CrossRef]
- Kuo, I.Y.; Brill, A.L.; Lemos, F.O.; Jiang, J.Y.; Falcone, J.L.; Kimmerling, E.P.; Cai, Y.; Dong, K.; Kaplan, D.L.; Wallace, D.P.; et al. Polycystin 2 regulates mitochondrial Ca2+ signaling, bioenergetics, and dynamics through mitofusin 2. Sci. Signal. 2019, 12, aat7397. [Google Scholar] [CrossRef]
- Rowe, I.; Chiaravalli, M.; Mannella, V.; Ulisse, V.; Quilici, G.; Pema, M.; Song, X.W.; Xu, H.; Mari, S.; Qian, F.; et al. Defective glucose metabolism in polycystic kidney disease identifies a new therapeutic strategy. Nat. Med. 2013, 19, 488–493. [Google Scholar] [CrossRef]
- Inoki, K.; Zhu, T.; Guan, K.L. TSC2 mediates cellular energy response to control cell growth and survival. Cell 2003, 115, 577–590. [Google Scholar] [CrossRef]
- Kim, I.; Ding, T.; Fu, Y.; Li, C.; Cui, L.; Li, A.; Lian, P.; Liang, D.; Wang, D.W.; Guo, C.; et al. Conditional mutation of Pkd2 causes cystogenesis and upregulates beta-catenin. J. Am. Soc. Nephrol. 2009, 20, 2556–2569. [Google Scholar] [CrossRef] [PubMed]
- Besschetnova, T.Y.; Kolpakova-Hart, E.; Guan, Y.; Zhou, J.; Olsen, B.R.; Shah, J.V. Identification of signaling pathways regulating primary cilium length and flow-mediated adaptation. Curr. Biol. 2010, 20, 182–187. [Google Scholar] [CrossRef] [PubMed]
- Ma, M.; Tian, X.; Igarashi, P.; Pazour, G.J.; Somlo, S. Loss of cilia suppresses cyst growth in genetic models of autosomal dominant polycystic kidney disease. Nat. Genet. 2013, 45, 1004–1012. [Google Scholar] [CrossRef] [PubMed]
- Mazloum, M.; Lapin, B.; Viau, A.; Alghamdi, R.; Burtin, M.; Houillier, P.; Cheval, L.; Crambert, G.; Aka, A.; Kuehn, E.W.; et al. Cilia to basement membrane signalling is a biomechanical driver of autosomal dominant polycystic kidney disease. bioRxiv 2024. [Google Scholar]
- Obara, T.; Mangos, S.; Liu, Y.; Zhao, J.; Wiessner, S.; Kramer-Zucker, A.G.; Olale, F.; Schier, A.F.; Drummond, I.A. Polycystin-2 immunolocalization and function in zebrafish. J. Am. Soc. Nephrol. 2006, 17, 2706–2718. [Google Scholar] [CrossRef] [PubMed]
- Schottenfeld, J.; Sullivan-Brown, J.; Burdine, R.D. Zebrafish curly up encodes a Pkd2 ortholog that restricts left-side-specific expression of southpaw. Development 2007, 134, 1605–1615. [Google Scholar] [CrossRef]
- Sullivan-Brown, J.; Schottenfeld, J.; Okabe, N.; Hostetter, C.L.; Serluca, F.C.; Thiberge, S.Y.; Burdine, R.D. Zebrafish mutations affecting cilia motility share similar cystic phenotypes and suggest a mechanism of cyst formation that differs from pkd2 morphants. Dev. Biol. 2008, 314, 261–275. [Google Scholar] [CrossRef]
- Xu, D.; Lv, J.; He, L.; Fu, L.; Hu, R.; Cao, Y.; Mei, C. Scribble influences cyst formation in autosomal-dominant polycystic kidney disease by regulating Hippo signaling pathway. FASEB J. 2018, 32, 4394–4407. [Google Scholar] [CrossRef]
