Navigating the Neurobiology of Migraine: From Pathways to Potential Therapies
1. Introduction
2. Topic Articles
2.1. Calcitonin Gene-Related Peptide (CGRP)-Related Mechanisms and Therapies
2.1.1. Interaction between Calcitonin Gene-Related Peptide (CGRP) and Nitric Oxide in Migraine
2.1.2. Real-World Outcomes and New Therapeutic Targets for Migraine
2.2. Metabolic Pathways and Migraine
2.2.1. Altered Tryptophan Metabolism and Migraine Susceptibility
2.2.2. Tryptophan Metabolism Pathways in Migraine: Therapeutic Implications
2.3. Experimental Models and Therapeutic Targets
2.3.1. Dual Fatty Acid Amide Hydrolase (FAAH)/Monoacylglycerol Lipase (MAGL) Inhibitor in the Migraine Model
2.3.2. Src Family Kinase (SFK) Activity and Calcitonin Gene-Related Peptide (CGRP)–Cytokine Crosstalk
2.3.3. ATP-Sensitive Potassium (KATP) Channels in Migraine Pathophysiology
2.4. Inflammation in the Pathophysiology of Migraine
2.4.1. Neurogenic Neuroinflammation in Migraine
2.4.2. Complex Symptomatology of Migraine
3. Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
CGRP | Calcitonin gene-related peptide |
FAAH | Fatty acid amide hydrolase |
GTN | Glycerol trinitrate |
KATP | ATP-sensitive potassium |
KYN | Kynurenine |
MAGL | Monoacylglycerol lipase |
PACAP | Adenylate cyclase-activating polypeptide |
P2X3 | Purinergic receptor P2X 3 |
SFKs | Src family kinases |
TMS | Transcranial magnetic stimulation |
Trp | Tryptophan |
TRPV1 | Transient receptor potential vanilloid subtype 1 |
VIP | Vasoactive intestinal peptide |
References
- Edvinsson, L.; Haanes, K.A. Views on migraine pathophysiology: Where does it start? Neurol. Clin. Neurosci. 2020, 8, 120–127. [Google Scholar] [CrossRef]
- Goadsby, P.J. Primary headache disorders: Five new things. Neurol. Clin. Pract. 2019, 9, 233–240. [Google Scholar] [CrossRef]
- Ashina, M.; Hansen, J.M.; Do, T.P.; Melo-Carrillo, A.; Burstein, R.; Moskowitz, M.A. Migraine and the trigeminovascular system—40 years and counting. Lancet Neurol. 2019, 18, 795–804. [Google Scholar] [CrossRef] [PubMed]
- Olesen, J. The International Classification of Headache Disorders: History and future perspectives. Cephalalgia 2024, 44, 03331024231214731. [Google Scholar] [CrossRef]
- Steiner, T.J.; Stovner, L.J. Global epidemiology of migraine and its implications for public health and health policy. Nat. Rev. Neurol. 2023, 19, 109–117. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, T.; Sakai, F.; Miyake, H.; Sone, T.; Sato, M.; Tanabe, S.; Azuma, Y.; Dodick, D.W. Disability, quality of life, productivity impairment and employer costs of migraine in the workplace. J. Headache Pain 2021, 22, 1–11. [Google Scholar] [CrossRef]
- Leonardi, M.; Raggi, A. A narrative review on the burden of migraine: When the burden is the impact on people’s life. J. Headache Pain 2019, 20, 1–11. [Google Scholar] [CrossRef]
- Sutherland, H.G.; Albury, C.L.; Griffiths, L.R. Advances in genetics of migraine. J. Headache Pain 2019, 20, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.-H.; Wang, Z.; Xie, F.; Liu, Y.-Q.; Lin, Q. Contributions of aversive environmental stress to migraine chronification: Research update of migraine pathophysiology. World J. Clin. Cases 2021, 9, 2136. [Google Scholar] [CrossRef]
- Qubty, W.; Patniyot, I. Migraine pathophysiology. Pediatr. Neurol. 2020, 107, 1–6. [Google Scholar] [CrossRef]
- Rapoport, A.M.; Edvinsson, L. Some aspects on the pathophysiology of migraine and a review of device therapies for migraine and cluster headache. Neurol. Sci. 2019, 40, 75–80. [Google Scholar] [CrossRef] [PubMed]
- Haanes, K.A.; Edvinsson, L. Pathophysiological Mechanisms in Migraine and the Identification of New Therapeutic Targets. CNS Drugs 2019, 33, 525–537. [Google Scholar] [CrossRef] [PubMed]
- Fraser, C.L.; Hepschke, J.L.; Jenkins, B.; Prasad, S. Migraine Aura: Pathophysiology, Mimics, and Treatment Options. Semin. Neurol. 2019, 39, 739–748. [Google Scholar] [CrossRef] [PubMed]
- Harriott, A.M.; Strother, L.C.; Vila-Pueyo, M.; Holland, P.R. Animal models of migraine and experimental techniques used to examine trigeminal sensory processing. J. Headache Pain 2019, 20, 91. [Google Scholar] [CrossRef] [PubMed]
- Greco, R.; Demartini, C.; De Icco, R.; Martinelli, D.; Putortì, A.; Tassorelli, C. Migraine neuroscience: From experimental models to target therapy. Neurol. Sci. 2020, 41, 351–361. [Google Scholar] [CrossRef] [PubMed]
