Predicting Longitudinal Cognitive Decline and Alzheimer’s Conversion in Mild Cognitive Impairment Patients Based on Plasma Biomarkers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Clinical Diagnosis
2.3. Neuropsychological Assessment
2.4. Protein Digital Immunoassays
2.5. Statistical Analysis
3. Results
3.1. Baseline Characteristics
3.2. Longitudinal Cognitive Status Predictor, Plasma NFL
3.3. Baseline Biomarkers and Longitudinal Cognition Measures Based on Amyloid Positivity
3.4. Prediction of MCI-to-AD Conversion
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Collaborators, G.B.D. Dementia Forecasting. Estimation of the Global Prevalence of Dementia in 2019 and Forecasted Prevalence in 2050: An Analysis for the Global Burden of Disease Study 2019. Lancet Public Health 2022, 7, e105–e125. [Google Scholar]
- Gauthier, S.; Webster, C.; Servaes, S.; Morais, J.A.; Rosa-Neto, P. World Alzheimer Report 2022: Life after Diagnosis: Navigating Treatment, Care and Support. Alzheimer’s Disease International. Available online: https://www.alzint.org/resource/world-alzheimer-report-2022/ (accessed on 12 March 2024).
- Huang, L.-K.; Kuan, Y.-C.; Lin, H.-W.; Hu, C.-J. Clinical Trials of New Drugs for Alzheimer Disease: A 2020–2023 Update. J. Biomed. Sci. 2023, 30, 83. [Google Scholar] [CrossRef]
- Albert, M.S.; DeKosky, S.T.; Dickson, D.; Dubois, B.; Feldman, H.H.; Fox, N.C.; Gamst, A.; Holtzman, D.M.; Jagust, W.J.; Petersen, R.C.; et al. The Diagnosis of Mild Cognitive Impairment Due to Alz-heimer’s Disease: Recommendations from the National Institute on Aging-Alzheimer’s Association Workgroups on Diagnostic Guidelines for Alzheimer’s Disease. Alzheimers Dement. 2011, 7, 270–279. [Google Scholar] [CrossRef]
- Casagrande, M.; Marselli, G.; Agostini, F.; Forte, G.; Favieri, F.; Guarino, A. The Complex Burden of Determining Prevalence Rates of Mild Cognitive Impairment: A Systematic Review. Front. Psychiatry 2022, 13, 960648. [Google Scholar] [CrossRef]
- Han, Y.; Sheng, C.; Huang, Y. Dissection of Prodromal Alzheimer Rsquo s Disease. Front. Biosci. 2018, 23, 1272–1291. [Google Scholar] [CrossRef]
- Ward, A.; Tardiff, S.; Dye, C.; Arrighi, H.M. Rate of Conversion from Prodromal Alzheimer’s Disease to Alzheimer’s Dementia: A Systematic Review of the Literature. Dement. Geriatr. Cogn. Disord. Extra 2013, 3, 320–332. [Google Scholar] [CrossRef]
- Chatterjee, P.; Pedrini, S.; Stoops, E.; Goozee, K.; Villemagne, V.L.; Asih, P.R.; Verberk, I.M.W.; Dave, P.; Taddei, K.; Sohrabi, H.R.; et al. Plasma Glial Fibrillary Acidic Protein Is Elevated in Cognitively Normal Older Adults at Risk of Alzheimer’s Disease. Transl. Psychiatry 2021, 11, 27. [Google Scholar] [CrossRef]
