Relationship between Oxidative Stress and Left Ventricle Markers in Patients with Chronic Heart Failure
Abstract
:1. Introduction
2. Methods
2.1. Study Population
2.2. Tests and Blood Sampling
2.3. Statistical Analysis
3. Results
3.1. Characteristics of Study Groups according to LVEF
3.2. Oxidative/Antioxidant Stress Markers in Groups according to LVEF
3.3. Characteristics of Study Groups according to LV Geometry
3.4. Oxidative/Antioxidative Stress Markers in Groups according to the Geometry of the Left Ventricle
3.5. Correlation Analysis
4. Discussion
4.1. The Difference in Oxidative Stress/Antioxidant Markers between the CHF Groups
4.2. Relationship between Oxidative Stress and Lipid Metabolism Markers
4.3. Correlations between Lipid Metabolism Markers and LV Parameters
4.4. Correlations between Oxidative/Antioxidative and LV Markers
4.5. Limitations of the Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Glezeva, N.; Baugh, J.A. Role of inflammation in the pathogenesis of heart failure with preserved ejection fraction and its potential as a therapeutic target. Heart Fail. Rev. 2014, 19, 681–694. [Google Scholar] [CrossRef]
- James, S.; Barton, D.; O’Connell, E.; Voon, V.; Murtagh, G.; Watson, C.; Murphy, T.; Prendiville, B.; Brennan, D.; Hensey, M.; et al. Life expectancy for community-based patients with heart failure from time of diagnosis. Int. J. Cardiol. 2015, 178, 268–274. [Google Scholar] [CrossRef] [PubMed]
- Tsutsui, H.; Kinugawa, S.; Matsushima, S. Oxidative stress and heart failure. Am. J. Physiol. Heart Circ. Physiol. 2011, 301, H2181–H2190. [Google Scholar] [CrossRef] [Green Version]
- Bertero, E.; Maack, C. Calcium Signaling and Reactive Oxygen Species in Mitochondria. Circ. Res. 2018, 122, 1460–1478. [Google Scholar] [CrossRef] [PubMed]
- Sorescu, D.; Griendling, K.; Sorescu, D.; Griendling, K. Reactive Oxygen Species, Mitochondria, and NAD(P)H Oxidases in the Development and Progression of Heart Failure. Congest. Heart Fail. 2002, 8, 132–140. [Google Scholar] [CrossRef] [PubMed]
- Takano, H.; Hasegawa, H.; Nagai, T.; Komuro, I. Implication of cardiac remodeling in heart failure: Mechanisms and therapeutic strategies. Intern. Med. 2003, 42, 465–469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martins, D.; Garcia, L.R.; Queiroz, D.A.R.; Lazzarin, T.; Tonon, C.R.; Balin, P.d.S.; Polegato, B.F.; de Paiva, S.A.R.; Azevedo, P.S.; Minicucci, M.F.; et al. Oxidative Stress as a Therapeutic Target of Cardiac Remodeling. Antioxidants 2022, 11, 2371. [Google Scholar] [CrossRef]
- Senoner, T.; Dichtl, W. Oxidative Stress in Cardiovascular Diseases: Still a Therapeutic Target? Nutrients 2019, 11, 2090. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mongirdienė, A.; Skrodenis, L.; Varoneckaitė, L.; Mierkytė, G.; Gerulis, J. Reactive Oxygen Species Induced Pathways in Heart Failure Pathogenesis and Potential Therapeutic Strategies. Biomedicines 2022, 10, 602. [Google Scholar] [CrossRef]