- Streets, A.J.; Moon, D.J.; Kane, M.E.; Obara, T.; Ong, A.C. Identification of an N-terminal glycogen synthase kinase 3 phosphorylation site which regulates the functional localization of polycystin-2 in vivo and in vitro. Hum. Mol. Genet. 2006, 15, 1465–1473. [Google Scholar] [CrossRef]
- Fu, X.; Wang, Y.; Schetle, N.; Gao, H.; Putz, M.; von Gersdorff, G.; Walz, G.; Kramer-Zucker, A.G. The subcellular localization of TRPP2 modulates its function. J. Am. Soc. Nephrol. 2008, 19, 1342–1351. [Google Scholar] [CrossRef]
- Sans-Atxer, L.; Joly, D. Tolvaptan in the treatment of autosomal dominant polycystic kidney disease: Patient selection and special considerations. Int. J. Nephrol. Renovasc. Dis. 2018, 11, 41–51. [Google Scholar] [CrossRef] [PubMed]
- Lantinga, M.A.; D’Agnolo, H.M.; Casteleijn, N.F.; de Fijter, J.W.; Meijer, E.; Messchendorp, A.L.; Peters, D.J.; Salih, M.; Spithoven, E.M.; Soonawala, D.; et al. Hepatic Cyst Infection During Use of the Somatostatin Analog Lanreotide in Autosomal Dominant Polycystic Kidney Disease: An Interim Analysis of the Randomized Open-Label Multicenter DIPAK-1 Study. Drug Saf. 2017, 40, 153–167. [Google Scholar] [CrossRef]
- Ruggenenti, P.; Gentile, G.; Perico, N.; Perna, A.; Barcella, L.; Trillini, M.; Cortinovis, M.; Ferrer Siles, C.P.; Reyes Loaeza, J.A.; Aparicio, M.C.; et al. Effect of Sirolimus on Disease Progression in Patients with Autosomal Dominant Polycystic Kidney Disease and CKD Stages 3b-4. Clin. J. Am. Soc. Nephrol. 2016, 11, 785–794. [Google Scholar] [CrossRef] [PubMed]
- Li, A.; Xu, Y.; Fan, S.; Meng, J.; Shen, X.; Xiao, Q.; Li, Y.; Zhang, L.; Zhang, X.; Wu, G.; et al. Canonical Wnt inhibitors ameliorate cystogenesis in a mouse ortholog of human ADPKD. JCI Insight 2018, 3, e95874. [Google Scholar] [CrossRef] [PubMed]
- Heckel, E.; Boselli, F.; Roth, S.; Krudewig, A.; Belting, H.G.; Charvin, G.; Vermot, J. Oscillatory Flow Modulates Mechanosensitive klf2a Expression through trpv4 and trpp2 during Heart Valve Development. Curr. Biol. 2015, 25, 1354–1361. [Google Scholar] [CrossRef]
- Vermot, J.; Forouhar, A.S.; Liebling, M.; Wu, D.; Plummer, D.; Gharib, M.; Fraser, S.E. Reversing blood flows act through klf2a to ensure normal valvulogenesis in the developing heart. PLoS Biol. 2009, 7, e1000246. [Google Scholar] [CrossRef]
- Anyatonwu, G.I.; Estrada, M.; Tian, X.; Somlo, S.; Ehrlich, B.E. Regulation of ryanodine receptor-dependent calcium signaling by polycystin-2. Proc. Natl. Acad. Sci. USA 2007, 104, 6454–6459. [Google Scholar] [CrossRef]
- Kuo, I.Y.; Kwaczala, A.T.; Nguyen, L.; Russell, K.S.; Campbell, S.G.; Ehrlich, B.E. Decreased polycystin 2 expression alters calcium-contraction coupling and changes beta-adrenergic signaling pathways. Proc. Natl. Acad. Sci. USA 2014, 111, 16604–16609. [Google Scholar] [CrossRef] [PubMed]
- Paavola, J.; Schliffke, S.; Rossetti, S.; Kuo, I.Y.; Yuan, S.; Sun, Z.; Harris, P.C.; Torres, V.E.; Ehrlich, B.E. Polycystin-2 mutations lead to impaired calcium cycling in the heart and predispose to dilated cardiomyopathy. J. Mol. Cell Cardiol. 2013, 58, 199–208. [Google Scholar] [CrossRef]
