Differential Effects of Nonsteroidal Anti-Inflammatory Drugs in an In Vitro Model of Human Leaky Gut
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Model: Caco-2 EtOH-Stressed
- CTR
- EtOH
- EtOH + IBU
- EtOH + IBU-Lys
- EtOH + IBU-Arg
- EtOH + K
- EtOH + KLS
- EtOH + Arg
- EtOH + Lys
2.2. Activated Macrophages Model
2.3. Cell Viability Assay
2.4. Cell Index
2.5. Measurement of Transepithelial Electrical Resistance
2.6. Measurement of Interleukin-8 Concentration
2.7. Measurement of TNF-α Concentration
2.8. Measurement of GST Activity
2.9. Western Blotting Analysis and Protein Extraction
2.10. Subcellular Protein Fractionation Kit
2.11. OxyBlot Assay Kit
2.12. Morphological Analysis: Phalloidin iFluor 488 Staining
2.13. Morphological Analysis: Immunofluorescence for ZO-1
2.14. Proteosome Trypsin-like and Caspase-like Activity Assay
2.15. Proteosome Chymotrypsin-Like Activity Assay
2.16. DCFDA Cellular Reactive Oxygen Species (ROS) Assay Kit
2.17. Crosslink Immunoprecipitation Kit
2.18. PApp
2.19. Sirius T3
2.20. Statistical Analyses
3. Results
3.1. Physicochemical Properties and Stability of Ketoprofen and Ibuprofen
pKa | LogP | LogD7.4 | Solubility | PSA | IC50 COX-1 (Human Blood) | IC50 COX-2 (Human Blood) | |
---|---|---|---|---|---|---|---|
Ketoprofen | 4.18 | 3.05 ± 0.01 | 0.12 | 118 µg/mL | 75.7 Å2 | 0.047 µM [23] 0.11 µM [24] | 2.9 µM [23] 0.88 µM [24] |
Ibuprofen | 4.42 | 3.91 ± 0.01 | 0.96 | 49 µg/mL | 49.1 Å2 | 7.6 µM [23] 5.9 µM [24] | 7.2 µM [23] 9.9 µM [24] |
3.2. Cell Viability and Cell Index
3.3. Morphological Analysis of the Intestinal Barrier
3.4. Proinflammatory Signals
3.5. Oxidative Stress and Proteasome Activity
3.6. Effects of R and S Ketoprofen Enantiomers on Activated Macrophages
3.7. Permeability of R and S ketoprofen in Caco2 Cells
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vancamelbeke, M.; Vermeire, S. The Intestinal Barrier: A Fundamental Role in Health and Disease. Expert Rev. Gastroenterol. Hepatol. 2017, 11, 821–834. [Google Scholar] [CrossRef] [PubMed]
- Vanuytsel, T.; Tack, J.; Farre, R. The Role of Intestinal Permeability in Gastrointestinal Disorders and Current Methods of Evaluation. Front. Nutr. 2021, 8, 717925. [Google Scholar] [CrossRef] [PubMed]
- Clayburgh, D.R.; Shen, L.; Turner, J.R. A Porous Defense: The Leaky Epithelial Barrier in Intestinal Disease. Lab. Investig. 2004, 84, 282–291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maes, M.; Leunis, J.-C. Normalization of Leaky Gut in Chronic Fatigue Syndrome (CFS) Is Accompanied by a Clinical Improvement: Effects of Age, Duration of Illness and the Translocation of LPS from Gram-Negative Bacteria. Neuroendocrinol. Lett. 2008, 29, 902–910. [Google Scholar]
- Ray, K. NAFLD. Leaky Guts: Intestinal Permeability and NASH. Nat. Rev. Gastroenterol. Hepatol. 2015, 12, 123. [Google Scholar] [CrossRef]
- Peters, A.; Wekerle, H. Autoimmune Diabetes Mellitus and the Leaky Gut. Proc. Natl. Acad. Sci. USA 2019, 116, 14788–14790. [Google Scholar] [CrossRef] [Green Version]
- Kirby, T.O.; Ochoa-Repáraz, J. The Gut Microbiome in Multiple Sclerosis: A Potential Therapeutic Avenue. Med. Sci. 2018, 6, 69. [Google Scholar] [CrossRef] [Green Version]
- Camilleri, M. Leaky Gut: Mechanisms, Measurement and Clinical Implications in Humans. Gut 2019, 68, 1516–1526. [Google Scholar] [CrossRef]
- Forsyth, C.B.; Tang, Y.; Shaikh, M.; Zhang, L.; Keshavarzian, A. Role of Snail Activation in Alcohol-Induced INOS-Mediated Disruption of Intestinal Epithelial Cell Permeability. Alcohol Clin. Exp. Res. 2011, 35, 1635–1643. [Google Scholar] [CrossRef]