- van der Pol, A.; van Gilst, W.H.; Voors, A.A.; van der Meer, P. Treating oxidative stress in heart failure: Past, present and future. Eur. J. Heart Fail. 2019, 21, 425–435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hirotani, S.; Otsu, K.; Nishida, K.; Higuchi, Y.; Morita, T.; Nakayama, H.; Yamaguchi, O.; Mano, T.; Matsumura, Y.; Ueno, H.; et al. Involvement of nuclear factor-kappaB and apoptosis signal-regulating kinase 1 in G-protein-coupled receptor agonist-induced cardiomyocyte hypertrophy. Circulation 2002, 105, 509–515. [Google Scholar] [CrossRef] [PubMed]
- Kwon, S.H.; Pimentel, D.R.; Remondino, A.; Sawyer, D.B.; Colucci, W.S. H2O2 regulates cardiac myocyte phenotype via concentration-dependent activation of distinct kinase pathways. J. Mol. Cell. Cardiol. 2003, 35, 615–621. [Google Scholar] [CrossRef] [PubMed]
- Pacher, P.; Szabó, C. Role of peroxynitrite in the pathogenesis of cardiovascular complications of diabetes. Curr. Opin. Pharmacol. 2006, 6, 136–141. [Google Scholar] [CrossRef]
- Shishehbor, M.H.; Aviles, R.J.; Brennan, M.L.; Fu, X.; Goormastic, M.; Pearce, G.L.; Gokce, N.; Keaney, J.F., Jr.; Penn, M.S.; Sprecher, D.L.; et al. Association of nitrotyrosine levels with cardiovascular disease and modulation by statin therapy. JAMA 2013, 289, 1675–1680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, Y. Myocardial repair/remodelling following infarction: Roles of local factors. Cardiovasc. Res. 2009, 81, 482–490. [Google Scholar] [CrossRef] [Green Version]
- Dubois-Deruy, E.; Peugnet, V.; Turkieh, A.; Pinet, F. Oxidative Stress in Cardiovascular Diseases. Antioxidants 2020, 9, 864. [Google Scholar] [CrossRef]
- Dardi, P.; Perazza, L.R.; Couto, G.K.; Campos, G.P.; Capettini, L.D.S.A.; Rossoni, L.V. Vena cava presents endothelial dysfunction prior to thoracic aorta in heart failure: The pivotal role of nNOS uncoupling/oxidative stress. Clin. Sci. 2021, 135, 2625–2641. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, S.-Y.; Hsu, T.; Santella, R.M. Immunohistochemical detection of malondialdehyde-DNA adducts in human oral mucosa cells. Carcinogenesis 2002, 23, 207–211. [Google Scholar] [CrossRef] [Green Version]
- Dennis, K.E.; Hill, S.; Rose, K.L.; Sampson, U.K.; Hill, M.F. Augmented cardiac formation of oxidatively -induced carbonylated proteins accompanies the increased functional severity of post—Myocardial infarction heart failure in the setting of type 1 diabetes mellitus. Cardiovasc. Pathol. 2013, 22, 473–480. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dimitrijevic, Z.M.; Martinovic, S.S.S.; Nikolic, V.N.; Cvetkovic, T.P. Protein Carbonyl Content Is a Predictive Biomarker of Eccentric Left Ventricular Hypertrophy in Hemodialysis Patients. Diagnostics 2019, 9, 202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dickstein, K.; Cohen-Solal, A.; Filippatos, G.; McMurray, J.V.; Ponikowski, P.; Poole-Wilson, P.A.; Stromberg, A.; van Veldhuisen, D.J.; Atar, D.; Hoes, A.V.; et al. ESC guidelines for the diagnosis and treatment of acute and chronic heart failure 2008: The Task Force for the diagnosis and treatment of acute and chronic heart failure 2008 of the European Society of Cardiology. Eur. Heart J. 2008, 29, 2388–2442. [Google Scholar] [CrossRef]