- Sang, D.; Bai, S.; Yin, S.; Jiang, S.; Ye, L.; Hou, W.; Yao, Y.; Wang, H.; Shen, Y.; Shen, B.; et al. Role of TRPP2 in mouse airway smooth muscle tension and respiration. Am. J. Physiol. Lung Cell Mol. Physiol. 2019, 317, L466–L474. [Google Scholar] [CrossRef]
- Giehl, E.; Lemos, F.O.; Huang, Y.; Giordano, F.J.; Kuo, I.Y.; Ehrlich, B.E. Polycystin 2-dependent cardio-protective mechanisms revealed by cardiac stress. Pflugers Arch. 2017, 469, 1507–1517. [Google Scholar] [CrossRef] [PubMed]
- Torres, V.E.; Cai, Y.; Chen, X.I.; Wu, G.Q.; Geng, L.; Cleghorn, K.A.; Johnson, C.M.; Somlo, S. Vascular expression of polycystin-2. J. Am. Soc. Nephrol. 2001, 12, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Qian, Q.; Li, M.; Cai, Y.; Ward, C.J.; Somlo, S.; Harris, P.C.; Torres, V.E. Analysis of the polycystins in aortic vascular smooth muscle cells. J. Am. Soc. Nephrol. 2003, 14, 2280–2287. [Google Scholar] [CrossRef]
- AbouAlaiwi, W.A.; Takahashi, M.; Mell, B.R.; Jones, T.J.; Ratnam, S.; Kolb, R.J.; Nauli, S.M. Ciliary polycystin-2 is a mechanosensitive calcium channel involved in nitric oxide signaling cascades. Circ. Res. 2009, 104, 860–869. [Google Scholar] [CrossRef] [PubMed]
- Dennis, M.R.; Pires, P.W.; Banek, C.T. Vascular Dysfunction in Polycystic Kidney Disease: A Mini-Review. J. Vasc. Res. 2023, 60, 125–136. [Google Scholar] [CrossRef]
- Brookes, Z.L.; Ruff, L.; Upadhyay, V.S.; Huang, L.; Prasad, S.; Solanky, T.; Nauli, S.M.; Ong, A.C. Pkd2 mesenteric vessels exhibit a primary defect in endothelium-dependent vasodilatation restored by rosiglitazone. Am. J. Physiol. Heart Circ. Physiol. 2013, 304, H33–H41. [Google Scholar] [CrossRef] [PubMed]
- Outeda, P.; Huso, D.L.; Fisher, S.A.; Halushka, M.K.; Kim, H.; Qian, F.; Germino, G.G.; Watnick, T. Polycystin signaling is required for directed endothelial cell migration and lymphatic development. Cell Rep. 2014, 7, 634–644. [Google Scholar] [CrossRef]
- Goetz, J.G.; Steed, E.; Ferreira, R.R.; Roth, S.; Ramspacher, C.; Boselli, F.; Charvin, G.; Liebling, M.; Wyart, C.; Schwab, Y.; et al. Endothelial cilia mediate low flow sensing during zebrafish vascular development. Cell Rep. 2014, 6, 799–808. [Google Scholar] [CrossRef]
- Campinho, P.; Lamperti, P.; Boselli, F.; Vilfan, A.; Vermot, J. Blood Flow Limits Endothelial Cell Extrusion in the Zebrafish Dorsal Aorta. Cell Rep. 2020, 31, 107505. [Google Scholar] [CrossRef]
- MacKay, C.E.; Leo, M.D.; Fernandez-Pena, C.; Hasan, R.; Yin, W.; Mata-Daboin, A.; Bulley, S.; Gammons, J.; Mancarella, S.; Jaggar, J.H. Intravascular flow stimulates PKD2 (polycystin-2) channels in endothelial cells to reduce blood pressure. Elife 2020, 9, e56655. [Google Scholar] [CrossRef]
