The Case for Bisphosphonate Use in Astronauts Flying Long-Duration Missions
Abstract
:1. Introduction
1.1. Bone Anatomy and Physiology
1.2. Osteoporosis: Pathophysiology and Treatment
2. The Space Environment
2.1. Effects of Microgravity on Bone
2.2. Countermeasures to Mitigate Spaceflight-Induced Osseous Changes: Resistive Exercise
2.3. Other Measures of Osseous Morphology Demonstrate Deficiencies in ARED
2.4. Countermeasures to Mitigate Spaceflight-Induced Osseous Changes: Bisphosphonates
3. Consequences and Implications for Decisionmakers
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Acronyms
ARED | Advanced Resistive Exercise Device |
aBMD | Areal Bone Mineral Density |
DXA | Dual Energy X-ray Absorptiometry |
FD | Flight Day |
iRED | Interim Resistive Exercise Device |
ONJ | Osteonecrosis of the Jaw |
QCT | Quantitative Computed Tomography |
References
- Osterhoff, G.; Morgan, E.F.; Shefelbine, S.J.; Karim, L.; McNamara, L.M.; Augat, P. Bone mechanical properties and changes with osteoporosis. Injury 2016, 47, S11–S20. [Google Scholar] [CrossRef]
- Oursler, M.J. Direct and indirect effects of estrogen on osteoclasts. J. Musculoskelet. Neuronal Interact. 2003, 3, 363. [Google Scholar] [PubMed]
- Riggs, B.L.; Khosla, S.; Melton, L.J., 3rd. Sex Steroids and the Construction and Conservation of the Adult Skeleton. Endocr. Rev. 2002, 23, 279–302. [Google Scholar] [CrossRef] [PubMed]
- Seeman, E. Pathogenesis of bone fragility in women and men. Lancet 2002, 359, 1841–1850. [Google Scholar] [CrossRef] [PubMed]
- Raisz, L.G. Pathogenesis of osteoporosis: Concepts, conflicts, and prospects. J. Clin. Investig. 2005, 115, 3318–3325. [Google Scholar] [CrossRef]
- Steiniche, T. Bone histomorphometry in the pathophysiological evaluation of primary and secondary osteoporosis and various treatment modalities. APMIS Suppl. 1995, 51, 1–44. [Google Scholar] [CrossRef] [PubMed]
- Bellantuono, I.; Aldahmash, A.; Kassem, M. Aging of marrow stromal (skeletal) stem cells and their contribution to age-related bone loss. Biochim. Et Biophys. Acta (BBA) Mol. Basis Dis. 2009, 1792, 364–370. [Google Scholar] [CrossRef] [PubMed]
- Cooper, C. and L.J. Melton, 3rd, Epidemiology of osteoporosis. Trends Endocrinol. Metab. 1992, 3, 224–229. [Google Scholar] [CrossRef] [PubMed]
- Sibonga, J.D.; Spector, E.R.; Johnston, S.L.; Tarver, W.J. Evaluating Bone Loss in ISS Astronauts. Aerosp. Med. Hum. Perform. 2015, 86, 38–44. [Google Scholar] [CrossRef]
- Soares, A.P.; Santo, R.F.D.E.; Line, S.R.P.; Pinto, M.d.G.F.; Santos, P.d.M.; Toralles, M.B.P.; Santo, A.R.D.E. Bisphosphonates: Pharmacokinetics, bioavailability, mechanisms of action, clinical applications in children, and effects on tooth development. Environ. Toxicol. Pharmacol. 2016, 42, 212–217. [Google Scholar] [CrossRef]
- Russell, R.G. Bisphosphonates: From bench to bedside. Ann. N. Y. Acad. Sci. 2006, 1068, 367–401. [Google Scholar] [CrossRef] [PubMed]
- Black, D.M.; Delmas, P.D.; Eastell, R.; Reid, I.R.; Boonen, S.; Cauley, J.A.; Cosman, F.; Lakatos, P.; Leung, P.C.; Man, Z.; et al. Once-Yearly Zoledronic Acid for Treatment of Postmenopausal Osteoporosis. N. Engl. J. Med. 2007, 356, 1809–1822. [Google Scholar] [CrossRef] [PubMed]