- Tardiolo, G.; Bramanti, P.; Mazzon, E. Migraine: Experimental Models and Novel Therapeutic Approaches. Int. J. Mol. Sci. 2019, 20, 2932. [Google Scholar] [CrossRef] [PubMed]
- Veréb, D.; Szabó, N.; Tuka, B.; Tajti, J.; Király, A.; Faragó, P.; Kocsis, K.; Tóth, E.; Kincses, B.; Bagoly, T. Correlation of neurochemical and imaging markers in migraine: PACAP38 and DTI measures. Neurology 2018, 91, e1166–e1174. [Google Scholar] [CrossRef]
- Szabó, N.; Faragó, P.; Király, A.; Veréb, D.; Csete, G.; Tóth, E.; Kocsis, K.; Kincses, B.; Tuka, B.; Párdutz, Á. Evidence for plastic processes in migraine with aura: A diffusion weighted MRI study. Front. Neuroanat. 2018, 11, 138. [Google Scholar] [CrossRef]
- Olesen, J. Personal view: Modelling pain mechanisms of migraine without aura. Cephalalgia 2022, 42, 1425–1435. [Google Scholar] [CrossRef]
- Bertels, Z.; Pradhan, A.A.A. Emerging Treatment Targets for Migraine and Other Headaches. Headache 2019, 59 (Suppl. 2), 50–65. [Google Scholar] [CrossRef]
- Edvinsson, L.; Haanes, K.A.; Warfvinge, K. Does inflammation have a role in migraine? Nat. Rev. Neurol. 2019, 15, 483–490. [Google Scholar] [CrossRef] [PubMed]
- Vuralli, D.; Wattiez, A.S.; Russo, A.F.; Bolay, H. Behavioral and cognitive animal models in headache research. J. Headache Pain 2019, 20, 11. [Google Scholar] [CrossRef] [PubMed]
- Borkum, J.M. Brain Energy Deficit as a Source of Oxidative Stress in Migraine: A Molecular Basis for Migraine Susceptibility. Neurochem. Res. 2021, 46, 1913–1932. [Google Scholar] [CrossRef] [PubMed]
- Andreou, A.P.; Edvinsson, L. Mechanisms of migraine as a chronic evolutive condition. J. Headache Pain 2019, 20, 117. [Google Scholar] [CrossRef] [PubMed]
- Mercer Lindsay, N.; Chen, C.; Gilam, G.; Mackey, S.; Scherrer, G. Brain circuits for pain and its treatment. Sci. Transl. Med. 2021, 13, eabj7360. [Google Scholar] [CrossRef] [PubMed]
- Viganò, A.; Toscano, M.; Puledda, F.; Di Piero, V. Treating chronic migraine with neuromodulation: The role of neurophysiological abnormalities and maladaptive plasticity. Front. Pharmacol. 2019, 10, 416813. [Google Scholar] [CrossRef]
- Pozo-Rosich, P.; Coppola, G.; Pascual, J.; Schwedt, T.J. How does the brain change in chronic migraine? Developing disease biomarkers. Cephalalgia 2021, 41, 613–630. [Google Scholar] [CrossRef] [PubMed]
- Veréb, D.; Szabó, N.; Tuka, B.; Tajti, J.; Király, A.; Faragó, P.; Kocsis, K.; Tóth, E.; Bozsik, B.; Kincses, B. Temporal instability of salience network activity in migraine with aura. Pain 2020, 161, 856–864. [Google Scholar] [CrossRef] [PubMed]
- Battaglia, S.; Avenanti, A.; Vécsei, L.; Tanaka, M. Neural Correlates and Molecular Mechanisms of Memory and Learning. Int. J. Mol. Sci. 2024, 25, 2724. [Google Scholar] [CrossRef]
- Su, M.; Yu, S. Chronic migraine: A process of dysmodulation and sensitization. Mol. Pain 2018, 14, 1744806918767697. [Google Scholar] [CrossRef]
- Battaglia, S.; Avenanti, A.; Vécsei, L.; Tanaka, M. Neurodegeneration in cognitive impairment and mood disorders for experimental, clinical and translational neuropsychiatry. Biomedicines 2024, 12, 574. [Google Scholar] [CrossRef]
- Puledda, F.; Viganò, A.; Sebastianelli, G.; Parisi, V.; Hsiao, F.-J.; Wang, S.-J.; Chen, W.-T.; Massimini, M.; Coppola, G. Electrophysiological findings in migraine may reflect abnormal synaptic plasticity mechanisms: A narrative review. Cephalalgia 2023, 43, 03331024231195780. [Google Scholar] [CrossRef] [PubMed]
- Gregorio, F.D.; Battaglia, S. The intricate brain–body interaction in psychiatric and neurological diseases. Adv. Clin. Exp. Med. 2024, 33, 321–326. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, M.; Battaglia, S.; Giménez-Llort, L.; Chen, C.; Hepsomali, P.; Avenanti, A.; Vécsei, L. Innovation at the Intersection: Emerging Translational Research in Neurology and Psychiatry. Cells 2024, 13, 790. [Google Scholar] [CrossRef] [PubMed]
- Battaglia, S.; Schmidt, A.; Hassel, S.; Tanaka, M. Case reports in neuroimaging and stimulation. Front. Psychiatry 2023, 14, 1264669. [Google Scholar] [CrossRef] [PubMed]