- MacKay, C.E.; Floen, M.; Leo, M.D.; Hasan, R.; Garrud, T.A.C.; Fernandez-Pena, C.; Singh, P.; Malik, K.U.; Jaggar, J.H. A plasma membrane-localized polycystin-1/polycystin-2 complex in endothelial cells elicits vasodilation. Elife 2022, 11, e74765. [Google Scholar] [CrossRef] [PubMed]
- Bulley, S.; Fernandez-Pena, C.; Hasan, R.; Leo, M.D.; Muralidharan, P.; MacKay, C.E.; Evanson, K.W.; Moreira-Junior, L.; Mata-Daboin, A.; Burris, S.K.; et al. Correction: Arterial smooth muscle cell PKD2 (TRPP1) channels regulate systemic blood pressure. Elife 2020, 9, e60403. [Google Scholar] [CrossRef] [PubMed]
- Hasan, R.; Leo, M.D.; Muralidharan, P.; Mata-Daboin, A.; Yin, W.; Bulley, S.; Fernandez-Pena, C.; MacKay, C.E.; Jaggar, J.H. SUMO1 modification of PKD2 channels regulates arterial contractility. Proc. Natl. Acad. Sci. USA 2019, 116, 27095–27104. [Google Scholar] [CrossRef] [PubMed]
- Nakano, K.; Sukegawa, G.; Tsuji, Y. Secondary infertility due to necrospermia in men with autosomal-dominant polycystic kidney disease: A report of two cases. CEN Case Rep. 2024. preprint. [Google Scholar] [CrossRef] [PubMed]
- Luciano, R.L.; Dahl, N.K. Extra-renal manifestations of autosomal dominant polycystic kidney disease (ADPKD): Considerations for routine screening and management. Nephrol. Dial Transplant. 2014, 29, 247–254. [Google Scholar] [CrossRef]
- Nie, X.; Arend, L.J. Novel roles of Pkd2 in male reproductive system development. Differentiation 2014, 87, 161–171. [Google Scholar] [CrossRef]
- Watnick, T.J.; Jin, Y.; Matunis, E.; Kernan, M.J.; Montell, C. A flagellar polycystin-2 homolog required for male fertility in Drosophila. Curr. Biol. 2003, 13, 2179–2184. [Google Scholar] [CrossRef]
- Gao, Z.; Ruden, D.M.; Lu, X. PKD2 cation channel is required for directional sperm movement and male fertility. Curr. Biol. 2003, 13, 2175–2178. [Google Scholar] [CrossRef]
- Kottgen, M.; Hofherr, A.; Li, W.; Chu, K.; Cook, S.; Montell, C.; Watnick, T. Drosophila sperm swim backwards in the female reproductive tract and are activated via TRPP2 ion channels. PLoS ONE 2011, 6, e20031. [Google Scholar] [CrossRef]
- Yang, Y.; Lu, X. Drosophila sperm motility in the reproductive tract. Biol. Reprod. 2011, 84, 1005–1015. [Google Scholar] [CrossRef]
- Yang, Y.; Cochran, D.A.; Gargano, M.D.; King, I.; Samhat, N.K.; Burger, B.P.; Sabourin, K.R.; Hou, Y.; Awata, J.; Parry, D.A.; et al. Regulation of flagellar motility by the conserved flagellar protein CG34110/Ccdc135/FAP50. Mol. Biol. Cell 2011, 22, 976–987. [Google Scholar] [CrossRef] [PubMed]
- Barr, M.M.; DeModena, J.; Braun, D.; Nguyen, C.Q.; Hall, D.H.; Sternberg, P.W. The Caenorhabditis elegans autosomal dominant polycystic kidney disease gene homologs lov-1 and pkd-2 act in the same pathway. Curr. Biol. 2001, 11, 1341–1346. [Google Scholar] [CrossRef] [PubMed]
- Lints, R.; Emmons, S.W. Regulation of sex-specific differentiation and mating behavior in C. elegans by a new member of the DM domain transcription factor family. Genes Dev. 2002, 16, 2390–2402. [Google Scholar] [CrossRef] [PubMed]
