Ethanol Exposure to Ethanol-Oxidizing HEPG2 Cells Induces Intracellular Protein Aggregation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animal Treatments
2.2. Cells and Treatments
2.3. Human Samples
2.4. Lactate Dehydrogenase Assay
2.5. Aggresome Detection
2.6. Proteasome Assay
2.7. Reactive Oxygen Species (ROS) Quantification
2.8. Statistical Analyses
3. Results
3.1. Aggresome Content in Livers of Human Subjects with Alcohol-Induced Hepatitis (AH) Was Higher than in Normal Subjects
3.2. EtOH Exposure to VL-17A Cells Decreased Proteasome Activity and Enhanced Aggresome Detection
3.3. Acetaldehyde (Ach) Generation Promoted Aggresome Formation and Cytotoxicity in VL-17A Cells
3.4. Autophagy Activation Prevented Aggresome Formation
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Johnston, J.A.; Ward, C.L.; Kopito, R.R. Aggresomes: A cellular response to misfolded proteins. J. Cell Biol. 1998, 143, 1883–1898. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bross, P.; Corydon, T.J.; Andresen, B.S.; Jorgensen, M.M.; Bolund, L.; Gregersen, N. Protein misfolding and degradation in genetic diseases. Hum. Mutat. 1999, 14, 186–198. [Google Scholar] [CrossRef]
- Gregersen, N.; Bross, P.; Andrese, B.S.; Pedersen, C.B.; Corydon, T.J.; Bolund, L. The role of chaperone-assisted folding and quality control in inborn errors of metabolism: Protein folding disorders. J. Inherit. Metab. Dis. 2001, 24, 189–212. [Google Scholar] [CrossRef] [PubMed]
- Tuma, D.J.; Thiele, G.M.; Xu, D.; Klassen, L.W.; Sorrell, M.F. Acetaldehyde and malondialdehyde react together to generate distinct protein adducts in the liver during long-term ethanol administration. Hepatology 1996, 23, 872–880. [Google Scholar] [CrossRef]
- Curry-McCoy, T.V.; Osna, N.A.; Donohue, T.M., Jr. Modulation of lysozyme function and degradation after nitration with peroxynitrite. Biochim. Biophys. Acta 2009, 1790, 778–786. [Google Scholar] [CrossRef] [Green Version]
- Donohue, T.M., Jr.; Tuma, D.J.; Sorrell, M.F. Binding of metabolically derived acetaldehyde to hepatic proteins in vitro. Lab. Investig. J. Tech. Methods Pathol. 1983, 49, 226–229. [Google Scholar]
- Mauch, T.J.; Donohue, T.M., Jr.; Zetterman, R.K.; Sorrell, M.F.; Tuma, D.J. Covalent binding of acetaldehyde selectively inhibits the catalytic activity of lysine-dependent enzymes. Hepatology 1986, 6, 263–269. [Google Scholar] [CrossRef]
- Loguercio, C.; Federico, A. Oxidative stress in viral and alcoholic hepatitis. Free Radic. Biol. Med. 2003, 34, 1–10. [Google Scholar] [CrossRef]
- Li, Y.; Li, S.; Wu, H. Ubiquitination-Proteasome System (UPS) and Autophagy Two Main Protein Degradation Machineries in Response to Cell Stress. Cells 2022, 11, 851. [Google Scholar] [CrossRef]
- Grune, T.; Reinheckel, T.; Davies, K.J. Degradation of oxidized proteins in K562 human hematopoietic cells by proteasome. J. Biol. Chem. 1996, 271, 15504–15509. [Google Scholar] [CrossRef] [Green Version]
- Shringarpure, R.; Grune, T.; Mehlhase, J.; Davies, K.J. Ubiquitin conjugation is not required for the degradation of oxidized proteins by proteasome. J. Biol. Chem. 2003, 278, 311–318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, A.M.; Ryter, S.W.; Levine, B. Autophagy in human health and disease. N. Engl. J. Med. 2013, 368, 1845–1846. [Google Scholar] [CrossRef] [PubMed]
- Donohue, T.M., Jr. Autophagy and ethanol-induced liver injury. World J. Gastroenterol. 2009, 15, 1178–1185. [Google Scholar] [CrossRef] [Green Version]
- Mallory, F.B. Giant Cell Sarcoma. J. Med. Res. 1911, 24, 463–468. [Google Scholar] [PubMed]
- Mallory, F.B. Chronic Passive Congestion of the Liver. J. Med. Res. 1911, 24, 455–462. [Google Scholar]
- Jensen, K.; Gluud, C. The Mallory body: Morphological, clinical and experimental studies (Part 1 of a literature survey). Hepatology 1994, 20, 1061–1077. [Google Scholar] [CrossRef] [PubMed]
- Bardag-Gorce, F. Effects of ethanol on the proteasome interacting proteins. World J. Gastroenterol. 2010, 16, 1349–1357. [Google Scholar] [CrossRef]
- Bardag-Gorce, F.; French, B.A.; Lue, Y.H.; Nguyen, V.; Wan, Y.J.; French, S.W. Mallory bodies formed in proteasome-depleted hepatocytes: An immunohistochemical study. Exp. Mol. Pathol. 2001, 70, 7–18. [Google Scholar] [CrossRef]