- Sadauskiene, I.; Liekis, A.; Bernotiene, R.; Sulinskiene, J.; Kasauskas, A.; Zekonis, G. The effects of buckwheat leaf and flower extracts on antioxidant status in mouse organs. Oxid. Med. Cell. Longev. 2018, 2018, 6712407. [Google Scholar] [CrossRef]
- Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein measuremen with folinphenol reagent. J. Biol. Chem. 1951, 193, 265–275. [Google Scholar] [CrossRef]
- Khoschsorur, G.A.; Winklhofer-Roob, B.M.; Rabl, H.; Auer, T.; Peng, Z.; Schaur, R.J. Evaluation of a sensitive HPLC method for the determination of malondialdehyde, and application of the method to different biological materials. Chromatographia 2000, 52, 181–184. [Google Scholar] [CrossRef]
- Ferlazzo, N.; Currò, M.; Isola, G.; Maggio, S.; Bertuccio, M.P.; Trovato-Salinaro, A.; Matarese, G.; Alibrandi, A.; Caccamo, D.; Ientile, R. Changes in the biomarkers of oxidative/nitrosative stress and endothelial dysfunction are associated with cardiovascular risk in periodontitis patients. Curr. Issues Mol. Biol. 2021, 43, 704–715. [Google Scholar] [CrossRef] [PubMed]
- Mongirdienė, A.; Laukaitienė, J.; Skipskis, V.; Kašauskas, A. The Effect of Oxidant Hypochlorous Acid on Platelet Aggregation and Dityrosine Concentration in Chronic Heart Failure Patients and Healthy Controls. Medicina 2019, 55, 198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jakubiak, G.K.; Cieślar, G.; Stanek, A. Nitrotyrosine, Nitrated Lipoproteins, and Cardiovascular Dysfunction in Patients with Type 2 Diabetes: What Do We Know and What Remains to Be Explained? Antioxidants 2022, 11, 856. [Google Scholar] [CrossRef] [PubMed]
- Radovanovic, S.; Krotin, M.; Simic, D.V.; Mimic-Oka, J.; Savic-Radojevic, A.; Pljesa-Ercegovac, M.; Matic, M.; Ninkovic, N.; Ivanovic, B.; Simic, T. Markers of oxidative damage in chronic heart failure: Role in disease progression. Redox Rep. 2008, 13, 109–116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Radovanovic, S.; Savic-Radojevic, A.; Pljesa-Ercegovac, M.; Djukic, T.; Suvakov, S.; Krotin, M.; Simic, D.V.; Matic, M.; Radojicic, Z.; Pekmezovic, T.; et al. Markers of Oxidative Damage and Antioxidant Enzyme Activities as Predictors of Morbidity and Mortality in Patients With Chronic Heart Failure. J. Card. Fail. 2012, 18, 493–501. [Google Scholar] [CrossRef] [PubMed]
- Šarić, S.; Cvetković, T.; Petrović, D.; Mitić, V.; Stojanović, S.; Stoiljković, V.; Deljanin-Ilić, M. Correlation between oxidative stress parameters and left ventricular geometry in patients with chronic heart failure. Acta Fac. Med. Naissensis 2020, 37, 241–251. [Google Scholar] [CrossRef]
- Csont, T.; Bereczki, E.; Bencsik, P.; Fodor, G.; Görbe, A.; Zvara, Á.; Csonka, C.; Puskás, L.G.; Sántha, M.; Ferdinandy, P. Hypercholesterolemia increases myocardial oxidative and nitrosative stress thereby leading to cardiac dysfunction in apoB-100 transgenic mice. Cardiovasc. Res. 2007, 76, 100–109. [Google Scholar] [CrossRef] [Green Version]