- Karikari, T.K.; Pascoal, T.A.; Ashton, N.J.; Janelidze, S.; Benedet, A.L.; Rodriguez, J.L.; Chamoun, M.; Savard, M.; Kang, M.S.; Therriault, J.; et al. Blood Phosphorylated Tau 181 as a Biomarker for Alzheimer’s Disease: A Diagnostic Performance and Prediction Modelling Study Using Data from Four Prospective Cohorts. Lancet Neurol. 2020, 19, 422–433. [Google Scholar] [CrossRef]
- Palmqvist, S.; Janelidze, S.; Stomrud, E.; Zetterberg, H.; Karl, J.; Zink, K.; Bittner, T.; Mattsson, N.; Eichenlaub, U.; Blennow, K.; et al. Performance of Fully Automated Plasma Assays as Screening Tests for Alzheimer Disease-Related Beta-Amyloid Status. JAMA Neurol. 2019, 76, 1060–1069. [Google Scholar] [CrossRef]
- Ashton, N.J.; Pascoal, T.A.; Karikari, T.K.; Benedet, A.L.; Lantero-Rodriguez, J.; Brinkmalm, G.; Snellman, A.; Scholl, M.; Troakes, C.; Hye, A.; et al. Plasma P-Tau231: A New Bi-omarker for Incipient Alzheimer’s Disease Pathology. Acta Neuropathol. 2021, 141, 709–724. [Google Scholar] [CrossRef]
- Palmqvist, S.; Janelidze, S.; Quiroz, Y.T.; Zetterberg, H.; Lopera, F.; Stomrud, E.; Su, Y.; Chen, Y.; Serrano, G.E.; Leuzy, A.; et al. Discriminative Accuracy of Plasma Phospho-tau217 for Alzheimer Disease vs Other Neurodegenerative Disorders. JAMA 2020, 324, 772–781. [Google Scholar] [CrossRef]
- Mattsson, N.; Cullen, N.C.; Andreasson, U.; Zetterberg, H.; Blennow, K. Association Between Longitudinal Plasma Neurofilament Light and Neurodegeneration in Patients with Alzheimer Disease. JAMA Neurol. 2019, 76, 791–799. [Google Scholar] [CrossRef]
- Preische, O.; Schultz, S.A.; Apel, A.; Kuhle, J.; Kaeser, S.A.; Barro, C.; Gräber, S.; Kuder-Buletta, E.; Lafougere, C.; Laske, C.; et al. Serum Neurofilament Dynamics Predicts Neurodegeneration and Clinical Progression in Presymptomatic Alzheimer’s Disease. Nat. Med. 2019, 25, 277–283. [Google Scholar] [CrossRef]
- Benedet, A.L.; Milà-Alomà, M.; Vrillon, A.; Ashton, N.J.; Pascoal, T.A.; Lussier, F.; Karikari, T.K.; Hourregue, C.; Cognat, E.; Dumurgier, J.; et al. Differences between Plasma and Cerebrospinal Fluid Glial Fibrillary Acidic Protein Levels across the Alzheimer Disease Continuum. JAMA Neurol. 2021, 78, 1471–1483. [Google Scholar] [CrossRef]
- Cicognola, C.; Janelidze, S.; Hertze, J.; Zetterberg, H.; Blennow, K.; Mattsson-Carlgren, N.; Hansson, O. Plasma Glial Fi-brillary Acidic Protein Detects Alzheimer Pathology and Predicts Future Conversion to Alzheimer Dementia in Patients with Mild Cognitive Impairment. Alzheimers Res. Ther. 2021, 13, 68. [Google Scholar] [CrossRef]
- Wellington, H.; Paterson, R.W.; Portelius, E.; Törnqvist, U.; Magdalinou, N.; Fox, N.C.; Blennow, K.; Schott, J.M.; Zetterberg, H. Increased Csf Neurogranin Concentration Is Specific to Alzheimer Disease. Neurology 2016, 86, 829–835. [Google Scholar] [CrossRef]
- Mohaupt, P.; Pons, M.L.; Vialaret, J.; Delaby, C.; Hirtz, C.; Lehmann, S. Beta-Synuclein as a Candidate Blood Biomarker for Synaptic Degeneration in Alzheimer’s Disease. Alzheimers Res. Ther. 2022, 14, 179. [Google Scholar] [CrossRef]