- Tortora, F.; Hadipour, A.L.; Battaglia, S.; Falzone, A.; Avenanti, A.; Vicario, C.M. The role of serotonin in fear learning and memory: A systematic review of human studies. Brain Sci. 2023, 13, 1197. [Google Scholar] [CrossRef]
- Battaglia, S.; Di Fazio, C.; Mazzà, M.; Tamietto, M.; Avenanti, A. Targeting Human Glucocorticoid Receptors in Fear Learning: A Multiscale Integrated Approach to Study Functional Connectivity. Int. J. Mol. Sci. 2024, 25, 864. [Google Scholar] [CrossRef] [PubMed]
- Wattiez, A.S.; Sowers, L.P.; Russo, A.F. Calcitonin gene-related peptide (CGRP): Role in migraine pathophysiology and therapeutic targeting. Expert. Opin. Ther. Targets 2020, 24, 91–100. [Google Scholar] [CrossRef]
- Russo, A.F.; Hay, D.L. CGRP physiology, pharmacology, and therapeutic targets: Migraine and beyond. Physiol. Rev. 2023, 103, 1565–1644. [Google Scholar] [CrossRef]
- Edvinsson, L.; Warfvinge, K. Recognizing the role of CGRP and CGRP receptors in migraine and its treatment. Cephalalgia 2019, 39, 366–373. [Google Scholar] [CrossRef]
- Kamm, K. CGRP and Migraine: What Have We Learned From Measuring CGRP in Migraine Patients So Far? Front. Neurol. 2022, 13, 930383. [Google Scholar] [CrossRef] [PubMed]
- Dodick, D.W. A Phase-by-Phase Review of Migraine Pathophysiology. Headache 2018, 58 (Suppl. 1), 4–16. [Google Scholar] [CrossRef] [PubMed]
- Vincent, M.; Viktrup, L.; Nicholson, R.A.; Ossipov, M.H.; Vargas, B.B. The not so hidden impact of interictal burden in migraine: A narrative review. Front. Neurol. 2022, 13, 1032103. [Google Scholar] [CrossRef] [PubMed]
- Argyriou, A.A.; Mantovani, E.; Mitsikostas, D.D.; Vikelis, M.; Tamburin, S. A systematic review with expert opinion on the role of gepants for the preventive and abortive treatment of migraine. Expert. Rev. Neurother. 2022, 22, 469–488. [Google Scholar] [CrossRef] [PubMed]
- Rivera-Mancilla, E.; Villalón, C.M.; MaassenVanDenBrink, A. CGRP inhibitors for migraine prophylaxis: A safety review. Expert. Opin. Drug Saf. 2020, 19, 1237–1250. [Google Scholar] [CrossRef] [PubMed]
- Ho, T.W.; Edvinsson, L.; Goadsby, P.J. CGRP and its receptors provide new insights into migraine pathophysiology. Nat. Rev. Neurol. 2010, 6, 573–582. [Google Scholar] [CrossRef]
- Carmine Belin, A.; Ran, C.; Edvinsson, L. Calcitonin gene-related peptide (CGRP) and cluster headache. Brain Sci. 2020, 10, 30. [Google Scholar] [CrossRef] [PubMed]
- Russo, A.F. CGRP as a neuropeptide in migraine: Lessons from mice. Br. J. Clin. Pharmacol. 2015, 80, 403–414. [Google Scholar] [CrossRef] [PubMed]
- Greco, R.; De Icco, R.; Demartini, C.; Zanaboni, A.M.; Tumelero, E.; Sances, G.; Allena, M.; Tassorelli, C. Plasma levels of CGRP and expression of specific microRNAs in blood cells of episodic and chronic migraine subjects: Towards the identification of a panel of peripheral biomarkers of migraine? J. Headache Pain 2020, 21, 1–12. [Google Scholar] [CrossRef]
- Deen, M.; Correnti, E.; Kamm, K.; Kelderman, T.; Papetti, L.; Rubio-Beltrán, E.; Vigneri, S.; Edvinsson, L.; Maassen Van Den Brink, A.; European Headache Federation School of Advanced Studies (EHF-SAS). Blocking CGRP in migraine patients—A review of pros and cons. J. Headache Pain 2017, 18, 1–9. [Google Scholar] [CrossRef]
- Edvinsson, L. T he T rigeminovascular P athway: R ole of CGRP and CGRP R eceptors in M igraine. Headache J. Head. Face Pain 2017, 57, 47–55. [Google Scholar] [CrossRef] [PubMed]
- Brian, J.E., Jr.; Faraci, F.M.; Heistad, D.D. Recent insights into the regulation of cerebral circulation. Clin. Exp. Pharmacol. Physiol. 1996, 23, 449–457. [Google Scholar] [CrossRef] [PubMed]
- Kee, Z.; Kodji, X.; Brain, S.D. The role of calcitonin gene related peptide (CGRP) in neurogenic vasodilation and its cardioprotective effects. Front. Physiol. 2018, 9, 405886. [Google Scholar] [CrossRef] [PubMed]
- Gulbenkian, S.; Uddman, R.; Edvinsson, L. Neuronal messengers in the human cerebral circulation. Peptides 2001, 22, 995–1007. [Google Scholar] [CrossRef]
- Thengchaisri, N.; Rivers, R.J. Remote arteriolar dilations caused by methacholine: A role for CGRP sensory nerves? Am. J. Physiol. Heart Circ. Physiol. 2005, 289, H608–H613. [Google Scholar] [CrossRef] [PubMed]
- Johansson, S.E.; Abdolalizadeh, B.; Sheykhzade, M.; Edvinsson, L.; Sams, A. Vascular pathology of large cerebral arteries in experimental subarachnoid hemorrhage: Vasoconstriction, functional CGRP depletion and maintained CGRP sensitivity. Eur. J. Pharmacol. 2019, 846, 109–118. [Google Scholar] [CrossRef] [PubMed]