- Arlot, M.; Meunier, P.J.; Boivin, G.; Haddock, L.; Tamayo, J.; Correa-Rotter, R.; Jasqui, S.; Donley, D.W.; Dalsky, G.P.; Martin, J.S.; et al. Differential Effects of Teriparatide and Alendronate on Bone Remodeling in Postmenopausal Women Assessed by Histomorphometric Parameters. J. Bone Miner. Res. 2005, 20, 1244–1253. [Google Scholar] [CrossRef] [PubMed]
- Veitenhansl, M.; Stegner, K.; Hierl, F.X.; Dieterle, C.; Feldmeier, H.; Gutt, B.; Landgraf, R.; Garrow, A.P.; Vileikyte, L.; Findlow, A.; et al. 40th EASD Annual Meeting of the European Association for the Study of Diabetes. Diabetologia 2004, 47, A1–A464. [Google Scholar] [CrossRef]
- Orwoll, E.; Ettinger, M.; Weiss, S.; Miller, P.; Kendler, D.; Graham, J.; Adami, S.; Weber, K.; Lorenc, R.; Pietschmann, P.; et al. Alendronate for the Treatment of Osteoporosis in Men. N. Engl. J. Med. 2000, 343, 604–610. [Google Scholar] [CrossRef] [PubMed]
- Ravn, P. Bisphosphonates for prevention of postmenopausal osteoporosis. Gen. Dent. 2002, 49, 1–18. [Google Scholar]
- Kennel, K.A.; Drake, M.T. Adverse Effects of Bisphosphonates: Implications for Osteoporosis Management. Mayo Clin. Proc. 2009, 84, 632–638. [Google Scholar] [CrossRef] [PubMed]
- Kilic, E.; Doganay, O. Current management concepts for bisphosphonate-related osteonecrosis of the jaw: A review. Gen. Dent. 2018, 66, e1–e5. [Google Scholar] [PubMed]
- Payne, J.; Stoner, J.; Lee, H.-M.; Nummikoski, P.; Reinhardt, R.; Golub, L. Serum Bone Biomarkers and Oral/Systemic Bone Loss in Humans. J. Dent. Res. 2011, 90, 747–751. [Google Scholar] [CrossRef]
- Everts-Graber, J.; Bonel, H.; Lehmann, D.; Gahl, B.; Häuselmann, H.; Studer, U.; Ziswiler, H.; Reichenbach, S.; Lehmann, T. Incidence of Atypical Femoral Fractures in Patients on Osteoporosis Therapy—A Registry-Based Cohort Study. JBMR Plus 2022, 6, e10681. [Google Scholar] [CrossRef]
- Wiesner, A.; Szuta, M.; Galanty, A.; Paśko, P. Optimal Dosing Regimen of Osteoporosis Drugs in Relation to Food Intake as the Key for the Enhancement of the Treatment Effectiveness—A Concise Literature Review. Foods 2021, 10, 720. [Google Scholar] [CrossRef] [PubMed]
- Grey, A.; Bolland, M.J.; Wattie, D.; Horne, A.; Gamble, G.; Reid, I.R. The Antiresorptive Effects of a Single Dose of Zoledronate Persist for Two Years: A Randomized, Placebo-Controlled Trial in Osteopenic Postmenopausal Women. J. Clin. Endocrinol. Metab. 2009, 94, 538–544. [Google Scholar] [CrossRef] [PubMed]
- Cervinka, T.; Sievänen, H.; Hyttinen, J.; Rittweger, J. Bone loss patterns in cortical, subcortical, and trabecular compartments during simulated microgravity. J. Appl. Physiol. 2014, 117, 80–88. [Google Scholar] [CrossRef]
- Lang, T.; LeBlanc, A.; Evans, H.; Lu, Y.; Genant, H.; Yu, A. Cortical and Trabecular Bone Mineral Loss From the Spine and Hip in Long-Duration Spaceflight. J. Bone Miner. Res. 2004, 19, 1006–1012. [Google Scholar] [CrossRef]
- LeBlanc, A.; Schneider, V.; Shackelford, L.; West, S.; Oganov, V.; Bakulin, A.; Voronin, L. Bone mineral and lean tissue loss after long duration space flight. J Musculoskelet. Neuronal Interact. 2000, 1, 157–160. [Google Scholar] [PubMed]