- Janelidze, S.; Mattsson, N.; Palmqvist, S.; Smith, R.; Beach, T.G.; Serrano, G.E.; Chai, X.; Proctor, N.K.; Eichenlaub, U.; Zetterberg, H.; et al. Plasma P-Tau181 in Alzheimer’s Disease: Relationship to Other Biomarkers, Differential Diagnosis, Neuropathology and Longitudinal Progression to Alzheimer’s Dementia. Nat. Med. 2020, 26, 379–386. [Google Scholar] [CrossRef]
- Palmqvist, S.; Tideman, P.; Cullen, N.; Zetterberg, H.; Blennow, K.; Dage, J.L.; Stomrud, E.; Janelidze, S.; Mattsson-Carlgren, N.; Hansson, O.; et al. Prediction of Future Alzheimer’s Disease Dementia Using Plasma Phospho-Tau Combined with Other Accessible Measures. Nat. Med. 2021, 27, 1034–1042. [Google Scholar] [CrossRef]
- Lee, J.H.; Lee, K.U.; Lee, D.Y.; Kim, K.W.; Jhoo, J.H.; Kim, J.H.; Lee, K.H.; Kim, S.Y.; Han, S.H.; Woo, J.I. Development of the Korean Version of the Consortium to Establish a Registry for Alzheimer’s Disease Assessment Packet (CERAD-K): Clinical and Neuropsychological Assessment Batteries. J. Gerontol. Ser. B 2002, 57, 47–53. [Google Scholar] [CrossRef]
- Morris, J.C. The Clinical Dementia Rating (Cdr): Current Version and Scoring Rules. Neurology 1993, 43, 2412–2414. [Google Scholar] [CrossRef] [PubMed]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 4th ed.; Dsm-Iv-Tr®; American Psychiatric Association: Washington, DC, USA, 2000. [Google Scholar]
- McKhann, G.; Drachman, D.; Folstein, M.; Katzman, R.; Price, D.; Stadlan, E.M. Clinical Diagnosis of Alzheimer’s Disease: Report of the Nincds-Adrda Work Group under the Auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology 1984, 34, 939–944. [Google Scholar] [CrossRef]
- Petersen, R.C. Mild Cognitive Impairment as a Diagnostic Entity. J. Intern. Med. 2004, 256, 183–194. [Google Scholar] [CrossRef]
- Arenaza-Urquijo, E.M.; Gonneaud, J.; Fouquet, M.; Perrotin, A.; Mezenge, F.; Landeau, B.; Egret, S.; De la Sayette, V.; Desgranges, B.; Chetelat, G. Interaction between Years of Education and Apoe Epsilon4 Status on Frontal and Temporal Metabolism. Neurology 2015, 85, 1392–1399. [Google Scholar] [CrossRef]
- Bretsky, P.M.; Buckwalter, J.G.; Seeman, T.E.; Miller, C.A.; Poirier, J.; Schellenberg, G.D.; Finch, C.E.; Henderson, V.W. Evidence for an Interaction between Apolipoprotein E Genotype, Gender, and Alzheimer Disease. Alzheimer Dis. Assoc. Disord. 1999, 13, 216–221. [Google Scholar] [CrossRef] [PubMed]
- Jang, H.; Kim, J.S.; Lee, H.J.; Kim, C.-H.; Na, D.L.; Kim, H.J.; Allué, J.A.; Sarasa, L.; Castillo, S.; Pesini, P.; et al. Performance of the Plasma Abeta42/Abeta40 Ratio, Measured with a Novel Hplc-Ms/Ms Method, as a Biomarker of Amyloid Pet Status in a Dpuk-Korean Cohort. Alzheimer’s Res. Ther. 2021, 13, 179. [Google Scholar] [CrossRef]
- Schindler, S.E.; Bollinger, J.G.; Ovod, V.; Mawuenyega, K.G.; Li, Y.; Gordon, B.A.; Holtzman, D.M.; Morris, J.C.; Benzinger, T.L.S.; Xiong, C.; et al. High-Precision Plasma Beta-Amyloid 42/40 Predicts Current and Future Brain Amyloidosis. Neurology 2019, 93, e1647–e1659. [Google Scholar] [CrossRef]