- Fromy, B.; Merzeau, S.; Abraham, P.; Saumet, J.L. Mechanisms of the cutaneous vasodilator response to local external pressure application in rats: Involvement of CGRP, neurokinins, prostaglandins and NO. Br. J. Pharmacol. 2000, 131, 1161–1171. [Google Scholar] [CrossRef] [PubMed]
- Smith, D.; Hill, R.; Edvinsson, L.; Longmore, J. An immunocytochemical investigation of human trigeminal nucleus caudalis: CGRP, substance P and 5-HT1D-receptor immunoreactivities are expressed by trigeminal sensory fibres. Cephalalgia 2002, 22, 424–431. [Google Scholar] [CrossRef] [PubMed]
- Edvinsson, J.C.; Reducha, P.V.; Sheykhzade, M.; Warfvinge, K.; Haanes, K.A.; Edvinsson, L. Neurokinins and their receptors in the rat trigeminal system: Differential localization and release with implications for migraine pain. Mol. Pain 2021, 17, 17448069211059400. [Google Scholar] [CrossRef]
- Messlinger, K.; Balcziak, L.K.; Russo, A.F. Cross-talk signaling in the trigeminal ganglion: Role of neuropeptides and other mediators. J. Neural Transm. 2020, 127, 431–444. [Google Scholar] [CrossRef]
- Gárate, G.; Pascual, J.; Pascual-Mato, M.; Madera, J.; Martín, M.M.-S.; González-Quintanilla, V. Untangling the mess of CGRP levels as a migraine biomarker: An in-depth literature review and analysis of our experimental experience. J. Headache Pain 2024, 25, 69. [Google Scholar] [CrossRef] [PubMed]
- Benedicter, N.; Vogler, B.; Kuhn, A.; Schramm, J.; Mackenzie, K.D.; Stratton, J.; Dux, M.; Messlinger, K. Glycerol Trinitrate Acts Downstream of Calcitonin Gene-Related Peptide in Trigeminal Nociception—Evidence from Rodent Experiments with Anti-CGRP Antibody Fremanezumab. Cells 2024, 13, 572. [Google Scholar] [CrossRef] [PubMed]
- Greco, R.; Demartini, C.; Francavilla, M.; Zanaboni, A.M.; Tassorelli, C. Antagonism of CGRP receptor: Central and peripheral mechanisms and mediators in an animal model of chronic migraine. Cells 2022, 11, 3092. [Google Scholar] [CrossRef] [PubMed]
- Dux, M.; Vogler, B.; Kuhn, A.; Mackenzie, K.D.; Stratton, J.; Messlinger, K. The anti-CGRP antibody fremanezumab lowers CGRP release from rat dura mater and meningeal blood flow. Cells 2022, 11, 1768. [Google Scholar] [CrossRef] [PubMed]
- Pavelic, A.R.; Wöber, C.; Riederer, F.; Zebenholzer, K. Monoclonal antibodies against calcitonin gene-related peptide for migraine prophylaxis: A systematic review of real-world data. Cells 2022, 12, 143. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, M.; Szabó, Á.; Körtési, T.; Szok, D.; Tajti, J.; Vécsei, L. From CGRP to PACAP, VIP, and Beyond: Unraveling the Next Chapters in Migraine Treatment. Cells 2023, 12, 2649. [Google Scholar] [CrossRef] [PubMed]
- Gecse, K.; Édes, A.E.; Nagy, T.; Demeter, A.K.; Virág, D.; Király, M.; Dalmadi Kiss, B.; Ludányi, K.; Környei, Z.; Denes, A. Citalopram Neuroendocrine Challenge Shows Altered Tryptophan and Kynurenine Metabolism in Migraine. Cells 2022, 11, 2258. [Google Scholar] [CrossRef] [PubMed]
- Körtési, T.; Spekker, E.; Vécsei, L. Exploring the tryptophan metabolic pathways in migraine-related mechanisms. Cells 2022, 11, 3795. [Google Scholar] [CrossRef]
- Greco, R.; Demartini, C.; Francavilla, M.; Zanaboni, A.M.; Facchetti, S.; Palmisani, M.; Franco, V.; Tassorelli, C. Effects of the Dual FAAH/MAGL Inhibitor AKU-005 on Trigeminal Hyperalgesia in Male Rats. Cells 2024, 13, 830. [Google Scholar] [CrossRef]
- Nie, L.; Sun, K.; Gong, Z.; Li, H.; Quinn, J.P.; Wang, M. Src Family Kinases Facilitate the Crosstalk between CGRP and Cytokines in Sensitizing Trigeminal Ganglion via Transmitting CGRP Receptor/PKA Pathway. Cells 2022, 11, 3498. [Google Scholar] [CrossRef]
- Clement, A.; Guo, S.; Jansen-Olesen, I.; Christensen, S.L. ATP-sensitive potassium channels in migraine: Translational findings and therapeutic potential. Cells 2022, 11, 2406. [Google Scholar] [CrossRef]
- Reducha, P.V.; Edvinsson, L.; Haanes, K.A. Could experimental inflammation provide better understanding of migraines? Cells 2022, 11, 2444. [Google Scholar] [CrossRef] [PubMed]
- Villar-Martinez, M.D.; Goadsby, P.J. Pathophysiology and therapy of associated features of migraine. Cells 2022, 11, 2767. [Google Scholar] [CrossRef] [PubMed]
