Metabolomic Analysis of Respiratory Epithelial Lining Fluid in Patients with Chronic Obstructive Pulmonary Disease—A Systematic Review
Abstract
:1. Introduction
1.1. Rationale
1.2. Objectives
2. Materials and Methods
2.1. Protocol and Registration
2.2. Eligibility Criteria
2.3. Information Sources
2.4. Search
2.5. Study Selection
2.6. Data Items
2.7. Risk of Bias
3. Results
3.1. Study Selection
3.2. Results
3.2.1. Exhaled Breath
3.2.2. Exhaled Breath Condensate
3.2.3. Induced Sputum
3.2.4. Bronchoalveolar Lavage Fluid
4. Discussion
Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
BALF | bronchoalveolar lavage fluid |
COPD | chronic obstructive pulmonary disease |
EB | exhaled breath |
EBC | exhaled breath condensate |
ELF | epithelial lining fluid |
FEV1 | forced expiratory volume in 1 s |
FVC | forced vital capacity |
GC MS | gas chromatography mass spectrometry |
GC-ToF MS | gas chromatography–time-of-flight mass spectrometry |
GOLD | Global Initiative for Chronic Obstructive Lung Disease |
IS | induced sputum |
LC | liquid chromatography |
LC MS | liquid chromatography mass spectrometry |
LC-Q-ToF MS | liquid chromatography-quadrupole-time-of-flight mass spectrometry |
NMR | nuclear magnetic resonance |
OSA | obstructive sleep apnea |
PLCH | pulmonary Langerhans’ cell histiocytosis |
SESI MS | secondary electro-spray ionization mass spectrometry |
VOCs | volatile organic compounds |
References
- Adeloye, D.; Song, P.; Zhu, Y.; Campbell, H.; Sheikh, A.; Rudan, I. Global, regional, and national prevalence of, and risk factors for, chronic obstructive pulmonary disease (COPD) in 2019: A systematic review and modelling analysis. Lancet Respir. Med. 2022, 10, 447–458. [Google Scholar] [CrossRef] [PubMed]
- Aghapour, M.; Remels, A.H.; Pouwels, S.D.; Bruder, D.; Hiemstra, P.S.; Cloonan, S.M.; Heijink, I.H. Mitochondria: At the crossroads of regulating lung epithelial cell function in chronic obstructive pulmonary disease. Am. J. Physiol. Lung Cell. Mol. Physiol. 2020, 318, L149–L164. [Google Scholar] [CrossRef] [PubMed]
- Pelkonen, M. Smoking: Relationship to chronic bronchitis, chronic obstructive pulmonary disease and mortality. Curr. Opin. Pulm. Med. 2008, 14, 105–109. [Google Scholar] [CrossRef] [PubMed]
- Beyer, D.; Mitfessel, H.; Gillissen, A. Maternal smoking promotes chronic obstructive lung disease in the offspring as adults. Eur. J. Med. Res. 2009, 14, 27–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manian, P. Chronic obstructive pulmonary disease classification, phenotypes and risk assessment. J. Thorac. Dis. 2019, 11, S1761. [Google Scholar] [CrossRef]
- Brat, K.; Svoboda, M.; Hejduk, K.; Plutinsky, M.; Zatloukal, J.; Volakova, E.; Popelkova, P.; Novotna, B.; Engova, D.; Franssen, F.M. Introducing a new prognostic instrument for long-term mortality prediction in COPD patients: The CADOT index. Biomed. Pap. Med. Fac. Palacky Univ. Olomouc 2021, 165, 139–145. [Google Scholar] [CrossRef]
- Venkatesan, P. GOLD COPD report: 2023 update. Lancet Respir. Med. 2023, 11, 18. [Google Scholar] [CrossRef]