- Fandos, N.; Perez-Grijalba, V.; Pesini, P.; Olmos, S.; Bossa, M.; Villemagne, V.L.; Doecke, J.; Fowler, C.; Masters, C.L.; Sarasa, M.; et al. Plasma Amyloid Beta 42/40 Ratios as Biomarkers for Amyloid Beta Cerebral Deposition in Cognitively Normal Individuals. Alzheimers Dement. 2017, 8, 179–187. [Google Scholar]
- Le Bastard, N.; Aerts, L.; Leurs, J.; Blomme, W.; De Deyn, P.P.; Engelborghs, S. No Correlation between Time-Linked Plasma and Csf Abeta Levels. Neurochem. Int. 2009, 55, 820–825. [Google Scholar] [CrossRef]
- Lovheim, H.; Elgh, F.; Johansson, A.; Zetterberg, H.; Blennow, K.; Hallmans, G.; Eriksson, S. Plasma Concentrations of Free Amyloid Beta Cannot Predict the Development of Alzheimer’s Disease. Alzheimers Dement. 2017, 13, 778–782. [Google Scholar] [CrossRef]
- Pesini, P.; Sarasa, M. Beyond the Controversy on Abeta Blood-Based Biomarkers. J. Prev. Alzheimers Dis. 2015, 2, 51–55. [Google Scholar]
- Fluss, R.; Faraggi, D.; Reiser, B. Estimation of the Youden Index and its Associated Cutoff Point. Biom. J. 2005, 47, 458–472. [Google Scholar] [CrossRef] [PubMed]
- Chandler, M.J.; Lacritz, L.H.; Hynan, L.S.; Barnard, H.D.; Allen, G.; Deschner, M.; Weiner, M.F.; Cullum, C.M. A Total Score for the CERAD Neuropsychological Battery. Neurology 2005, 65, 102–106. [Google Scholar] [CrossRef] [PubMed]
- Seo, E.H.; Lee, D.Y.; Lee, J.H.; Choo, I.H.; Kim, J.W.; Kim, S.G.; Park, S.Y.; Shin, J.H.; Do, Y.J.; Yoon, J.C.; et al. Total Scores of the CERAD Neuropsychological Assessment Battery: Validation for Mild Cognitive Impairment and Dementia Patients with Diverse Etiologies. Am. J. Geriatr. Psychiatry 2010, 18, 801–809. [Google Scholar] [CrossRef]
- Park, J.-H.; Kwon, Y.C. Modification of the Mini-Mental State Examination for Use in the Elderly in a Non-Western Society. Part 1. Development of Korean Version of Mini-Mental State Examination. Int. J. Geriatr. Psychiatry 1990, 5, 381–387. [Google Scholar] [CrossRef]
- Jack, C.R., Jr.; Bennett, D.A.; Blennow, K.; Carrillo, M.C.; Dunn, B.; Haeberlein, S.B.; Holtzman, D.M.; Jagust, W.; Jessen, F.; Karlawish, J.; et al. Nia-Aa Research Framework: Toward a Biological Definition of Alzheimer’s Disease. Alzheimers Dement. 2018, 14, 535–562. [Google Scholar] [CrossRef]
- Mielke, M.M.; Hagen, C.E.; Xu, J.; Chai, X.; Vemuri, P.; Lowe, V.J.; Airey, D.C.; Knopman, D.S.; Roberts, R.O.; Machulda, M.M.; et al. Plasma Phospho-Tau181 Increases with Alzheimer’s Disease Clinical Severity and Is Associated with Tau- and Amyloid-Positron Emission Tomography. Alzheimers Dement. 2018, 14, 989–997. [Google Scholar] [CrossRef]