- Knobel, K.M.; Peden, E.M.; Barr, M.M. Distinct protein domains regulate ciliary targeting and function of C. elegans PKD-2. Exp. Cell Res. 2008, 314, 825–833. [Google Scholar] [CrossRef]
- Bae, Y.K.; Qin, H.; Knobel, K.M.; Hu, J.; Rosenbaum, J.L.; Barr, M.M. General and cell-type specific mechanisms target TRPP2/PKD-2 to cilia. Development 2006, 133, 3859–3870. [Google Scholar] [CrossRef]
- Liu, K.S.; Sternberg, P.W. Sensory regulation of male mating behavior in Caenorhabditis elegans. Neuron 1995, 14, 79–89. [Google Scholar] [CrossRef]
- Barr, M.M.; Sternberg, P.W. A polycystic kidney-disease gene homologue required for male mating behaviour in C. elegans. Nature 1999, 401, 386–389. [Google Scholar] [CrossRef]
- Chasnov, J.R.; So, W.K.; Chan, C.M.; Chow, K.L. The species, sex, and stage specificity of a Caenorhabditis sex pheromone. Proc. Natl. Acad. Sci. USA 2007, 104, 6730–6735. [Google Scholar] [CrossRef]
- Wang, J.; Silva, M.; Haas, L.A.; Morsci, N.S.; Nguyen, K.C.; Hall, D.H.; Barr, M.M. C. elegans ciliated sensory neurons release extracellular vesicles that function in animal communication. Curr. Biol. 2014, 24, 519–525. [Google Scholar] [CrossRef]
- Wang, J.; Nikonorova, I.A.; Gu, A.; Sternberg, P.W.; Barr, M.M. Release and targeting of polycystin-2-carrying ciliary extracellular vesicles. Curr. Biol. 2020, 30, R755–R756. [Google Scholar] [CrossRef]
- Wang, J.; Nikonorova, I.A.; Silva, M.; Walsh, J.D.; Tilton, P.E.; Gu, A.; Akella, J.S.; Barr, M.M. Sensory cilia act as a specialized venue for regulated extracellular vesicle biogenesis and signaling. Curr. Biol. 2021, 31, 3943–3951.e3. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Kaletsky, R.; Silva, M.; Williams, A.; Haas, L.A.; Androwski, R.J.; Landis, J.N.; Patrick, C.; Rashid, A.; Santiago-Martinez, D.; et al. Cell-Specific Transcriptional Profiling of Ciliated Sensory Neurons Reveals Regulators of Behavior and Extracellular Vesicle Biogenesis. Curr. Biol. 2015, 25, 3232–3238. [Google Scholar] [CrossRef] [PubMed]
- Qin, H.; Burnette, D.T.; Bae, Y.K.; Forscher, P.; Barr, M.M.; Rosenbaum, J.L. Intraflagellar transport is required for the vectorial movement of TRPV channels in the ciliary membrane. Curr. Biol. 2005, 15, 1695–1699. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Q.; Wei, Q.; Zhang, Y.; Ling, K.; Hu, J. SUMOylation of the small GTPase ARL-13 promotes ciliary targeting of sensory receptors. J. Cell Biol. 2012, 199, 589–598. [Google Scholar] [CrossRef]
- Peden, E.M.; Barr, M.M. The KLP-6 kinesin is required for male mating behaviors and polycystin localization in Caenorhabditis elegans. Curr. Biol. 2005, 15, 394–404. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Bae, Y.K.; Knobel, K.M.; Barr, M.M. Casein kinase II and calcineurin modulate TRPP function and ciliary localization. Mol. Biol. Cell 2006, 17, 2200–2211. [Google Scholar] [CrossRef]