- Nambiar, S.; Bong How, S.; Gummer, J.; Trengove, R.; Moodley, Y. Metabolomics in chronic lung diseases. Respirology 2020, 25, 139–148. [Google Scholar] [CrossRef] [Green Version]
- Farne, H.; Groves, H.T.; Gill, S.K.; Stokes, I.; McCulloch, S.; Karoly, E.; Trujillo-Torralbo, M.-B.; Johnston, S.L.; Mallia, P.; Tregoning, J.S. Comparative metabolomic sampling of upper and lower airways by four different methods to identify biochemicals that may support bacterial growth. Front. Cell. Infect. Microbiol. 2018, 8, 432. [Google Scholar] [CrossRef] [Green Version]
- Górska, K.; Maskey-Warzęchowska, M.; Nejman-Gryz, P.; Korczyński, P.; Prochorec-Sobieszek, M.; Krenke, R. Comparative study of periostin expression in different respiratory samples in patients with asthma and chronic obstructive pulmonary disease. Pol. Arch. Med. Wewn. 2016, 126, 124–137. [Google Scholar] [CrossRef] [Green Version]
- Basanta, M.; Ibrahim, B.; Dockry, R.; Douce, D.; Morris, M.; Singh, D.; Woodcock, A.; Fowler, S.J. Exhaled volatile organic compounds for phenotyping chronic obstructive pulmonary disease: A cross-sectional study. Respir. Res. 2012, 13, 72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sinues, P.M.-L.; Meier, L.; Berchtold, C.; Ivanov, M.; Sievi, N.; Camen, G.; Kohler, M.; Zenobi, R. Breath analysis in real time by mass spectrometry in chronic obstructive pulmonary disease. Respir. Int. Rev. Thorac. Dis. 2014, 87, 301–310. [Google Scholar]
- Rodríguez-Aguilar, M.; Ramírez-García, S.; Ilizaliturri-Hernández, C.; Gómez-Gómez, A.; Van-Brussel, E.; Díaz-Barriga, F.; Medellín-Garibay, S.; Flores-Ramírez, R. Ultrafast gas chromatography coupled to electronic nose to identify volatile biomarkers in exhaled breath from chronic obstructive pulmonary disease patients: A pilot study. Biomed. Chromatogr. 2019, 33, e4684. [Google Scholar] [CrossRef]
- de Laurentiis, G.; Paris, D.; Melck, D.; Maniscalco, M.; Marsico, S.; Corso, G.; Motta, A.; Sofia, M. Metabonomic analysis of exhaled breath condensate in adults by nuclear magnetic resonance spectroscopy. Eur. Respir. J. 2008, 32, 1175–1183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Laurentiis, G.; Paris, D.; Melck, D.; Montuschi, P.; Maniscalco, M.; Bianco, A.; Sofia, M.; Motta, A. Separating smoking-related diseases using NMR-based metabolomics of exhaled breath condensate. J. Proteome Res. 2013, 12, 1502–1511. [Google Scholar] [CrossRef] [PubMed]
- Bertini, I.; Luchinat, C.; Miniati, M.; Monti, S.; Tenori, L. Phenotyping COPD by 1H NMR metabolomics of exhaled breath condensate. Metab. Off. J. Metab. Soc. 2014, 10, 302–311. [Google Scholar] [CrossRef]
- Kilk, K.; Aug, A.; Ottas, A.; Soomets, U.; Altraja, S.; Altraja, A. Phenotyping of chronic obstructive pulmonary disease based on the integration of metabolomes and clinical characteristics. Int. J. Mol. Sci. 2018, 19, 666. [Google Scholar] [CrossRef] [Green Version]
- Telenga, E.D.; Hoffmann, R.F.; t’Kindt, R.; Hoonhorst, S.J.; Willemse, B.W.; van Oosterhout, A.J.; Heijink, I.H.; van den Berge, M.; Jorge, L.; Sandra, P. Untargeted lipidomic analysis in chronic obstructive pulmonary disease. Uncovering sphingolipids. Am. J. Respir. Crit. Care Med. 2014, 190, 155–164. [Google Scholar] [CrossRef] [PubMed]