- Staud, R.; Spaeth, M. Psychophysical and neurochemical abnormalities of pain processing in fibromyalgia. CNS Spectr. 2008, 13, 12–17. [Google Scholar] [CrossRef] [PubMed]
- Guo, S.; Vecsei, L.; Ashina, M. The L-kynurenine signalling pathway in trigeminal pain processing: A potential therapeutic target in migraine? Cephalalgia 2011, 31, 1029–1038. [Google Scholar] [CrossRef] [PubMed]
- Peyrot, F.; Ducrocq, C. Potential role of tryptophan derivatives in stress responses characterized by the generation of reactive oxygen and nitrogen species. J. Pineal Res. 2008, 45, 235–246. [Google Scholar] [CrossRef]
- Won, E.; Kim, Y.-K. Stress, the autonomic nervous system, and the immune-kynurenine pathway in the etiology of depression. Curr. Neuropharmacol. 2016, 14, 665–673. [Google Scholar] [CrossRef] [PubMed]
- Staats Pires, A.; Tan, V.X.; Heng, B.; Guillemin, G.J.; Latini, A. Kynurenine and tetrahydrobiopterin pathways crosstalk in pain hypersensitivity. Front. Neurosci. 2020, 14, 518534. [Google Scholar] [CrossRef] [PubMed]
- Singh, R. Role of tryptophan in health and disease: Systematic review of the anti-oxidant, anti-inflammation, and nutritional aspects of tryptophan and its metabolites. World Heart J. 2019, 11, 161–178. [Google Scholar]
- Wang, Q.; Liu, D.; Song, P.; Zou, M.-H. Tryptophan-kynurenine pathway is dysregulated in inflammation, and immune activation. Front. Biosci. (Landmark Ed.) 2015, 20, 1116–1143. [Google Scholar]
- Tuka, B.; Nyári, A.; Cseh, E.K.; Körtési, T.; Veréb, D.; Tömösi, F.; Kecskeméti, G.; Janáky, T.; Tajti, J.; Vécsei, L. Clinical relevance of depressed kynurenine pathway in episodic migraine patients: Potential prognostic markers in the peripheral plasma during the interictal period. J. Headache Pain 2021, 22, 60. [Google Scholar] [CrossRef] [PubMed]
- Király, A.; Szabó, N.; Párdutz, Á.; Tóth, E.; Tajti, J.; Csete, G.; Faragó, P.; Bodnár, P.; Szok, D.; Tuka, B. Macro-and microstructural alterations of the subcortical structures in episodic cluster headache. Cephalalgia 2018, 38, 662–673. [Google Scholar] [CrossRef] [PubMed]
- Paolucci, M.; Altamura, C.; Vernieri, F. The role of endothelial dysfunction in the pathophysiology and cerebrovascular effects of migraine: A narrative review. J. Clin. Neurol. 2021, 17, 164. [Google Scholar] [CrossRef] [PubMed]
- Fila, M.; Chojnacki, J.; Pawlowska, E.; Szczepanska, J.; Chojnacki, C.; Blasiak, J. Kynurenine pathway of tryptophan metabolism in migraine and functional gastrointestinal disorders. Int. J. Mol. Sci. 2021, 22, 10134. [Google Scholar] [CrossRef] [PubMed]
- Jovanovic, F.; Candido, K.D.; Knezevic, N.N. The role of the kynurenine signaling pathway in different chronic pain conditions and potential use of therapeutic agents. Int. J. Mol. Sci. 2020, 21, 6045. [Google Scholar] [CrossRef]
- Fila, M.; Chojnacki, C.; Chojnacki, J.; Blasiak, J. The kynurenine pathway of tryptophan metabolism in abdominal migraine in children–A therapeutic potential? Eur. J. Paediatr. Neurol. 2023. [Google Scholar] [CrossRef] [PubMed]
- Tuka, B.; Körtési, T.; Nánási, N.; Tömösi, F.; Janáky, T.; Veréb, D.; Szok, D.; Tajti, J.; Vécsei, L. Cluster headache and kynurenines. J. Headache Pain 2023, 24, 35. [Google Scholar] [CrossRef] [PubMed]
- Tajti, J.; Szok, D.; Csáti, A.; Szabó, Á.; Tanaka, M.; Vécsei, L. Exploring novel therapeutic targets in the common pathogenic factors in migraine and neuropathic pain. Int. J. Mol. Sci. 2023, 24, 4114. [Google Scholar] [CrossRef] [PubMed]
- Martos, D.; Lőrinczi, B.; Szatmári, I.; Vécsei, L.; Tanaka, M. The Impact of C-3 Side Chain Modifications on Kynurenic Acid: A Behavioral Analysis of Its Analogs in the Motor Domain. Int. J. Mol. Sci. 2024, 25, 3394. [Google Scholar] [CrossRef] [PubMed]
- Jászberényi, M.; Thurzó, B.; Bagosi, Z.; Vécsei, L.; Tanaka, M. The Orexin/Hypocretin System, the Peptidergic Regulator of Vigilance, Orchestrates Adaptation to Stress. Biomedicines 2024, 12, 448. [Google Scholar] [CrossRef]
- Tanaka, M.; Bohár, Z.; Vécsei, L. Are kynurenines accomplices or principal villains in dementia? Maintenance of kynurenine metabolism. Molecules 2020, 25, 564. [Google Scholar] [CrossRef]