- Bae, Y.K.; Lyman-Gingerich, J.; Barr, M.M.; Knobel, K.M. Identification of genes involved in the ciliary trafficking of C. elegans PKD-2. Dev. Dyn. 2008, 237, 2021–2029. [Google Scholar] [CrossRef]
- Bae, Y.K.; Kim, E.; L’Hernault, S.W.; Barr, M.M. The CIL-1 PI 5-phosphatase localizes TRP Polycystins to cilia and activates sperm in C. elegans. Curr. Biol. 2009, 19, 1599–1607. [Google Scholar] [CrossRef]
- Hu, J.; Wittekind, S.G.; Barr, M.M. STAM and Hrs down-regulate ciliary TRP receptors. Mol. Biol. Cell 2007, 18, 3277–3289. [Google Scholar] [CrossRef]
- Yu, H.; Pretot, R.F.; Burglin, T.R.; Sternberg, P.W. Distinct roles of transcription factors EGL-46 and DAF-19 in specifying the functionality of a polycystin-expressing sensory neuron necessary for C. elegans male vulva location behavior. Development 2003, 130, 5217–5227. [Google Scholar] [CrossRef]
- O’Hagan, R.; Silva, M.; Nguyen, K.C.Q.; Zhang, W.; Bellotti, S.; Ramadan, Y.H.; Hall, D.H.; Barr, M.M. Glutamylation Regulates Transport, Specializes Function, and Sculpts the Structure of Cilia. Curr. Biol. 2017, 27, 3430–3441.e6. [Google Scholar] [CrossRef] [PubMed]
- Scheidel, N.; Kennedy, J.; Blacque, O.E. Endosome maturation factors Rabenosyn-5/VPS45 and caveolin-1 regulate ciliary membrane and polycystin-2 homeostasis. EMBO J. 2018, 37, e98248. [Google Scholar] [CrossRef] [PubMed]
- Mangos, S.; Lam, P.Y.; Zhao, A.; Liu, Y.; Mudumana, S.; Vasilyev, A.; Liu, A.; Drummond, I.A. The ADPKD genes pkd1a/b and pkd2 regulate extracellular matrix formation. Dis. Model. Mech. 2010, 3, 354–365. [Google Scholar] [CrossRef] [PubMed]
- Le Corre, S.; Eyre, D.; Drummond, I.A. Modulation of the secretory pathway rescues zebrafish polycystic kidney disease pathology. J. Am. Soc. Nephrol. 2014, 25, 1749–1759. [Google Scholar] [CrossRef]
- Sussman, C.R.; Ward, C.J.; Leightner, A.C.; Smith, J.L.; Agarwal, R.; Harris, P.C.; Torres, V.E. Phosphodiesterase 1A modulates cystogenesis in zebrafish. J. Am. Soc. Nephrol. 2014, 25, 2222–2230. [Google Scholar] [CrossRef]
- Cao, Y.; Semanchik, N.; Lee, S.H.; Somlo, S.; Barbano, P.E.; Coifman, R.; Sun, Z. Chemical modifier screen identifies HDAC inhibitors as suppressors of PKD models. Proc. Natl. Acad. Sci. USA 2009, 106, 21819–21824. [Google Scholar] [CrossRef]
- Metzner, A.; Griffiths, J.D.; Streets, A.J.; Markham, E.; Philippou, T.; Van Eeden, F.J.M.; Ong, A.C.M. A high throughput zebrafish chemical screen reveals ALK5 and non-canonical androgen signalling as modulators of the pkd2(−/−) phenotype. Sci. Rep. 2020, 10, 72. [Google Scholar] [CrossRef]
- Khonsari, R.H.; Ohazama, A.; Raouf, R.; Kawasaki, M.; Kawasaki, K.; Porntaveetus, T.; Ghafoor, S.; Hammond, P.; Suttie, M.; Odri, G.A.; et al. Multiple postnatal craniofacial anomalies are characterized by conditional loss of polycystic kidney disease 2 (Pkd2). Hum. Mol. Genet. 2013, 22, 1873–1885. [Google Scholar] [CrossRef]