- Ebenau, J.L.; Pelkmans, W.; Verberk, I.M.; Verfaillie, S.C.; Bosch, K.A.V.D.; van Leeuwenstijn, M.; Collij, L.E.; Scheltens, P.; Prins, N.D.; Barkhof, F.; et al. Association of CSF, Plasma, and Imaging Markers of Neurodegeneration with Clinical Progression in People with Subjective Cognitive Decline. Neurology 2022, 98, e1315–e1326. [Google Scholar] [CrossRef] [PubMed]
- Lehmann, S.; Schraen-Maschke, S.; Vidal, J.S.; Blanc, F.; Paquet, C.; Allinquant, B.; Bombois, S.; Gabelle, A.; Delaby, C.; Hanon, O.; et al. Blood Neurofilament Levels Predict Cognitive Decline across the Alzheimer’s Disease Continuum. Int. J. Mol. Sci. 2023, 24, 17361. [Google Scholar] [CrossRef]
- van Arendonk, J.; Wolters, F.J.; Neitzel, J.; Vinke, E.J.; Vernooij, M.W.; Ghanbari, M.; Ikram, M.A. Plasma Neurofilament Light Chain in Relation to 10-Year Change in Cognition and Neuroimaging Markers: A Population-Based Study. GeroScience 2024, 46, 57–70. [Google Scholar] [CrossRef]
- Verberk, I.M.W.; Laarhuis, M.B.; Bosch, K.A.v.D.; Ebenau, J.L.; van Leeuwenstijn, M.; Prins, N.D.; Scheltens, P.; E Teunissen, C.; van der Flier, W.M. Serum Markers Glial Fibrillary Acidic Protein and Neurofilament Light for Prognosis and Monitoring in Cognitively Normal Older People: A Prospective Memory Clinic-Based Cohort Study. Lancet Health Longev. 2021, 2, e87–e95. [Google Scholar] [CrossRef]
- Yang, Z.; Sreenivasan, K.; Strom, E.N.T.; Osse, A.M.L.; Pasia, L.G.; Cosme, C.G.; Mugosa, M.R.N.; Chevalier, E.L.; Ritter, A.; Miller, J.B.; et al. Clinical and Biological Relevance of Glial Fibrillary Acidic Protein in Alzheimer’s Disease. Alzheimer’s Res. Ther. 2023, 15, 190. [Google Scholar] [CrossRef]
- Bellaver, B.; Povala, G.; Ferreira, P.C.L.; Ferrari-Souza, J.P.; Leffa, D.T.; Lussier, F.Z.; Benedet, A.L.; Ashton, N.J.; Tria-na-Baltzer, G.; Kolb, H.C.; et al. Astrocyte Reactivity In-fluences Amyloid-Beta Effects on Tau Pathology in Preclinical Alzheimer’s Disease. Nat. Med. 2023, 29, 1775–1781. [Google Scholar] [CrossRef]
- Dore, V.; Doecke, J.D.; Saad, Z.S.; Triana-Baltzer, G.; Slemmon, R.; Krishnadas, N.; Bourgeat, P.; Huang, K.; Burnham, S.; Fowler, C.; et al. Plasma P217+Tau Versus Nav4694 Amyloid and Mk6240 Tau Pet across the Alzheimer’s Continuum. Alzheimers Dement. 2022, 14, e12307. [Google Scholar] [CrossRef] [PubMed]
- Sims, J.R.; Zimmer, J.A.; Evans, C.D.; Lu, M.; Ardayfio, P.; Sparks, J.; Wessels, A.M.; Shcherbinin, S.; Wang, H.; Nery, E.S.M.; et al. Donanemab in Early Symptomatic Alzheimer Disease: The Trailblazer-Alz 2 Randomized Clinical Trial. JAMA 2023, 330, 512–527. [Google Scholar] [CrossRef] [PubMed]
Characteristic | CU | MCI (Non-Converters) | MCI (AD Converters) | p Value * |
---|---|---|---|---|
(n = 40) | (n = 50) | (n = 21) | ||
Age | 68.0 [66.5; 70.0] | 71.0 [65.0; 75.0] | 74.0 [71.0; 78.0] | <0.001 |
Gender | 0.095 | |||
- Female | 20 (50.0%) | 36 (72.0%) | 12 (57.1%) | |
- Male | 20 (50.0%) | 14 (28.0%) | 9 (42.9%) | |
Years of education | 14.0 [12.0; 16.0] | 6.0 [2.0; 9.0] | 6.0 [0.0; 9.0] | <0.001 |