- Sibonga, J.; Evans, H.; Sung, H.; Spector, E.; Lang, T.; Oganov, V.; Bakulin, A.; Shackelford, L.; LeBlanc, A. Recovery of spaceflight-induced bone loss: Bone mineral density after long-duration missions as fitted with an exponential function. Bone 2007, 41, 973–978. [Google Scholar] [CrossRef] [PubMed]
- Frost, H.M. Wolff’s Law and bone’s structural adaptations to mechanical usage: An overview for clinicians. Angle Orthod. 1994, 64, 175–188. [Google Scholar] [PubMed]
- Smith, S.M.; Zwart, S.R.; Block, G.; Rice, B.L.; Davis-Street, J.E. The Nutritional Status of Astronauts Is Altered after Long-Term Space Flight Aboard the International Space Station. J. Nutr. 2005, 135, 437–443. [Google Scholar] [CrossRef]
- Dimai, H.P.; Domej, W.; Leb, G.; Lau, K.-H.W. Bone Loss in Patients with Untreated Chronic Obstructive Pulmonary Disease Is Mediated by an Increase in Bone Resorption Associated with Hypercapnia. J. Bone Miner. Res. 2001, 16, 2132–2141. [Google Scholar] [CrossRef]
- Loehr, J.A.; Lee, S.M.; English, K.L.; Sibonga, J.; Smith, S.M.; Spiering, B.A.; Hagan, R.D. Musculoskeletal Adaptations to Training with the Advanced Resistive Exercise Device. Med. Sci. Sports Exerc. 2011, 43, 146–156. [Google Scholar] [CrossRef]
- Smith, S.M.; Heer, A.M.; Shackelford, L.C.; Sibonga, J.D.; Ploutz-Snyder, L.; Zwart, S.R. Benefits for bone from resistance exercise and nutrition in long-duration spaceflight: Evidence from biochemistry and densitometry. J. Bone Miner. Res. 2012, 27, 1896–1906. [Google Scholar] [CrossRef] [PubMed]
- LeBlanc, A.; Matsumoto, T.; Jones, J.; Shapiro, J.; Lang, T.; Shackelford, L.; Smith, S.M.; Evans, H.; Spector, E.; Ploutz-Snyder, R.; et al. Bisphosphonates as a supplement to exercise to protect bone during long-duration spaceflight. Osteoporos. Int. 2013, 24, 2105–2114. [Google Scholar] [CrossRef]
- Sibonga, J.D.; Spector, E.R.; Keyak, J.H.; Zwart, S.R.; Smith, S.M.; Lang, T.F. Use of Quantitative Computed Tomography to Assess for Clinically-relevant Skeletal Effects of Prolonged Spaceflight on Astronaut Hips. J. Clin. Densitom. 2020, 23, 155–164. [Google Scholar] [CrossRef]
- Zerwekh, J.E.; Ruml, L.A.; Gottschalk, F.; Pak, C.Y.C. The Effects of Twelve Weeks of Bed Rest on Bone Histology, Biochemical Markers of Bone Turnover, and Calcium Homeostasis in Eleven Normal Subjects. J. Bone Miner. Res. 1998, 13, 1594–1601. [Google Scholar] [CrossRef]
- Sibonga, J.; Matsumoto, T.; Jones, J.; Shapiro, J.; Lang, T.; Shackelford, L.; Smith, S.; Young, M.; Keyak, J.; Kohri, K.; et al. Resistive exercise in astronauts on prolonged spaceflights provides partial protection against spaceflight-induced bone loss. Bone 2019, 128, 112037. [Google Scholar] [CrossRef]
- Smith, S.M.; Heer, M.; Shackelford, L.C.; Sibonga, J.D.; Spatz, J.; Pietrzyk, R.A.; Hudson, E.K.; Zwart, S.R. Bone metabolism and renal stone risk during International Space Station missions. Bone 2015, 81, 712–720. [Google Scholar] [CrossRef] [PubMed]
- Vico, L.; Collet, P.; Guignandon, A.; Lafage-Proust, M.-H.; Thomas, T.; Rehailia, M.; Alexandre, C. Effects of long-term microgravity exposure on cancellous and cortical weight-bearing bones of cosmonauts. Lancet 2000, 355, 1607–1611. [Google Scholar] [CrossRef]