- Xiao, Z.; Cao, L.; Liang, Y.; Huang, J.; Stern, A.R.; Dallas, M.; Johnson, M.; Quarles, L.D. Osteoblast-specific deletion of Pkd2 leads to low-turnover osteopenia and reduced bone marrow adiposity. PLoS ONE 2014, 9, e114198. [Google Scholar] [CrossRef]
- Turner, H.N.; Armengol, K.; Patel, A.A.; Himmel, N.J.; Sullivan, L.; Iyer, S.C.; Bhattacharya, S.; Iyer, E.P.R.; Landry, C.; Galko, M.J.; et al. The TRP Channels Pkd2, NompC, and Trpm Act in Cold-Sensing Neurons to Mediate Unique Aversive Behaviors to Noxious Cold in Drosophila. Curr. Biol. 2016, 26, 3116–3128. [Google Scholar] [CrossRef]
- Bezares-Calderon, L.A.; Berger, J.; Jasek, S.; Veraszto, C.; Mendes, S.; Guhmann, M.; Almeda, R.; Shahidi, R.; Jekely, G. Neural circuitry of a polycystin-mediated hydrodynamic startle response for predator avoidance. Elife 2018, 7, e36262. [Google Scholar] [CrossRef] [PubMed]
- Ohata, S.; Herranz-Perez, V.; Nakatani, J.; Boletta, A.; Garcia-Verdugo, J.M.; Alvarez-Buylla, A. Mechanosensory Genes Pkd1 and Pkd2 Contribute to the Planar Polarization of Brain Ventricular Epithelium. J. Neurosci. 2015, 35, 11153–11168. [Google Scholar] [CrossRef] [PubMed]
- Winokurow, N.; Schumacher, S. A role for polycystin-1 and polycystin-2 in neural progenitor cell differentiation. Cell Mol. Life Sci. 2019, 76, 2851–2869. [Google Scholar] [CrossRef] [PubMed]
- Lanktree, M.B.; Haghighi, A.; Guiard, E.; Iliuta, I.A.; Song, X.; Harris, P.C.; Paterson, A.D.; Pei, Y. Prevalence Estimates of Polycystic Kidney and Liver Disease by Population Sequencing. J. Am. Soc. Nephrol. 2018, 29, 2593–2600. [Google Scholar] [CrossRef]
- Fedeles, S.V.; Tian, X.; Gallagher, A.R.; Mitobe, M.; Nishio, S.; Lee, S.H.; Cai, Y.; Geng, L.; Crews, C.M.; Somlo, S. A genetic interaction network of five genes for human polycystic kidney and liver diseases defines polycystin-1 as the central determinant of cyst formation. Nat. Genet. 2011, 43, 639–647. [Google Scholar] [CrossRef]
- Kleffmann, J.; Frank, V.; Ferbert, A.; Bergmann, C. Dosage-sensitive network in polycystic kidney and liver disease: Multiple mutations cause severe hepatic and neurological complications. J. Hepatol. 2012, 57, 476–477. [Google Scholar] [CrossRef]
- Roth, C.; Kleffmann, J.; Bergmann, C.; Deinsberger, W.; Ferbert, A. Ruptured cerebral aneurysm and acute bilateral carotid artery dissection in a patient with polycystic kidney disease and polycystic liver disease. Cerebrovasc. Dis. 2013, 35, 590–591. [Google Scholar] [CrossRef]
- Ramsdell, A.F. Left-right asymmetry and congenital cardiac defects: Getting to the heart of the matter in vertebrate left-right axis determination. Dev. Biol. 2005, 288, 1–20. [Google Scholar] [CrossRef]
- Yang, D.; Jian, Z.; Tang, C.; Chen, Z.; Zhou, Z.; Zheng, L.; Peng, X. Zebrafish Congenital Heart Disease Models: Opportunities and Challenges. Int. J. Mol. Sci. 2024, 25, 5943. [Google Scholar] [CrossRef]