- Walmsley, S.; Cruickshank-Quinn, C.; Quinn, K.; Zhang, X.; Petrache, I.; Bowler, R.P.; Reisdorph, R.; Reisdorph, N. A prototypic small molecule database for bronchoalveolar lavage-based metabolomics. Sci. Data 2018, 5, 180060. [Google Scholar] [CrossRef] [Green Version]
- t’Kindt, R.; Telenga, E.D.; Jorge, L.; Van Oosterhout, A.J.; Sandra, P.; Ten Hacken, N.H.; Sandra, K. Profiling over 1500 lipids in induced lung sputum and the implications in studying lung diseases. Anal. Chem. 2015, 87, 4957–4964. [Google Scholar] [CrossRef]
- Esther, C.R., Jr.; O’Neal, W.K.; Anderson, W.H.; Kesimer, M.; Ceppe, A.; Doerschuk, C.M.; Alexis, N.E.; Hastie, A.T.; Barr, R.G.; Bowler, R.P. Identification of sputum biomarkers predictive of pulmonary exacerbations in COPD. Chest 2022, 161, 1239–1249. [Google Scholar] [CrossRef]
- Halper-Stromberg, E.; Gillenwater, L.; Cruickshank-Quinn, C.; O’neal, W.K.; Reisdorph, N.; Petrache, I.; Zhuang, Y.; Labaki, W.W.; Curtis, J.L.; Wells, J. Bronchoalveolar lavage fluid from COPD patients reveals more compounds associated with disease than matched plasma. Metabolites 2019, 9, 157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fens, N.; Roldaan, A.; Van der Schee, M.; Boksem, R.; Zwinderman, A.; Bel, E.; Sterk, P. External validation of exhaled breath profiling using an electronic nose in the discrimination of asthma with fixed airways obstruction and chronic obstructive pulmonary disease. Clin. Exp. Allergy 2011, 41, 1371–1378. [Google Scholar] [CrossRef] [PubMed]
- Maniscalco, M.; Paris, D.; Melck, D.J.; Molino, A.; Carone, M.; Ruggeri, P.; Caramori, G.; Motta, A. Differential diagnosis between newly diagnosed asthma and COPD using exhaled breath condensate metabolomics: A pilot study. Eur. Respir. J. 2018, 51, 1701825. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ząbek, A.; Stanimirova, I.; Deja, S.; Barg, W.; Kowal, A.; Korzeniewska, A.; Orczyk-Pawiłowicz, M.; Baranowski, D.; Gdaniec, Z.; Jankowska, R. Fusion of the 1H NMR data of serum, urine and exhaled breath condensate in order to discriminate chronic obstructive pulmonary disease and obstructive sleep apnea syndrome. Metab. Off. J. Metab. Soc. 2015, 11, 1563–1574. [Google Scholar] [CrossRef] [Green Version]
- Liu, D.; Meister, M.; Zhang, S.; Vong, C.-I.; Wang, S.; Fang, R.; Li, L.; Wang, P.G.; Massion, P.; Ji, X. Identification of lipid biomarker from serum in patients with chronic obstructive pulmonary disease. Respir. Res. 2020, 21, 242. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Deeb, R.S.; Ma, Y.; Staudt, M.R.; Crystal, R.G.; Gross, S.S. Serum metabolite biomarkers discriminate healthy smokers from COPD smokers. PLoS ONE 2015, 10, e0143937. [Google Scholar] [CrossRef]
- Chakinala, R.C.; Khatri, A.; Gupta, K.; Koike, K.; Epelbaum, O. Sphingolipids in COPD. Eur. Respir. Rev. 2019, 28, 190047. [Google Scholar] [PubMed]