- Bencsik, P.; Sasi, V.; Kiss, K.; Kupai, K.; Kolossváry, M.; Maurovich-Horvat, P.; Csont, T.; Ungi, I.; Merkely, B.; Ferdinandy, P. Serum lipids and cardiac function correlate with nitrotyrosine and MMP activity in coronary artery disease patients. Eur. J. Clin. Investig. 2015, 45, 692–701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, T.-D.; Lee, C.-M.; Wu, C.-C.; Lee, T.-M.; Chen, W.-J.; Chen, M.-F.; Liau, C.-S.; Sung, F.-C.; Lee, Y.-T. The effects of dyslipidemia on left ventricular systolic function in patients with stable angina pectoris. Atherosclerosis 1999, 146, 117–124. [Google Scholar] [CrossRef] [PubMed]
- Dabas, A.; Yadav, S.; Gupta, V.K. Lipid profile and correlation to cardiac risk factors and cardiovascular function in type 1 adolescent diabetics from a developing country. Int. J. Pediatr. 2014, 2014, 513460. [Google Scholar] [CrossRef] [Green Version]
- Al-Daydamony, M.; El-Tahlawi, M. What Is the Effect of Metabolic Syndrome without Hypertension on Left Ventricular Hypertrophy? Echocardiography 2016, 33, 1284–1289. [Google Scholar] [CrossRef]
- Grundy, S.M.; Goodman, D.W.; Rifkind, B.M.; Cleeman, J.I. The place of HDL in cholesterol management. A perspective from the National Cholesterol Educational Program. Arch. Intern. Med. 1989, 149, 505–510. [Google Scholar] [CrossRef]
- Lien, W.P.; Lai, L.P.; Shyu, K.G.; Hwang, J.J.; Chen, J.J.; Lei, M.H.; Cheng, J.J.; Huang, P.J.; Tsai, K.S. Low-serum high-density lipoprotein cholesterol concentration is an important coronary risk factor in Chinese patients with low serum levels of total cholesterol and triglyceride. Am. J. Cardiol. 1996, 77, 1112–1115. [Google Scholar] [CrossRef] [PubMed]
- Tsai, Y.Y.; Rainey, W.E.; Bollag, W.B. Very low-density lipoprotein (VLDL)-induced signals mediating aldosterone production. J. Endocrinol. 2017, 232, R115–R129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hannich, M.; Wallaschofski, H.; Nauck, M.; Reincke, M.; Adolf, C.; Völzke, H.; Rettig, R.; Hannemann, A. Physiological aldosterone concentrations are associated with alterations of lipid metabolism: Observations from the general population. Int. J. Endocrinol. 2018, 2018, 4128174. [Google Scholar] [CrossRef] [Green Version]
- Unger, T.; Li, J. The role of the renin-angiotensin-aldosterone system in heart failure. J. Renin Angiotensin Aldosterone Syst. 2004, 5, S7–S10. [Google Scholar] [CrossRef] [PubMed]
- Ramasamy, R.; Schmidt, A.M. Receptor for Advanced Glycation End Products (RAGE) and Implications for the Pathophysiology of Heart Failure. Curr. Heart Fail. Rep. 2012, 9, 107–116. [Google Scholar] [CrossRef] [Green Version]
- Yamazaki, K.G.; Gonzalez, E.; Zambon, A.C. Crosstalk Between the Renin–Angiotensin System and the Advance Glycation End Product Axis in the Heart: Role of the Cardiac Fibroblast. J. Cardiovasc. Transl. Res. 2012, 5, 805–813. [Google Scholar] [CrossRef] [PubMed]
- Frangogiannis, N.G. Regulation of the Inflammatory Response in Cardiac Repair. Circ. Res. 2012, 110, 159–173. [Google Scholar] [CrossRef] [PubMed]