- Bardag-Gorce, F.; French, B.A.; Nan, L.; Song, H.; Nguyen, S.K.; Yong, H.; Dede, J.; French, S.W. CYP2E1 induced by ethanol causes oxidative stress, proteasome inhibition and cytokeratin aggresome (Mallory body-like) formation. Exp. Mol. Pathol. 2006, 81, 191–201. [Google Scholar] [CrossRef]
- Wu, D.; Cederbaum, A.I. Inhibition of autophagy promotes CYP2E1-dependent toxicity in HepG2 cells via elevated oxidative stress, mitochondria dysfunction and activation of p38 and JNK MAPK. Redox Biol. 2013, 1, 552–565. [Google Scholar] [CrossRef] [Green Version]
- Casey, C.A.; Donohue, T.M., Jr.; Kubik, J.L.; Kumar, V.; Naldrett, M.J.; Woods, N.T.; Frisbie, C.P.; McNiven, M.A.; Thomes, P.G. Lipid droplet membrane proteome remodeling parallels ethanol-induced hepatic steatosis and its resolution. J. Lipid Res. 2021, 62, 100049. [Google Scholar] [CrossRef] [PubMed]
- Thomes, P.G.; Trambly, C.S.; Thiele, G.M.; Duryee, M.J.; Fox, H.S.; Haorah, J.; Donohue, T.M., Jr. Proteasome activity and autophagosome content in liver are reciprocally regulated by ethanol treatment. Biochem. Biophys. Res. Commun. 2012, 417, 262–267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Donohue, T.M.; Osna, N.A.; Clemens, D.L. Recombinant Hep G2 cells that express alcohol dehydrogenase and cytochrome P450 2E1 as a model of ethanol-elicited cytotoxicity. Int. J. Biochem. Cell Biol. 2006, 38, 92–101. [Google Scholar] [CrossRef]
- Donohue, T.M., Jr.; Zetterman, R.K.; Zhang-Gouillon, Z.Q.; French, S.W. Peptidase activities of the multicatalytic protease in rat liver after voluntary and intragastric ethanol administration. Hepatology 1998, 28, 486–491. [Google Scholar] [CrossRef] [PubMed]
- Ganesan, M.; Zhang, J.; Bronich, T.; Poluektova, L.I.; Donohue, T.M., Jr.; Tuma, D.J.; Kharbanda, K.K.; Osna, N.A. Acetaldehyde accelerates HCV-induced impairment of innate immunity by suppressing methylation reactions in liver cells. Am. J. Physiol. Gastrointest. Liver Physiol. 2015, 309, G566–G577. [Google Scholar] [CrossRef] [PubMed]
- Thomes, P.G.; Trambly, C.S.; Fox, H.S.; Tuma, D.J.; Donohue, T.M., Jr. Acute and Chronic Ethanol Administration Differentially Modulate Hepatic Autophagy and Transcription Factor EB. Alcohol. Clin. Exp. Res. 2015, 39, 2354–2363. [Google Scholar] [CrossRef] [PubMed]
- Thomes, P.G.; Osna, N.A.; Davis, J.S.; Donohue, T.M., Jr. Cellular steatosis in ethanol oxidizing-HepG2 cells is partially controlled by the transcription factor, early growth response-1. Int. J. Biochem. Cell Biol. 2013, 45, 454–463. [Google Scholar] [CrossRef] [Green Version]
- Thomes, P.G.; Ehlers, R.A.; Trambly, C.S.; Clemens, D.L.; Fox, H.S.; Tuma, D.J.; Donohue, T.M. Multilevel regulation of autophagosome content by ethanol oxidation in HepG2 cells. Autophagy 2013, 9, 63–73. [Google Scholar] [CrossRef] [Green Version]
- Yue, Q.; Zhen, H.; Huang, M.; Zheng, X.; Feng, L.; Jiang, B.; Yang, M.; Wu, W.; Liu, X.; Guo, D. Proteasome Inhibition Contributed to the Cytotoxicity of Arenobufagin after Its Binding with Na, K-ATPase in Human Cervical Carcinoma HeLa Cells. PLoS ONE 2016, 11, e0159034. [Google Scholar] [CrossRef] [Green Version]
- Folger, A.; Wang, Y. The Cytotoxicity and Clearance of Mutant Huntingtin and Other Misfolded Proteins. Cells 2021, 10, 2835. [Google Scholar] [CrossRef]
- Lamark, T.; Johansen, T. Aggrephagy: Selective disposal of protein aggregates by macroautophagy. Int. J. Cell Biol. 2012, 2012, 736905. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thomes, P.G.; Rensch, G.; Casey, C.A.; Donohue, T.M., Jr. Ethanol Exposure to Ethanol-Oxidizing HEPG2 Cells Induces Intracellular Protein Aggregation. Cells 2023, 12, 1013. https://doi.org/10.3390/cells12071013
Thomes PG, Rensch G, Casey CA, Donohue TM Jr. Ethanol Exposure to Ethanol-Oxidizing HEPG2 Cells Induces Intracellular Protein Aggregation. Cells. 2023; 12(7):1013. https://doi.org/10.3390/cells12071013
Chicago/Turabian StyleThomes, Paul G., Gage Rensch, Carol A. Casey, and Terrence M. Donohue, Jr. 2023. "Ethanol Exposure to Ethanol-Oxidizing HEPG2 Cells Induces Intracellular Protein Aggregation" Cells 12, no. 7: 1013. https://doi.org/10.3390/cells12071013
APA StyleThomes, P. G., Rensch, G., Casey, C. A., & Donohue, T. M., Jr. (2023). Ethanol Exposure to Ethanol-Oxidizing HEPG2 Cells Induces Intracellular Protein Aggregation. Cells, 12(7), 1013. https://doi.org/10.3390/cells12071013