- Lu, Y.; Chang, R.; Yao, J.; Xu, X.; Teng, Y.; Cheng, N. Effectiveness of long-term using statins in COPD—A network meta-analysis. Respir. Res. 2019, 20, 17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ebenezer, D.L.; Fu, P.; Natarajan, V. Targeting sphingosine-1-phosphate signaling in lung diseases. Pharmacol. Ther. 2016, 168, 143–157. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Uhlig, S. The role of sphingolipids in respiratory disease. Ther. Adv. Respir. Dis. 2011, 5, 325–344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barnawi, J.; Tran, H.; Jersmann, H.; Pitson, S.; Roscioli, E.; Hodge, G.; Meech, R.; Haberberger, R.; Hodge, S. Potential link between the sphingosine-1-phosphate (S1P) system and defective alveolar macrophage phagocytic function in chronic obstructive pulmonary disease (COPD). PLoS ONE 2015, 10, e0122771. [Google Scholar] [CrossRef] [PubMed]
- Tuder, R.M.; Zhen, L.; Cho, C.Y.; Taraseviciene-Stewart, L.; Kasahara, Y.; Salvemini, D.; Voelkel, N.F.; Flores, S.C. Oxidative stress and apoptosis interact and cause emphysema due to vascular endothelial growth factor receptor blockade. Am. J. Respir. Cell Mol. Biol. 2003, 29, 88–97. [Google Scholar] [CrossRef]
- Bensel, T.; Stotz, M.; Borneff-Lipp, M.; Wollschläger, B.; Wienke, A.; Taccetti, G.; Campana, S.; Meyer, K.C.; Jensen, P.Ø.; Lechner, U. Lactate in cystic fibrosis sputum. J. Cyst. Fibros. 2011, 10, 37–44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maniscalco, M.; Paris, D.; Cuomo, P.; Fuschillo, S.; Ambrosino, P.; Tramice, A.; Palomba, L.; Motta, A. Metabolomics of COPD pulmonary rehabilitation outcomes via exhaled breath condensate. Cells 2022, 11, 344. [Google Scholar] [CrossRef] [PubMed]
- Yu, B.; Flexeder, C.; McGarrah, R.W., III; Wyss, A.; Morrison, A.C.; North, K.E.; Boerwinkle, E.; Kastenmüller, G.; Gieger, C.; Suhre, K. Metabolomics identifies novel blood biomarkers of pulmonary function and COPD in the general population. Metabolites 2019, 9, 61. [Google Scholar] [CrossRef] [Green Version]
- Trifonova, O.P.; Maslov, D.L.; Balashova, E.E.; Lokhov, P.G. Current State and Future Perspectives on Personalized Metabolomics. Metabolites 2023, 13, 67. [Google Scholar] [CrossRef]
Author, Year | Population | Material | Method | Key Differences |
---|---|---|---|---|
de Laurentiis et al., 2008 [14] | COPD n = 12 64.9 ± 5.7 years never-smokers n = 12 55.6 ± 7.2 years | EBC | NMR | The EBC spectra differed between COPD and controls. |
Basanta et al., 2012 [11] | COPD n = 39 65.7 ± 6.8 years never-smokers n = 32 55.3 ± 7.1 years | EB | GC-ToF MS | Positive → Undecanal |
Bertini et al., 2014 [16] | COPD n = 37 70 (66–74) years never or ex-smokers n = 2556 (54–64) years | EBC | NMR | Positive → Lactate → Acetate → Propionate → Serine → Proline → Tyrosine Negative → Acetone → Valine → Lysine |
Kilk et al., 2018 [17] | COPD n = 25 67 (58–72) years never-smokers n = 21 37 (27–62) years | EBC | LC MS | Negative → Sphingomyelins |
Sinues et al., 2014 [12] | COPD GOLD I/II n = 13 63 ± 7 years GOLD III/IV n = 12 62 ± 5 years never-smokers n = 25 27 ± 9 years | EB | SESI MS | COPD and never-smokers differed by a metabolic panel (96% sensitivity, 72.7% specificity). |