- Qin, F.; Lennon-Edwards, S.; Lancel, S.; Biolo, A.; Siwik, D.A.; Pimentel, D.R.; Dorn, G.W.; Kang, Y.J.; Colucci, W.S. Cardiac-Specific Overexpression of Catalase Identifies Hydrogen Peroxide-Dependent and -Independent Phases of Myocardial Remodeling and Prevents the Progression to Overt Heart Failure in Gαq-Overexpressing Transgenic Mice. Circ. Heart Fail. 2010, 3, 306–313. [Google Scholar] [CrossRef] [Green Version]
- Castro, L.; Demicheli, V.; Tórtora, V.; Radi, R. Mitochondrial protein tyrosine nitration. Free. Radic. Res. 2010, 45, 37–52. [Google Scholar] [CrossRef]
- Cucu, I. Signaling Pathways in Inflammation and Cardiovascular Diseases: An Update of Therapeutic Strategies. Immuno 2022, 2, 630–650. [Google Scholar] [CrossRef]
- Duncan, J.G.; Finck, B.N. The PPARalpha-PGC-1alpha axis controls cardiac energy metabolism in healthy and diseased myocardium. PPAR Res. 2008, 2008, 253817. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Variable | Median (IQR) or n (%) | Left Ventricular Ejection Fraction | χ2 | df | p-Value | |
---|---|---|---|---|---|---|
<40% (n = 27) | ≥40% (n = 33) | |||||
Women | 26 (43.33%) | 7 (26.9%) | 19 (73.1%) | 6.06 | 1 | 0.014 |
Men | 34 (56.67%) | 20 (58.8%) | 14 (41.2%) | |||
Age (years) | 67.5 (22.5) | 70 (21.5) | 65 (22.0) | 0.603 | ||
BMI (kg/m2) | 26.00 (4.65) 1 | 25.85 (3.90) 2 | 26.00 (5.85) 2 | 0.975 | ||
Systolic blood pressure (mmHg) | 130 (20) | 131 (20.5) | 130 (14.0) | 0.575 | ||
Diastolic blood pressure (mmHg) | 80 (20) | 80 (18) | 80 (18) | 0.433 | ||
Total cholesterol (mmol/L) | 4.52 (1.56) | 4.20 (1.32) | 4.98 (1.63) | 0.062 | ||
HDL cholesterol (mmol/L) | 1.09 (0.44) | 1.08 (0.62) | 1.10 (0.27) | 0.705 | ||
LDL-cholesterol (mmol/L) | 2.89 (1.15) | 2.69 (1.22) | 3.04 (0.96) | 0.158 | ||
Non-HDL cholesterol (mmol/L) | 3.34 (1.39) | 3.28 (1.20) | 3.64 (1.30) | 0.124 | ||
Triacylglycerols (mmol/L) | 1.23 (0.86) | 0.88 (0.51) | 1.50 (0.72) | 0.003 | ||
NYHA classification | ||||||
Class II | 20 (33.33%) | 3 (15.0%) | 17 (85.0%) | 17.374 | 2 | <0.001 |
Class III | 20 (33.33%) | 8 (40.0%) | 12 (60.0%) | |||
Class IV | 20 (33.33%) | 16 (80.0%) | 4 (20%) |
Medication | n (%) | Left Ventricular Ejection Fraction | χ2, df = 1 | p-Value | |
---|---|---|---|---|---|
<40% (n = 27) | ≥40% (n = 33) | ||||
ACE inhibitors | 34 (56.7%) | 16 (59.3%) | 18 (54.5%) | 0.134 | 0.714 |
β-blockers | 29 (48.3%) | 12 (44.4%) | 17 (51.5%) | 0.297 | 0.586 |
Diuretics | 18 (30.0%) | 7 (25.9%) | 11 (33.3%) | 0.388 | 0.533 |
Heparin | 7 (11.7%) | 4 (14.8%) | 3 (9.1%) | 0.472 | 0.690 |
Calcium channel blockers | 5 (8.3%) | 3 (11.1%) | 2 (6.1%) | 0.496 | 0.649 |
Digoxin | 10 (16.7%) | 6 (22.2%) | 4 (12.1%) | 1.091 | 0.322 |
Warfarin | 13 (21.7%) | 6 (22.2%) | 7 (21.2%) | 0.009 | 0.925 |
Variable | Mean ± SD or median (IQR) | Left Ventricular Ejection Fraction | p-Value | |
---|---|---|---|---|
<40% (n = 27) | ≥40% (n = 33) | |||
Nitrotyrosine (nM) | 3.94 (2.62) | 4.47 (2.58) | 3.65 (2.47) | 0.154 |
Dityrosine (RUF) | 8.03 ± 1.76 | 7.98 ± 1.97 | 8.07 ± 1.60 | 0.849 |
Total plasma antioxidant capacity (U/mL) | 0.59 (0.98) | 0.68 (1.04) | 0.54 (0.65) | 0.316 |
Protein carbonyl (U/mL) | 259.95 (117.00) | 291.56 (159.31) | 244.90 (92.31) | 0.082 |
Catalase (U/mL) | 137.68 ± 67.62 | 142.53 ± 68.60 | 133.71 ± 67.61 | 0.619 |