- Carpenter, R.D.; LeBlanc, A.D.; Evans, H.; Sibonga, J.D.; Lang, T.F. Long-term changes in the density and structure of the human hip and spine after long-duration spaceflight. Acta Astronaut. 2010, 67, 71–81. [Google Scholar] [CrossRef]
- Vico, L.; van Rietbergen, B.; Vilayphiou, N.; Linossier, M.-T.; Locrelle, H.; Normand, M.; Zouch, M.; Gerbaix, M.; Bonnet, N.; Novikov, V.; et al. Cortical and Trabecular Bone Microstructure Did Not Recover at Weight-Bearing Skeletal Sites and Progressively Deteriorated at Non-Weight-Bearing Sites During the Year Following International Space Station Missions. J. Bone Miner. Res. 2017, 32, 2010–2021. [Google Scholar] [CrossRef]
- Gabel, L.; Liphardt, A.-M.; Hulme, P.A.; Heer, M.; Zwart, S.R.; Sibonga, J.D.; Smith, S.M.; Boyd, S.K. Incomplete recovery of bone strength and trabecular microarchitecture at the distal tibia 1 year after return from long duration spaceflight. Sci. Rep. 2022, 12, 9446. [Google Scholar] [CrossRef]
- Lang, T.F.; Leblanc, A.D.; Evans, H.J.; Lu, Y. Adaptation of the Proximal Femur to Skeletal Reloading After Long-Duration Spaceflight. J. Bone Miner. Res. 2006, 21, 1224–1230. [Google Scholar] [CrossRef]
- Keyak, J. Improved prediction of proximal femoral fracture load using nonlinear finite element models. Med. Eng. Phys. 2001, 23, 165–173. [Google Scholar] [CrossRef] [PubMed]
- Amin, S.; Kopperdhal, D.L.; Melton, L.J.; Achenbach, S.J.; Therneau, T.M.; Riggs, B.L.; Keaveny, T.M.; Khosla, S. Association of hip strength estimates by finite-element analysis with fractures in women and men. J. Bone Miner. Res. 2011, 26, 1593–1600. [Google Scholar] [CrossRef]
- Christen, D.; Melton, L.J.; Zwahlen, A.; Amin, S.; Khosla, S.; Müller, R. Improved Fracture Risk Assessment Based on Nonlinear Micro-Finite Element Simulations From HRpQCT Images at the Distal Radius. J. Bone Miner. Res. 2013, 28, 2601–2608. [Google Scholar] [CrossRef] [PubMed]
- Keyak, J.H.; Sigurdsson, S.; Karlsdottir, G.; Oskaradottir, D.; Siqmarsdottir, A.; Zhao, S.; Kornak, J.; Harris, T.B.; Siqurdsson, G.; Jonsson, B.Y.; et al. Male–female differences in the association between incident hip fracture and proximal femoral strength: A finite element analysis study. Bone 2011, 48, 1239–1245. [Google Scholar] [CrossRef]
- Keyak, J.; Kaneko, T.; Khosla, S.; Amin, S.; Atkinson, E.; Lang, T.; Sibonga, J. Hip load capacity and yield load in men and women of all ages. Bone 2020, 137, 115321. [Google Scholar] [CrossRef]
- Orwoll, E.S.; Adler, R.A.; Amin, S.; Binkley, N.; Lewiecki, E.M.; Petak, S.M.; A Shapses, S.; Sinaki, M.; Watts, N.B.; Sibonga, J.D. Skeletal health in long-duration astronauts: Nature, assessment, and management recommendations from the NASA bone summit. J. Bone Miner. Res. 2013, 28, 1243–1255. [Google Scholar] [CrossRef]
- Bonnick, S.L. Bone Densitometry Techniques in Modern Medicine; Rosen, C., Ed.; Humana Press: Totowa, NJ, USA, 1996. [Google Scholar]
- Carpenter, R.; Lang, T.F.; Bloomfield, S.A.; Bloomberg, J.J.; Judex, S.; Keyak, J.H.; Midura, R.J.; Pajevic, P.D.; Spatz, J.M. Effects of long-duration spaceflight, microgravity, and radiation on the neuromuscular, sensorimotor, and skeletal systems. J. Cosmol. 2010, 12, 3778–3780. [Google Scholar]