Rodriguez-Aguilar et al., 2019 [13] | COPD n = 23 67.7 ± 8.6 years ex- and never-smokers n = 33 55.6 ± 8.4 years | EB | FGC eNose | Positive → Alpha-pyrene → Acetaldehyde → 2-butyloctanol → Octane → Methyl isobutyrate → Butanal → 2-propanol → 3-hexanone → Cyclopentanone → 3-methyl-propanal Negative → Delta-dodecalactone → 2-methyl butanoic acid → 2-acetylpyridine → Tetradecane → Cinnamaldehyde → Vinylpyrazine |
t’Kindt et al., 2015 [20] | COPD n = 17 59 (54–65) years never-smokers n = 14 54 (23–58) years | IS | LC-Q-ToF MS | Positive → Sphingolipids |
Esther et al., 2022 [21] | COPD GOLD I n = 178 66.4 ± 8.4 years GOLD II n = 303 64.9 ± 7.8 years GOLD III n = 81 64.8 ± 8.3 years never-smokers n = 77 55.4 ± 10.2 years | IS | LC-MS | Positive → Sialic acid → Hypoxantine → Xantine → Methylthioadenosine → Adenine → Glutathione |
Walmsley et al., 2018 [19] | COPD n = 47 never-smokers n = 13 age not specified | BALF | LC-Q-ToF MS | Higher number of lipid compounds in smoking controls compared to never-smokers or ex-smokers |
Author, Year | Population | Material | Method | Key Differences |
---|---|---|---|---|
de Laurentiis et al., 2013 [15] | COPD n = 15 66.9 ± 9.9 years smoking controls n = 20 41.9 ± 12.9 years | EBC | NMR | Positive → Acetate Negative → 1-methylimidazole |
Sinues et al., 2014 [12] | COPD GOLD I/II n = 13 63 ± 7 years GOLD III/IV n = 12 62 ± 5 years smoking controls n = 11 34 ± 10 years | EB | SESI MS | Positive → Acetone Negative → Indole |
Telenga et al., 2014 [18] | COPD n = 19 59 (54–65) years smoking controls n = 20 42 (20–51) years | IS | LC-Q-ToF MS | Positive → 168 sphingolipids → 36 phosphatidylethanolamines After two months of smoking cessation → a decrease of 26 sphingolipids in smokers with and without COPD. |
t’Kindt et al., 2015 [20] | COPD n = 19 59 (54–65) years smoking controls n = 20 42 (20–51) years | IS | LC-Q-ToF MS | Positive → Sphingolipids |
Walmsley et al., 2018 [19] | COPD n = 47 smoking controls n = 77 age not specified | BALF | LC-Q-ToF MS | Higher number of lipid compounds in smoking controls compared to never-smokers or ex-smokers. |
Author, Year | Population | Material | Method | Key Differences |
---|---|---|---|---|
FEV1/FVC | ||||
Halper-Stromberg et al., 2019 [22] | COPD n = 47 64 (58–68) years smoking controls n = 56 58 (50–66) years never-smokers n = 12 56 (50–60) years | BALF | LC MS | Positive: → 4 phosphatidylethanolamines → 4 phosphatidylcholines → 2 cardiolipins → Homocysteine → 1 sphingolipid → 1 sphingomyelin → 2 glycerolipids Negative → Ceramide (d18:1/16:0) |
COPD severity | ||||
Sinues et al., 2014 [12] | COPD GOLD I/II n = 13 63 ± 7 years GOLD III/IV n = 12 62 ± 5 years | EB | SESI MS | The metabolic panel distinguished between mild and severe COPD. |
Kilk et al., 2018 [17] | COPD n = 25 67 (58–72) years never-smokers n = 21 37 (27–62) years | EBC | LC MS | Unsaturated fatty acids and ornithine metabolism differed between GOLD categories. |