Malondialdehyde (µg/L) | 116.24 ± 24.78 | 110.90 ± 25.21 | 120.60 ± 23.93 | 0.133 |
Oxidized HDL (pg/L) | 3.06 (3.95) | 3.44 (1.71) | 2.89 (6.35) | 0.417 |
Variable | Malondialdehyde | p-Value | |
---|---|---|---|
≤114.29 µg/L | >114.29 µg/L | ||
Nitrotyrosine (nM), median (IQR) | 3.98 (3.30) | 3.91 (2.18) | 0.641 |
Dityrosine (RUF), mean ± SD | 7.78 ± 1.74 | 8.28 ± 1.77 | 0.276 |
Total plasma antioxidant capacity (U/mL), median (IQR) | 0.54 (0.62) | 0.68 (1.08) | 0.762 |
Protein carbonyl (U/mL), median (IQR) | 246.54 (112.81) | 279.10 (118.25) | 0.492 |
Catalase (U/mL), mean ± SD | 138.13 ± 61.78 | 137.23 ± 74.06 | 0.9595 |
Oxidized HDL (pg/L), median (IQR) | 2.944 (3.23) | 3.196 (4.28) | 0.994 |
Left ventricular ejection fraction (%), median (IQR) | 36.5 (21.25) | 40.0 (15.75) | 0.099 |
Variable | Protein carbonyl | p-Value | |
---|---|---|---|
≤259.95 U/mL | >259.95 U/mL | ||
Nitrotyrosine (nM), median (IQR) | 3.16 (2.09) | 4.46 (2.12) | 0.008 |
Dityrosine (RUF), mean ± SD | 7.69 ± 1.55 | 8.37 ± 1.91 | 0.132 |
Total plasma antioxidant capacity (U/mL), median (IQR) | 0.66 (0.55) | 0.38 (1.19) | 0.636 |
Malondialdehyde (µg/L), mean ± SD | 114.33 ± 22.23 | 118.14 ± 27.35 | 0.556 |
Catalase (U/mL), mean ± SD | 146.76 ± 61.07 | 128.60 ± 73.50 | 0.3022 |
Oxidized HDL (pg/L), median (IQR) | 2.82 (2.08) | 3.37 (5.27) | 0.390 |
Left ventricular ejection fraction (%), median (IQR) | 40.0 (18.75) | 36.5 (20.00) | 0.252 |
Variable | Oxidized HDL | p-Value | |
---|---|---|---|
≤3.06 pg/L | >3.06 pg/L | ||
Nitrotyrosine (nM), median (IQR) | 3.42 (1.38) | 4.51 (2.45) | 0.004 |
Dityrosine (RUF), mean ± SD | 8.25 ± 1.96 | 7.80 ± 1.53 | 0.3255 |
Total plasma antioxidant capacity (U/mL), median (IQR) | 0.59 (0.965) | 0.61 (0.810) | 0.728 |
Malondialdehyde (µg/L), median (IQR) | 113.32 (22.52) | 116.83 (35.37) | 0.741 |
Catalase (U/mL), mean ± SD | 153.50 ± 68.13 | 121.87 ± 64.37 | 0.06965 |
Malondialdehyde (µg/L), mean ± SD | 114.81 ± 20.91 | 117.66 ± 28.42 | 0.6594 |
Protein carbonyl (U/mL), median (IQR) | 247.57 (112.22) | 270.66 (175.72) | 0.2088 |
Left ventricular ejection fraction (%), median (IQR) | 40.0 (14.00) | 35.0 (22.00) | 0.4709 |
Variable | NG n = 7 | CR n = 14 | cLVH n = 16 | eLVH n = 23 | χ2 | df | p-Value |
---|---|---|---|---|---|---|---|
Women | 2 (28.6%) | 5 (35.7%) | 12 (75.0%) | 7 (30.4%) | 9.04 | 3 | 0.030 * |
Men | 5 (71.4%) | 9 (64.3%) | 4 (25.0%) | 16 (69.6%) | |||
Age (years) | 51.0 (18.5) | 74.5 (9.75) | 75.5 (15.0) | 58.0 (14.5) | 0.003 ** | ||
BMI (kg/m2) | 23.50 (2.75) 1 | 26.00 (4.05) 2 | 26.25 (5.83) 2 | 26.10 (4.62) 3 | 0.847 | ||
Systolic blood pressure (mmHg) | 136 (10.0) | 130 (5.00) | 135.5 (14.75) | 122 (20.0) | 0.430 | ||
Diastolic blood pressure (mmHg) | 80 (8.0) | 81 (10.0) | 80 (16.0) | 80 (20.0) | 0.264 | ||
Total cholesterol (mmol/l) | 4.97 (1.18) | 4.20 (1.83) | 4.93 (1.42) | 4.27 (1.52) | 0.259 | ||
HDL-cholesterol (mmol/l) | 1.58 (0.71) | 1.04 (0.44) | 1.25 (0.55) | 1.06 (0.24) | 0.035 *** | ||
LDL-cholesterol (mmol/l) | 3.04 (0.67) | 2.43 (1.14) | 3.05 (1.17) | 2.87 (1.17) | 0.190 | ||