- Sibonga, J.D.; Young, M.; Kreykes, A.J.; Spector, E.R.; Yardley, G. Increased rates of hip and spine fractures in astronauts are associated with longer spaceflight durations. In Proceedings of the Annual Meeting of the American Society for Bone and Mineral Research 2022, Austin, TX, USA, 9–12 September 2002; American Society for Bone and Mineral Research: Austin, TX, USA, 2022. [Google Scholar]
- Boonen, S.; Reginster, J.-Y.; Kaufman, J.-M.; Lippuner, K.; Zanchetta, J.; Langdahl, B.; Rizzoli, R.; Lipschitz, S.; Dimai, H.P.; Witvrouw, R.; et al. Fracture Risk and Zoledronic Acid Therapy in Men with Osteoporosis. N. Engl. J. Med. 2012, 367, 1714–1723. [Google Scholar] [CrossRef]
- Reid, I.R.; Brown, J.P.; Burckhardt, P.; Horowitz, Z.; Richardson, P.; Trechsel, U.; Widmer, A.; Devogelaer, J.-P.; Kaufman, J.-M.; Jaeger, P.; et al. Intravenous Zoledronic Acid in Postmenopausal Women with Low Bone Mineral Density. N. Engl. J. Med. 2002, 346, 653–661. [Google Scholar] [CrossRef]
- Crotti, C.; Watts, N.B.; De Santis, M.; Ceribelli, A.; Fabbriciani, G.; Cavaciocchi, F.; Marasini, B.; Selmi, C.; Massarotti, M. Acute Phase Reactions After Zoledronic Acid Infusion: Protective Role of 25-Hydroxyvitamin D And Previous Oral Bisphosphonate Therapy. Endocr. Pract. 2018, 24, 405–410. [Google Scholar] [CrossRef] [PubMed]
- Okada, A.; Matsumoto, T.; Ohshima, H.; Isomura, T.; Koga, T.; Yasui, T.; Kohri, K.; LeBlanc, A.; Spector, E.; Jones, J.; et al. Bisphosphonate Use May Reduce the Risk of Urolithiasis in Astronauts on Long-Term Spaceflights. JBMR Plus 2021, 6, e10550. [Google Scholar] [CrossRef] [PubMed]
- Siener, R. Nutrition and Kidney Stone Disease. Nutrients 2021, 13, 1917. [Google Scholar] [CrossRef]
- Macias, B.R.; Lima, F.; Swift, J.M.; Shirazi-Fard, Y.; Greene, E.S.; Allen, M.R.; Fluckey, J.; Hogan, H.A.; Braby, L.; Wang, S.; et al. Simulating the Lunar Environment: Partial Weightbearing and High-LET Radiation-Induce Bone Loss and Increase Sclerostin-Positive Osteocytes. Radiat. Res. 2016, 186, 254–263. [Google Scholar] [CrossRef]
- Swift, J.M.; Lima, F.; Macias, B.R.; Allen, M.R.; Greene, E.S.; Shirazi-Fard, Y.; Kupke, J.S.; Hogan, H.A.; Bloomfield, S.A. Partial Weight Bearing Does Not Prevent Musculoskeletal Losses Associated with Disuse. Med. Sci. Sports Exerc. 2013, 45, 2052–2060. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rosenthal, R.; Schneider, V.S.; Jones, J.A.; Sibonga, J.D. The Case for Bisphosphonate Use in Astronauts Flying Long-Duration Missions. Cells 2024, 13, 1337. https://doi.org/10.3390/cells13161337
Rosenthal R, Schneider VS, Jones JA, Sibonga JD. The Case for Bisphosphonate Use in Astronauts Flying Long-Duration Missions. Cells. 2024; 13(16):1337. https://doi.org/10.3390/cells13161337
Chicago/Turabian StyleRosenthal, Reece, Victor S. Schneider, Jeffrey A. Jones, and Jean D. Sibonga. 2024. "The Case for Bisphosphonate Use in Astronauts Flying Long-Duration Missions" Cells 13, no. 16: 1337. https://doi.org/10.3390/cells13161337
APA StyleRosenthal, R., Schneider, V. S., Jones, J. A., & Sibonga, J. D. (2024). The Case for Bisphosphonate Use in Astronauts Flying Long-Duration Missions. Cells, 13(16), 1337. https://doi.org/10.3390/cells13161337