Esther et al., 2022 [21] | COPD GOLD I n = 178 66.4 ± 8.4 years GOLD II n = 303 64.9 ± 7.8 years GOLD III n = 81 64.8 ± 8.3 years | IS | LC-MS | Positive → Sialic acid → Sialic acid to urea ratio → Hypoxantine → Xantine |
Eosinophilia | ||||
Basanta et al., 2012 [11] | COPD n = 39 65.7 ± 6.8 years never-smokers n = 32 55.3 ± 7.1 years | EB | GC-ToF MS | → α-methylstyrene → Cyclohexenol → Benzofuran → Decane → Biphenyl |
Exacerbations | ||||
Basanta et al., 2012 [11] | COPD n = 39 65.7 ± 6.8 years never-smokers n = 32 55.3 ± 7.1 years | EB | GC-ToF MS | → Undecane → Tetramethyloctane → Methanoazulene → Naphthalene |
Esther et al., 2022 [21] | COPD GOLD I n = 178 66.4 ± 8.4 years GOLD II n = 303 64.9 ± 7.8 years GOLD III n = 81 64.8 ± 8.3 years | IS | LC-MS | → Sialic acid → Hypoxantine |
Emphysema | ||||
Halper-Stromberg et al., 2019 [22] | COPD n = 47 64 (58–68) years smoking controls n = 56 58 (50–66) years never-smokers n = 12 56 (50–60) years | BALF | LC MS | → Leucine → Lysine |
Author, Year | Population | Material | Method | Key Differences |
---|---|---|---|---|
Fens et al., 2011 [23] | COPD (stage II-III) n = 40 63 (49–87) years fixed asthma * n = 21 64 (43–76) years classic asthma * n = 39 35 (18–68) years | EB | FGC, e-Nose | EBC fingerprints differed between asthma with persistent obstruction and COPD (85% sensitivity, 90% specificity) and between classical asthma and COPD (91% sensitivity, 90% specificity). |
Maniscalco et al., 2018 [24] | COPD n = 32 55.8 ± 6.2 years asthma n = 20 41.8 ± 6.7 years | EBC | NMR | Positive → Ethanol → Methanol Negative → Formate → Acetone |
de Laurentiis et al., 2013 [15] | COPD n = 15 66.9 ± 9.9 years PLCH n = 15 34.2 ± 7.5 years | EBC | NMR | Positive → 2-propanol, Negative → Isobutyrate |
Ząbek et al., 2015 [25] | COPD n = 18 64/(49–81) years OSA n = 28 54/(27–65) years | EBC | NMR | EBC fingerprint did not differentiate between patients with COPD and OSA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pulik, K.; Mycroft, K.; Korczyński, P.; Ciechanowicz, A.K.; Górska, K. Metabolomic Analysis of Respiratory Epithelial Lining Fluid in Patients with Chronic Obstructive Pulmonary Disease—A Systematic Review. Cells 2023, 12, 833. https://doi.org/10.3390/cells12060833
Pulik K, Mycroft K, Korczyński P, Ciechanowicz AK, Górska K. Metabolomic Analysis of Respiratory Epithelial Lining Fluid in Patients with Chronic Obstructive Pulmonary Disease—A Systematic Review. Cells. 2023; 12(6):833. https://doi.org/10.3390/cells12060833
Chicago/Turabian StylePulik, Kaja, Katarzyna Mycroft, Piotr Korczyński, Andrzej K. Ciechanowicz, and Katarzyna Górska. 2023. "Metabolomic Analysis of Respiratory Epithelial Lining Fluid in Patients with Chronic Obstructive Pulmonary Disease—A Systematic Review" Cells 12, no. 6: 833. https://doi.org/10.3390/cells12060833
APA StylePulik, K., Mycroft, K., Korczyński, P., Ciechanowicz, A. K., & Górska, K. (2023). Metabolomic Analysis of Respiratory Epithelial Lining Fluid in Patients with Chronic Obstructive Pulmonary Disease—A Systematic Review. Cells, 12(6), 833. https://doi.org/10.3390/cells12060833