- Tanaka, M.; Vécsei, L. A Decade of Dedication: Pioneering Perspectives on Neurological Diseases and Mental Illnesses. Biomedicines 2024, 12, 1083. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, M.; Vécsei, L. From Lab to Life: Exploring Cutting-Edge Models for Neurological and Psychiatric Disorders. Biomedicines 2024, 12, 613. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, M.; Szabó, Á.; Vécsei, L.; Giménez-Llort, L. Emerging Translational Research in Neurological and Psychiatric Diseases: From In Vitro to In Vivo Models. Int. J. Mol. Sci. 2023, 24, 15739. [Google Scholar] [CrossRef] [PubMed]
- Spekker, E.; Tanaka, M.; Szabó, Á.; Vécsei, L. Neurogenic inflammation: The participant in migraine and recent advancements in translational research. Biomedicines 2021, 10, 76. [Google Scholar] [CrossRef] [PubMed]
- Khan, J.; Al Asoom, L.I.; Al Sunni, A.; Rafique, N.; Latif, R.; Al Saif, S.; Almandil, N.B.; Almohazey, D.; AbdulAzeez, S.; Borgio, J.F. Genetics, pathophysiology, diagnosis, treatment, management, and prevention of migraine. Biomed. Pharmacother. 2021, 139, 111557. [Google Scholar] [CrossRef]
- Rainero, I.; Roveta, F.; Vacca, A.; Noviello, C.; Rubino, E. Migraine pathways and the identification of novel therapeutic targets. Expert. Opin. Ther. Targets 2020, 24, 245–253. [Google Scholar] [CrossRef]
- Edvinsson, L.; Haanes, K.A. Identifying new antimigraine targets: Lessons from molecular biology. Trends Pharmacol. Sci. 2021, 42, 217–225. [Google Scholar] [CrossRef]
- Lisicki, M.; Schoenen, J. Metabolic treatments of migraine. Expert. Rev. Neurother. 2020, 20, 295–302. [Google Scholar] [CrossRef]
- Iannone, L.F.; De Logu, F.; Geppetti, P.; De Cesaris, F. The role of TRP ion channels in migraine and headache. Neurosci. Lett. 2022, 768, 136380. [Google Scholar] [CrossRef]
- Thuraiaiyah, J.; Kokoti, L.; Al-Karagholi, M.A.-M.; Ashina, M. Involvement of adenosine signaling pathway in migraine pathophysiology: A systematic review of preclinical studies. J. Headache Pain 2022, 23, 43. [Google Scholar] [CrossRef] [PubMed]
- Nisar, A.; Ahmed, Z.; Yuan, H. Novel therapeutic targets for migraine. Biomedicines 2023, 11, 569. [Google Scholar] [CrossRef] [PubMed]
- Moskowitz, M.A. Neurogenic inflammation in the pathophysiology and treatment of migraine. Neurol. Minneap. 1993, 43, S16–S20. [Google Scholar]
- Biscetti, L.; Cresta, E.; Cupini, L.M.; Calabresi, P.; Sarchielli, P. The putative role of neuroinflammation in the complex pathophysiology of migraine: From bench to bedside. Neurobiol. Dis. 2023, 106072. [Google Scholar] [CrossRef] [PubMed]
- Aczél, T.; Benczik, B.; Ágg, B.; Körtési, T.; Urbán, P.; Bauer, W.; Gyenesei, A.; Tuka, B.; Tajti, J.; Ferdinandy, P. Disease-and headache-specific microRNA signatures and their predicted mRNA targets in peripheral blood mononuclear cells in migraineurs: Role of inflammatory signalling and oxidative stress. J. Headache Pain 2022, 23, 113. [Google Scholar] [CrossRef] [PubMed]
- Aczél, T.; Körtési, T.; Kun, J.; Urbán, P.; Bauer, W.; Herczeg, R.; Farkas, R.; Kovács, K.; Vásárhelyi, B.; Karvaly, G.B. Identification of disease-and headache-specific mediators and pathways in migraine using blood transcriptomic and metabolomic analysis. J. Headache Pain 2021, 22, 1–18. [Google Scholar] [CrossRef]
- Suzuki, K.; Suzuki, S.; Shiina, T.; Kobayashi, S.; Hirata, K. Central sensitization in migraine: A narrative review. J. Pain Res. 2022, 2673–2682. [Google Scholar] [CrossRef] [PubMed]
- Ramachandran, R. Neurogenic inflammation and its role in migraine. Semin. Immunopathol. 2018, 40, 301–314. [Google Scholar] [CrossRef] [PubMed]
- Mungoven, T.J.; Henderson, L.A.; Meylakh, N. Chronic migraine pathophysiology and treatment: A review of current perspectives. Front. Pain Res. 2021, 2, 705276. [Google Scholar] [CrossRef]
- Bertels, Z.; Mangutov, E.; Conway, C.; Siegersma, K.; Asif, S.; Shah, P.; Huck, N.; Tawfik, V.L.; Pradhan, A.A. Migraine and peripheral pain models show differential alterations in neuronal complexity. Headache 2022, 62, 780–791. [Google Scholar] [CrossRef]
- Karsan, N.; Goadsby, P.J. Migraine: Beyond pain. Pract. Neurol. 2021, 21, 475–480. [Google Scholar] [CrossRef] [PubMed]
- Tuttolomondo, A.; Simonetta, I. Molecular Research on Migraine: From Pathogenesis to Treatment. Int. J. Mol. Sci. 2023, 24, 8681. [Google Scholar] [CrossRef] [PubMed]