Non-HDL-cholesterol (mmol/l) | 3.39 (0.79) | 3.22 (1.38) | 3.38 (1.31) | 3.33 (1.60) | 0.639 | ||
Triacylglycerols (mmol/l) | 0.73 (0.13) | 1.25 (0.71) | 1.50 (0.65) | 1.17 (0.85) | 0.084 | ||
Ischemic heart disease | |||||||
Yes | 1 (14.3%) | 8 (57.1%) | 5 (31.3%) | 11 (47.8%) | 4.61 | 3 | 0.210 |
No | 6 (85.7%) | 6 (42.9%) | 11(68.7%) | 12 (52.2%) | |||
NYHA classification | |||||||
Class II | 2 (28.6%) | 7 (50.0%) | 5 (31.2%) | 6 (26.1%) | 3.63 | 6 | 0.759 |
Class III | 2 (28.6%) | 3 (21.4%) | 7 (43.8 %) | 8 (34.8%) | |||
Class IV | 3 (42.8%) | 4 (28.6%) | 4 (25.0%) | 9 (39.1%) |
Medication | NG n = 7 | CR n = 14 | cLVH n = 16 | eLVH n = 23 | χ2, df = 3 | p-Value |
---|---|---|---|---|---|---|
ACE inhibitors | 4 (57.1%) | 10 (71.4%) | 9 (56.3%) | 11 (47.8%) | 1.976 | 0.565 |
β-blockers | 3 (42.9%) | 5 (35.7%) | 11 (68.8%) | 10 (43.5%) | 3.865 | 0.277 |
Diuretics | 2 (28.6%) | 3 (21.4%) | 5 (31.3%) | 8 (34.8%) | 0.759 | 0.897 |
Heparin | 1 (14.3%) | 2 (14.3%) | 2 (12.5%) | 2 (8.7%) | 0.348 | 0.946 |
Calcium channel blockers | 0 (0%) | 2 (14.3%) | 2 (12.5%) | 1 (4.3%) | 2.128 | 0.660 |
Digoxin | 0 (0%) | 2 (14.3%) | 2 (12.5%) | 6 (26.1%) | 3.127 | 0.503 |
Warfarin | 0 (0%) | 1 (7.1%) | 6 (37.5%) | 6 (26.1%) | 6.304 | 0.111 |
Variable | NG n = 7 | CR n = 14 | cLVH n = 16 | eLVH n = 23 | p-Value |
---|---|---|---|---|---|
Nitrotyrosine (nM), median (IQR) | 4.01 (1.33) | 4.57 (2.67) | 2.70 (1.81) | 4.47 (2.40) | 0.086 |
Dityrosine (RUF), median (IQR) | 8.69 (2.86) | 7.93 (1.79) | 8.29 (1.41) | 7.75 (3.01) | 0.996 |
Total plasma antioxidant capacity (U/mL), median (IQR) | 0.36 (0.35) | 0.89 (0.99) | 0.65 (0.47) | 0.37 (1.08) | 0.361 |
Protein carbonyl (U/mL), median (IQR) | 184.03 (117.73) | 259.54 (74.08) | 242.66 (73.66) | 292.00 (167.40) | 0.159 |
Catalase (U/mL), median (IQR) | 118.20 (29.56) | 132.97 (70.19) | 147.75 (57.26) | 132.97 (75.36) | 0.743 |
Malondialdehyde (µg/L), median (IQR) | 119.28 (14.89) | 117.42 (38.99) | 112.37 (23.73) | 114.21 (37.00) | 0.813 |
Oxidized HDL (pg/L), median (IQR) | 4.91 (4.27) | 2.85 (3.92) | 2.65 (4.90) | 3.00 (1.89) | 0.345 |
Variable | Ejection Fraction (%) | |||
---|---|---|---|---|
Spearman’s r | p-Value | Spearman’s r (Gender-Adjusted) | p-Value | |
Nitrotyrosine (nM) | −0.185 | 0.158 | −0.135 | 0.309 |
Dityrosine (RUF) | −0.055 | 0.674 | −0.068 | 0.606 |
Total plasma antioxidant capacity (U/mL) | −0.085 | 0.518 | −0.041 | 0.760 |
Protein carbonyl (U/mL) | −0.257 | 0.047 | −0.240 | 0.067 |
Catalase (U/mL) | −0.071 | 0.588 | −0.120 | 0.365 |
Malondialdehyde (µg/L) | 0.176 | 0.180 | 0.103 | 0.436 |
Oxidized HDL (pg/L) | −0.100 | 0.446 | −0.096 | 0.470 |
Variable | NT-Tyr | di-Tyr | TAC | PC | CAT | MDA | oxHDL |
---|---|---|---|---|---|---|---|
NT-Tyr | 1.000 | ||||||
di-Tyr | 0.066 | 1.000 | |||||
TAC | 0.124 | −0.190 | 1.000 | ||||
PC | 0.482 ** | 0.199 | 0.005 | 1.000 | |||
CAT | −0.192 | −0.170 | −0.165 | −0.100 | 1.000 | ||
MDA | −0.212 | 0.109 | 0.031 | 0.152 | 0.162 | 1.000 | |
oxHDL | 0.278 * | −0.203 | 0.003 | 0.137 | −0.297 | −0.063 | 1.000 |
Variable | Age | SBP | DBP | NT-Tyr | di-Tyr | TAC | CAT | MDA | oxHDL |