ApoE ε4 | 0.154 | |||
- absent | 34 (85.0%) | 39 (78.0%) | 14 (66.7%) | |
- present | 6 (15.0%) | 11 (22.0%) | 7 (33.3%) | |
Amyloid positivity | 0.268 | |||
- positive predicted | 9 (25.0%) | 18 (41.9%) | 6 (30.0%) | |
- negative predicted | 27 (75.0%) | 25 (58.1%) | 14 (70.0%) | |
tTau (pg/mL) | 0.7 [0.2; 1.2] | 0.6 [0.3; 1.2] | 1.1 [0.3; 1.5] | 0.606 |
pTau181 (pg/mL) | 18.9 [13.8; 25.1] | 20.2 [11.5; 27.2] | 19.2 [14.2; 39.4] | 0.519 |
Aβ40 (pg/mL) | 47.3 [25.5; 70.9] | 33.2 [16.9; 66.2] | 30.8 [11.3; 62.3] | 0.541 |
Aβ42 (pg/mL) | 3.0 [1.6; 4.0] | 2.8 [1.4; 3.7] | 2.2 [1.0; 4.4] | 0.849 |
GFAP (pg/mL) | 105.4 [81.9; 120.8] | 102.0 [72.2; 137.1] | 157.5 [105.3; 186.4] | 0.021 |
NFL (pg/mL) | 20.1 [16.2; 23.9] | 24.2 [17.2; 30.9] | 25.6 [19.8; 41.4] | 0.018 |
pTau181/tTau | 30.5 [15.7; 42.0] | 26.4 [18.1; 49.4] | 25.4 [15.8; 38.7] | 0.931 |
Aβ42/Aβ40 | 0.1 [0.1; 0.1] | 0.1 [0.1; 0.1] | 0.1 [0.1; 0.1] | 0.377 |
pTau181/Aβ42 | 7.1 [5.0; 9.5] | 9.0 [5.7; 13.3] | 8.9 [4.4; 16.9] | 0.261 |
MMSE_bl | 29.0 [28.0; 29.0] | 24.0 [21.0; 26.0] | 21.0 [19.0; 26.0] | <0.001 |
MMSE_2yr | 29.0 [28.0; 30.0] | 23.5 [21.0; 25.0] | 22.0 [18.0; 25.0] | <0.001 |
MMSE_4yr | 29.0 [27.0; 30.0] | 23.0 [21.0; 25.0] | 18.0 [16.0; 22.0] | <0.001 |
MMSE_6yr | 29.0 [28.0; 29.0] | 23.0 [21.0; 25.0] | 17.0 [13.0; 22.0] | <0.001 |
CERAD-TS_bl | 74.5 [70.0; 80.0] | 48.0 [41.0; 54.0] | 44.0 [39.0; 54.0] | <0.001 |
CERAD-TS_2yr | 78.0 [74.5; 82.5] | 47.0 [39.0; 54.0] | 45.0 [34.0; 51.0] | <0.001 |
CERAD-TS_4yr | 78.5 [73.5; 82.5] | 47.0 [39.0; 55.0] | 38.0 [34.0; 44.0] | <0.001 |
CERAD-TS_6yr | 79.0 [74.0; 84.0] | 45.0 [39.0; 52.0] | 38.0 [27.0; 41.0] | <0.001 |
β Coefficient | 95% CI | t | p Value | ||
---|---|---|---|---|---|
MMSE | Comprehensive biomarkers model | ||||
NFL×time | −0.22 | −0.408–0.029 | −2.28 | 0.025 | |
tTau×time | −0.01 | −0.311–0.286 | −0.09 | 0.932 | |
pTau181×time | 0.04 | −0.212–0.290 | 0.31 | 0.758 | |
Aβ40× time | −0.01 | −0.358–0.334 | −0.07 | 0.945 | |
Aβ42×time | 0.14 | −0.181–0.460 | 0.86 | 0.391 | |
GFAP×time | 0.12 | −0.054–0.299 | 1.38 | 0.171 | |
pTau181/tTau×time | 0.00 | −0.245–0.251 | 0.02 | 0.983 | |
Aβ42/Aβ40×time | 0.06 | −0.121–0.242 | 0.66 | 0.512 | |
pTau181/Aβ42×time | 0.02 | −0.228–0.266 | 0.15 | 0.879 | |
CERAD-TS | Comprehensive biomarkers model | ||||
NFL×time | −0.31 | −0.930–0.311 | −0.99 | 0.325 | |
tTau×time | 0.09 | −0.904–1.074 | 0.17 | 0.865 | |
pTau181×time | −0.02 | −0.858–0.808 | −0.06 | 0.953 | |
Aβ40×time | −0.73 | −1.876–0.413 | −1.27 | 0.208 | |
Aβ42×time | 0.93 | −0.123–1.990 | 1.75 | 0.083 | |
GFAP×time | −0.03 | −0.604–0.550 | −0.09 | 0.926 | |
pTau181/tTau×time | 0.10 | −0.717–0.926 | 0.25 | 0.802 | |
Aβ42/Aβ40×time | −0.30 | −0.900–0.301 | −0.99 | 0.325 | |
pTau181/Aβ42×time | 0.07 | −0.745–0.889 | 0.17 | 0.862 |
β Coefficient | 95% CI | t | p Value | ||
---|---|---|---|---|---|
MMSE | Comprehensive biomarkers model | ||||