- Rattanawong, W.; Rapoport, A.; Srikiatkhachorn, A. Neurobiology of migraine progression. Neurobiol. Pain 2022, 12, 100094. [Google Scholar] [CrossRef]
- Borsook, D.; Aasted, C.M.; Burstein, R.; Becerra, L. Migraine mistakes: Error awareness. Neuroscientist 2014, 20, 291–304. [Google Scholar] [CrossRef]
- Feller, L.; Feller, G.; Ballyram, T.; Chandran, R.; Lemmer, J.; Khammissa, R.A.G. Interrelations between pain, stress and executive functioning. Br. J. Pain 2020, 14, 188–194. [Google Scholar] [CrossRef]
- Battaglia, S.; Nazzi, C.; Thayer, J. Heart's tale of trauma: Fear-conditioned heart rate changes in post-traumatic stress disorder. Acta Psychiatr. Scand. 2023, 148, 463–466. [Google Scholar] [CrossRef]
- Di Gregorio, F.; Steinhauser, M.; Maier, M.E.; Thayer, J.F.; Battaglia, S. Error-related cardiac deceleration: Functional interplay between error-related brain activity and autonomic nervous system in performance monitoring. Neurosci. Biobehav. Rev. 2024, 105542. [Google Scholar] [CrossRef]
- Battaglia, S.; Nazzi, C.; Thayer, J.F. Genetic differences associated with dopamine and serotonin release mediate fear-induced bradycardia in the human brain. Transl. Psychiatry 2024, 14, 24. [Google Scholar] [CrossRef] [PubMed]
- Karsan, N.; Goadsby, P.J. CGRP mechanism antagonists and migraine management. Curr. Neurol. Neurosci. Rep. 2015, 15, 1–9. [Google Scholar] [CrossRef]
- Gross, E.C.; Lisicki, M.; Fischer, D.; Sándor, P.S.; Schoenen, J. The metabolic face of migraine—From pathophysiology to treatment. Nat. Rev. Neurol. 2019, 15, 627–643. [Google Scholar] [CrossRef]
- Arulmani, U.; Gupta, S.; VanDenBrink, A.M.; Centurión, D.; Villalón, C.; Saxena, P.R. Experimental migraine models and their relevance in migraine therapy. Cephalalgia 2006, 26, 642–659. [Google Scholar] [CrossRef] [PubMed]
- Pagotto, G.L.d.O.; Santos, L.M.O.d.; Osman, N.; Lamas, C.B.; Laurindo, L.F.; Pomini, K.T.; Guissoni, L.M.; Lima, E.P.d.; Goulart, R.d.A.; Catharin, V.M.S. Ginkgo biloba: A Leaf of Hope in the Fight against Alzheimer’s Dementia: Clinical Trial Systematic Review. Antioxidants 2024, 13, 651. [Google Scholar] [CrossRef]
- Valotto Neto, L.J.; Reverete de Araujo, M.; Moretti Junior, R.C.; Mendes Machado, N.; Joshi, R.K.; dos Santos Buglio, D.; Barbalho Lamas, C.; Direito, R.; Fornari Laurindo, L.; Tanaka, M. Investigating the Neuroprotective and Cognitive-Enhancing Effects of Bacopa monnieri: A Systematic Review Focused on Inflammation, Oxidative Stress, Mitochondrial Dysfunction, and Apoptosis. Antioxidants 2024, 13, 393. [Google Scholar] [CrossRef] [PubMed]
- Laurindo, L.F.; Rodrigues, V.D.; Minniti, G.; de Carvalho, A.C.A.; Zutin, T.L.M.; DeLiberto, L.K.; Bishayee, A.; Barbalho, S.M. Pomegranate (Punica granatum L.) phytochemicals target the components of metabolic syndrome. J. Nutr. Biochem. 2024, 131, 109670. [Google Scholar]
- Direito, R.; Barbalho, S.M.; Sepodes, B.; Figueira, M.E. Plant-Derived Bioactive Compounds: Exploring Neuroprotective, Metabolic, and Hepatoprotective Effects for Health Promotion and Disease Prevention. Pharmaceutics 2024, 16, 577. [Google Scholar] [CrossRef] [PubMed]
- Bássoli, R.; Audi, D.; Ramalho, B.; Audi, M.; Quesada, K.; Barbalho, S. The Effects of Curcumin on Neurodegenerative Diseases: A Systematic Review. J. Herb. Med. 2023, 42, 100771. [Google Scholar] [CrossRef]
- Pasierski, M.; Szulczyk, B. Beneficial effects of capsaicin in disorders of the central nervous system. Molecules 2022, 27, 2484. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Wang, S.; Wang, Y. Role of herbal medicine for prevention and treatment of migraine. Phytother. Res. 2022, 36, 730–760. [Google Scholar] [CrossRef]
- Tauchen, J. Natural products and their (semi-) synthetic forms in the treatment of migraine: History and current status. Curr. Med. Chem. 2020, 27, 3784–3808. [Google Scholar] [CrossRef] [PubMed]
- Wei, T.-H.; Hsieh, C.-L. Headaches, migraine, and herbal medicine. In Treatments, Nutraceuticals, Supplements, and Herbal Medicine in Neurological Disorders; Elsevier: Amsterdam, The Netherlands, 2023; pp. 401–419. [Google Scholar]
- Minniti, G.; Laurindo, L.F.; Machado, N.M.; Duarte, L.G.; Guiguer, E.L.; Araujo, A.C.; Dias, J.A.; Lamas, C.B.; Nunes, Y.C.; Bechara, M.D. Mangifera indica L., By-Products, and Mangiferin on Cardio-Metabolic and Other Health Conditions: A Systematic Review. Life 2023, 13, 2270. [Google Scholar] [CrossRef]