- Kim, I.; Li, C.; Liang, D.; Chen, X.Z.; Coffy, R.J.; Ma, J.; Zhao, P.; Wu, G. Polycystin-2 expression is regulated by a PC2-binding domain in the intracellular portion of fibrocystin. J. Biol. Chem. 2008, 283, 31559–31566. [Google Scholar] [CrossRef]
- Stroope, A.; Radtke, B.; Huang, B.; Masyuk, T.; Torres, V.; Ritman, E.; LaRusso, N. Hepato-renal pathology in pkd2ws25/- mice, an animal model of autosomal dominant polycystic kidney disease. Am. J. Pathol. 2010, 176, 1282–1291. [Google Scholar] [CrossRef] [PubMed]
- Nagao, S.; Yamaguchi, T. Review of the Use of Animal Models of Human Polycystic Kidney Disease for the Evaluation of Experimental Therapeutic Modalities. J. Clin. Med. 2023, 12, 668. [Google Scholar] [CrossRef] [PubMed]
- Elmonem, M.A.; Berlingerio, S.P.; van den Heuvel, L.P.; de Witte, P.A.; Lowe, M.; Levtchenko, E.N. Genetic Renal Diseases: The Emerging Role of Zebrafish Models. Cells 2018, 7, 130. [Google Scholar] [CrossRef]
- Gehrig, J.; Pandey, G.; Westhoff, J.H. Zebrafish as a Model for Drug Screening in Genetic Kidney Diseases. Front. Pediatr. 2018, 6, 183. [Google Scholar] [CrossRef] [PubMed]
- Strange, K. Drug Discovery in Fish, Flies, and Worms. ILAR J. 2016, 57, 133–143. [Google Scholar] [CrossRef]
- Vishy, C.E.; Thomas, C.; Vincent, T.; Crawford, D.K.; Goddeeris, M.M.; Freedman, B.S. Genetics of cystogenesis in base-edited human organoids reveal therapeutic strategies for polycystic kidney disease. Cell Stem Cell 2024, 31, 537–553.e5. [Google Scholar] [CrossRef]
- Shimizu, T.; Mae, S.I.; Araoka, T.; Okita, K.; Hotta, A.; Yamagata, K.; Osafune, K. A novel ADPKD model using kidney organoids derived from disease-specific human iPSCs. Biochem. Biophys. Res. Commun. 2020, 529, 1186–1194. [Google Scholar] [CrossRef]
- Kuraoka, S.; Tanigawa, S.; Taguchi, A.; Hotta, A.; Nakazato, H.; Osafune, K.; Kobayashi, A.; Nishinakamura, R. PKD1-Dependent Renal Cystogenesis in Human Induced Pluripotent Stem Cell-Derived Ureteric Bud/Collecting Duct Organoids. J. Am. Soc. Nephrol. 2020, 31, 2355–2371. [Google Scholar] [CrossRef]
- Bovo, E.; Huke, S.; Blatter, L.A.; Zima, A.V. The effect of PKA-mediated phosphorylation of ryanodine receptor on SR Ca2+ leak in ventricular myocytes. J. Mol. Cell Cardiol. 2017, 104, 9–16. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Kang, Y.; Xie, H. PKD2: An Important Membrane Protein in Organ Development. Cells 2024, 13, 1722. https://doi.org/10.3390/cells13201722
Wang S, Kang Y, Xie H. PKD2: An Important Membrane Protein in Organ Development. Cells. 2024; 13(20):1722. https://doi.org/10.3390/cells13201722
Chicago/Turabian StyleWang, Shuo, Yunsi Kang, and Haibo Xie. 2024. "PKD2: An Important Membrane Protein in Organ Development" Cells 13, no. 20: 1722. https://doi.org/10.3390/cells13201722
APA StyleWang, S., Kang, Y., & Xie, H. (2024). PKD2: An Important Membrane Protein in Organ Development. Cells, 13(20), 1722. https://doi.org/10.3390/cells13201722