---|---|---|---|---|---|---|---|---|---|
TC | 0.125 | 0.255 * | 0.231 | −0.199 | −0.011 | 0.021 | 0.096 | 0.337 ** | −0.038 |
HDL-C | 0.315 * | 0.246 | 0.167 | −0.285 * | −0.111 | −0.076 | 0.041 | 0.232 | 0.045 |
LDL-C | −0.020 | 0.145 | 0.150 | −0.161 | 0.043 | −0.025 | 0.023 | 0.295 * | −0.037 |
Non-HDL-C | 0.052 | 0.184 | 0.206 | −0.123 | 0.040 | 0.040 | 0.079 | 0.301 * | −0.056 |
TAG | 0.055 | 0.025 | 0.133 | −0.083 | 0.047 | 0.218 | 0.135 | 0.153 | −0.205 |
Variable | LVEDD | IVST | PWT | LVWT | RWT | LVM | LVMI | LVEDV | LVESV |
---|---|---|---|---|---|---|---|---|---|
NT-Tyr | 0.229 | –0.112 | 0.133 | –0.005 | –0.145 | 0.188 | 0.179 | 0.289 | 0.280 |
di-Tyr | 0.032 | –0.052 | –0.022 | –0.032 | 0.019 | –0.040 | 0.016 | 0.024 | 0.085 |
TAC | 0.038 | 0.059 | 0.087 | 0.061 | 0.114 | 0.061 | 0.067 | 0.287 | 0.341 |
PC | 0.198 | 0.030 | 0.005 | 0.014 | –0.135 | 0.188 | 0.234 | 0.190 | 0.159 |
CAT | –0.051 | 0.218 | 0.049 | 0.155 | 0.063 | –0.005 | –0.073 | 0.246 | 0.249 |
MDA | –0.172 | –0.056 | –0.083 | –0.075 | 0.069 | –0.198 | –0.141 | –0.368 | –0.385 |
oxHDL | –0.148 | –0.065 | 0.014 | –0.022 | –0.001 | –0.054 | –0.024 | 0.085 | 0.082 |
Variable | LVEDD | IVST | PWT | LVWT | RWT | LVM | LVMI | LVEDV | LVESV |
---|---|---|---|---|---|---|---|---|---|
Age | –0.335 ** | 0.448 *** | 0.383 ** | 0.434 *** | 0.461 *** | 0.004 | –0.019 | –0.481 | –0.460 |
SBP | –0.141 | 0.205 | 0.092 | 0.162 | 0.199 | –0.103 | –0.167 | –0.492 | –0.485 |
DBP | –0.007 | 0.099 | –0.065 | 0.014 | –0.002 | –0.032 | –0.245 | 0.068 | 0.081 |
TC | –0.186 | 0.227 | 0.056 | 0.162 | 0.152 | –0.112 | –0.106 | –0.150 | –0.088 |
HDL-C | –0.256 * | 0.202 | –0.020 | 0.119 | 0.151 | –0.197 | –0.166 | –0.935 **** | –0.906 **** |
LDL-C | –0.130 | 0.065 | –0.013 | 0.034 | 0.075 | –0.131 | –0.115 | 0.091 | 0.159 |
Non-HDL-C | –0.107 | 0.187 | 0.071 | 0.145 | 0.095 | –0.027 | –0.046 | 0.146 | 0.209 |
TAG | –0.121 | 0.346 ** | 0.244 | 0.329 * | 0.208 | 0.044 | –0.010 | 0.364 | 0.368 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mongirdienė, A.; Liuizė, A.; Karčiauskaitė, D.; Mazgelytė, E.; Liekis, A.; Sadauskienė, I. Relationship between Oxidative Stress and Left Ventricle Markers in Patients with Chronic Heart Failure. Cells 2023, 12, 803. https://doi.org/10.3390/cells12050803
Mongirdienė A, Liuizė A, Karčiauskaitė D, Mazgelytė E, Liekis A, Sadauskienė I. Relationship between Oxidative Stress and Left Ventricle Markers in Patients with Chronic Heart Failure. Cells. 2023; 12(5):803. https://doi.org/10.3390/cells12050803
Chicago/Turabian StyleMongirdienė, Aušra, Agnė Liuizė, Dovilė Karčiauskaitė, Eglė Mazgelytė, Arūnas Liekis, and Ilona Sadauskienė. 2023. "Relationship between Oxidative Stress and Left Ventricle Markers in Patients with Chronic Heart Failure" Cells 12, no. 5: 803. https://doi.org/10.3390/cells12050803
APA StyleMongirdienė, A., Liuizė, A., Karčiauskaitė, D., Mazgelytė, E., Liekis, A., & Sadauskienė, I. (2023). Relationship between Oxidative Stress and Left Ventricle Markers in Patients with Chronic Heart Failure. Cells, 12(5), 803. https://doi.org/10.3390/cells12050803