NFL×time | −0.29 | −0.571–0.003 | −2.00 | 0.047 | |
tTau×time | −0.03 | −0.567–0.507 | −0.11 | 0.912 | |
pTau181×time | −0.06 | −0.552–0.426 | −0.26 | 0.799 | |
Aβ40×time | 0.22 | −0.444–0.882 | 0.65 | 0.516 | |
Aβ42×time | 0.11 | −0.425–0.639 | 0.40 | 0.692 | |
GFAP×time | 0.05 | −0.248–0.340 | 0.31 | 0.760 | |
pTau181/tTau×time | 0.16 | −0.292–0.609 | 0.69 | 0.488 | |
Aβ42/Aβ40×time | −1.17 | −3.907–1.568 | −0.84 | 0.401 | |
pTau181/Aβ42×time | 0.17 | −0.242–0.581 | 0.81 | 0.419 | |
CERAD-TS | Comprehensive biomarkers model | ||||
NFL×time | −0.85 | −7.724–0.024 | −1.91 | 0.049 | |
tTau×time | 0.09 | −1.649–1.835 | 0.11 | 0.916 | |
pTau181×time | −0.25 | −1.845–1.335 | −0.32 | 0.753 | |
Aβ40×time | −0.04 | −2.176–2.101 | −0.04 | 0.972 | |
Aβ42×time | 0.31 | −1.396–2.019 | 0.36 | 0.720 | |
GFAP×time | −0.27 | −1.209–0.659 | −0.58 | 0.563 | |
pTau181/tTau×time | 0.54 | −0.923–2.005 | 0.73 | 0.468 | |
Aβ42/Aβ40×time | −2.29 | −11.182–6.595 | −0.51 | 0.612 | |
pTau181/Aβ42×time | 0.22 | −1.120–1.556 | 0.32 | 0.749 | |
Individual biomarker model | |||||
NFL×time | −0.41 | −0.932–0.110 | −1.56 | 0.121 | |
NFL | 6.18 | −0.165–12.536 | 1.945 | 0.056 | |
tTau×time | 0.03 | −0.462–0.528 | 0.13 | 0.895 | |
pTau181×time | −0.06 | −0.579–0.451 | −0.25 | 0.806 | |
Aβ40×time | −0.08 | −0.576–0.420 | −0.31 | 0.757 | |
Aβ42×time | 0.08 | −0.487–0.650 | 0.28 | 0.780 | |
GFAP×time | 0.12 | −0.236–0.480 | 0.67 | 0.500 | |
GFAP | 6.96 | 0.275–13.643 | 2.08 | 0.042 | |
pTau181/tTau×time | 0.02 | −0.596–0.626 | 0.05 | 0.961 | |
Aβ42/Aβ40×time | −2.07 | −4.476–0.343 | −1.70 | 0.092 | |
pTau181/Aβ42×time | −0.110 | −0.611–0.391 | −0.43 | 0.664 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, M.-K.; Ahn, J.; Kim, Y.-J.; Lee, J.-W.; Lee, J.-C.; Hwang, S.-J.; Kim, K.-C. Predicting Longitudinal Cognitive Decline and Alzheimer’s Conversion in Mild Cognitive Impairment Patients Based on Plasma Biomarkers. Cells 2024, 13, 1085. https://doi.org/10.3390/cells13131085
Park M-K, Ahn J, Kim Y-J, Lee J-W, Lee J-C, Hwang S-J, Kim K-C. Predicting Longitudinal Cognitive Decline and Alzheimer’s Conversion in Mild Cognitive Impairment Patients Based on Plasma Biomarkers. Cells. 2024; 13(13):1085. https://doi.org/10.3390/cells13131085
Chicago/Turabian StylePark, Min-Koo, Jinhyun Ahn, Young-Ju Kim, Ji-Won Lee, Jeong-Chan Lee, Sung-Joo Hwang, and Keun-Cheol Kim. 2024. "Predicting Longitudinal Cognitive Decline and Alzheimer’s Conversion in Mild Cognitive Impairment Patients Based on Plasma Biomarkers" Cells 13, no. 13: 1085. https://doi.org/10.3390/cells13131085
APA StylePark, M.-K., Ahn, J., Kim, Y.-J., Lee, J.-W., Lee, J.-C., Hwang, S.-J., & Kim, K.-C. (2024). Predicting Longitudinal Cognitive Decline and Alzheimer’s Conversion in Mild Cognitive Impairment Patients Based on Plasma Biomarkers. Cells, 13(13), 1085. https://doi.org/10.3390/cells13131085