- Yarnell, E. Herbal medicine and migraine. Altern. Complement. Ther. 2017, 23, 192–201. [Google Scholar] [CrossRef]
- Takeda, L.N.; Laurindo, L.F.; Guiguer, E.L.; Bishayee, A.; Araújo, A.C.; Ubeda, L.C.C.; Goulart, R.d.A.; Barbalho, S.M. Psidium guajava L.: A systematic review of the multifaceted health benefits and economic importance. Food Rev. Int. 2023, 39, 4333–4363. [Google Scholar] [CrossRef]
- Laurindo, L.F.; Barbalho, S.M.; Araújo, A.C.; Guiguer, E.L.; Mondal, A.; Bachtel, G.; Bishayee, A. Açaí (Euterpe oleracea Mart.) in health and disease: A critical review. Nutrients 2023, 15, 989. [Google Scholar] [CrossRef]
- Nishikito, D.F.; Borges, A.C.A.; Laurindo, L.F.; Otoboni, A.M.B.; Direito, R.; Goulart, R.d.A.; Nicolau, C.C.; Fiorini, A.M.; Sinatora, R.V.; Barbalho, S.M. Anti-inflammatory, antioxidant, and other health effects of dragon fruit and potential delivery systems for its bioactive compounds. Pharmaceutics 2023, 15, 159. [Google Scholar] [CrossRef]
- Buglio, D.S.; Marton, L.T.; Laurindo, L.F.; Guiguer, E.L.; Araújo, A.C.; Buchaim, R.L.; Goulart, R.d.A.; Rubira, C.J.; Barbalho, S.M. The role of resveratrol in mild cognitive impairment and Alzheimer's disease: A systematic review. J. Med. Food 2022, 25, 797–806. [Google Scholar] [CrossRef] [PubMed]
- Zhong, J.; Lan, W.; Feng, Y.; Yu, L.; Xiao, R.; Shen, Y.; Zou, Z.; Hou, X. Efficacy of repetitive transcranial magnetic stimulation on chronic migraine: A meta-analysis. Front. Neurol. 2022, 13, 1050090. [Google Scholar] [CrossRef] [PubMed]
- Battaglia, S.; Nazzi, C.; Di Fazio, C.; Borgomaneri, S. The role of pre-supplementary motor cortex in action control with emotional stimuli: A repetitive transcranial magnetic stimulation study. Ann. N. Y. Acad. Sci. 2024, 1536, 151–166. [Google Scholar] [CrossRef]
- Saltychev, M.; Juhola, J. Effectiveness of high-frequency repetitive transcranial magnetic stimulation in migraine: A systematic review and meta-analysis. Am. J. Phys. Med. Rehabil. 2022, 101, 1001–1006. [Google Scholar] [CrossRef]
- Battaglia, S.; Nazzi, C.; Fullana, M.A.; di Pellegrino, G.; Borgomaneri, S. ‘Nip it in the bud’: Low-frequency rTMS of the prefrontal cortex disrupts threat memory consolidation in humans. Behav. Res. Ther. 2024, 178, 104548. [Google Scholar] [CrossRef] [PubMed]
- Miron, J.-P.; Voetterl, H.; Fox, L.; Hyde, M.; Mansouri, F.; Dees, S.; Zhou, R.; Sheen, J.; Jodoin, V.D.; Mir-Moghtadaei, A. Optimized repetitive transcranial magnetic stimulation techniques for the treatment of major depression: A proof of concept study. Psychiatry Res. 2021, 298, 113790. [Google Scholar] [CrossRef]
- Zhang, J.-H.; Liang, J.; Yang, Z.-W. Non-invasive brain stimulation for fibromyalgia: Current trends and future perspectives. Front. Neurosci. 2023, 17, 1288765. [Google Scholar] [CrossRef]
Subtopics | Ref. | |
---|---|---|
| ||
a. Interaction between CGRP and nitric oxide in migraine | [62,63,64] | |
b. Real-world outcomes and new therapeutic targets for migraine | [65,66] | |
| ||
a. Altered tryptophan metabolism and migraine susceptibility | [67] | |
b. Tryptophan metabolism pathways in migraine: therapeutic implications | [68] | |
| ||
a. Dual FAAH/MAGL inhibitor in a migraine model | [69] | |
b. SFK activity and CGRP–cytokine crosstalk | [70] | |
c. KATP channels in migraine pathophysiology | [71] | |
| ||
a. Neurogenic neuroinflammation in migraine | [72] | |
b. Complex symptomatology of migraine | [73] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tanaka, M.; Tuka, B.; Vécsei, L. Navigating the Neurobiology of Migraine: From Pathways to Potential Therapies. Cells 2024, 13, 1098. https://doi.org/10.3390/cells13131098
Tanaka M, Tuka B, Vécsei L. Navigating the Neurobiology of Migraine: From Pathways to Potential Therapies. Cells. 2024; 13(13):1098. https://doi.org/10.3390/cells13131098
Chicago/Turabian StyleTanaka, Masaru, Bernadett Tuka, and László Vécsei. 2024. "Navigating the Neurobiology of Migraine: From Pathways to Potential Therapies" Cells 13, no. 13: 1098. https://doi.org/10.3390/cells13131098
APA StyleTanaka, M., Tuka, B., & Vécsei, L. (2024). Navigating the Neurobiology of Migraine: From Pathways to Potential Therapies. Cells, 13(13), 1098. https://doi.org/10.3390/cells13131098