- Peterson, V.L.; Jury, N.J.; Cabrera-Rubio, R.; Draper, L.A.; Crispie, F.; Cotter, P.D.; Dinan, T.G.; Holmes, A.; Cryan, J.F. Drunk Bugs: Chronic Vapour Alcohol Exposure Induces Marked Changes in the Gut Microbiome in Mice. Behav. Brain Res. 2017, 323, 172–176. [Google Scholar] [CrossRef] [Green Version]
- Cangiano, L.R.; Villot, C.; Renaud, J.; Ipharraguerre, I.R.; McNeil, B.; DeVries, T.J.; Steele, M.A. Induction of Leaky Gut by Repeated Intramuscular Injections of Indomethacin to Preweaning Holstein Calves. J. Dairy Sci. 2022, 105, 7125–7139. [Google Scholar] [CrossRef]
- Zhang, M.; Xia, F.; Xia, S.; Zhou, W.; Zhang, Y.; Han, X.; Zhao, K.; Feng, L.; Dong, R.; Tian, D.; et al. NSAID-Associated Small Intestinal Injury: An Overview From Animal Model Development to Pathogenesis, Treatment, and Prevention. Front. Pharmacol. 2022, 13, 818877. [Google Scholar] [CrossRef]
- Groschwitz, K.R.; Hogan, S.P. Intestinal Barrier Function: Molecular Regulation and Disease Pathogenesis. J. Allergy Clin. Immunol. 2009, 124, 3–20. [Google Scholar] [CrossRef] [Green Version]
- Bjarnason, I.; Williams, P.; Smethurst, P.; Peters, T.J.; Levi, A.J. Effect of Non-Steroidal Anti-Inflammatory Drugs and Prostaglandins on the Permeability of the Human Small Intestine. Gut 1986, 27, 1292–1297. [Google Scholar] [CrossRef] [Green Version]
- Baltoyiannis, G.; Christodoulos, N.; Mitsis, M.; Stephanou, D.; Ioannou, H.; Nousias, V.; Kappas, A.M. A Comparative Experimental Study of the Effects of Diclofenac and Ketoprofen on the Small-Bowel Mucosa of Canines. Res. Exp. Med. 2001, 200, 125–135. [Google Scholar] [CrossRef] [PubMed]
- Harirforoosh, S.; Asghar, W.; Jamali, F. Adverse Effects of Nonsteroidal Antiinflammatory Drugs: An Update of Gastrointestinal, Cardiovascular and Renal Complications. J. Pharm. Pharm. Sci. 2014, 16, 821. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cimini, A.; Brandolini, L.; Gentile, R.; Cristiano, L.; Menghini, P.; Fidoamore, A.; Antonosante, A.; Benedetti, E.; Giordano, A.; Allegretti, M. Gastroprotective Effects of L-Lysine Salification of Ketoprofen in Ethanol-Injured Gastric Mucosa. J. Cell. Physiol. 2015, 230, 813–820. [Google Scholar] [CrossRef] [PubMed]
- Castelli, V.; Catanesi, M.; Alfonsetti, M.; Laezza, C.; Lombardi, F.; Cinque, B.; Cifone, M.G.; Ippoliti, R.; Benedetti, E.; Cimini, A.; et al. PPARα-Selective Antagonist GW6471 Inhibits Cell Growth in Breast Cancer Stem Cells Inducing Energy Imbalance and Metabolic Stress. Biomedicines 2021, 9, 127. [Google Scholar] [CrossRef]
- Catanesi, M.; Brandolini, L.; d’Angelo, M.; Tupone, M.G.; Benedetti, E.; Alfonsetti, M.; Quintiliani, M.; Fratelli, M.; Iaconis, D.; Cimini, A.; et al. S-Carboxymethyl Cysteine Protects against Oxidative Stress and Mitochondrial Impairment in a Parkinson’s Disease In Vitro Model. Biomedicines 2021, 9, 1467. [Google Scholar] [CrossRef] [PubMed]
- Brandolini, L.; Antonosante, A.; Giorgio, C.; Bagnasco, M.; d’Angelo, M.; Castelli, V.; Benedetti, E.; Cimini, A.; Allegretti, M. NSAIDs-Dependent Adaption of the Mitochondria-Proteasome System in Immortalized Human Cardiomyocytes. Sci. Rep. 2020, 10, 18337. [Google Scholar] [CrossRef]
- Bianchini, G.; Tomassetti, M.; Lillini, S.; Sirico, A.; Bovolenta, S.; Za, L.; Liberati, C.; Novelli, R.; Aramini, A. Discovery of Novel TRPM8 Blockers Suitable for the Treatment of Somatic and Ocular Painful Conditions: A Journey through p Ka and LogD Modulation. J. Med. Chem. 2021, 64, 16820–16837. [Google Scholar] [CrossRef]
- Aramini, A.; Bianchini, G.; Lillini, S.; Bordignon, S.; Tomassetti, M.; Novelli, R.; Mattioli, S.; Lvova, L.; Paolesse, R.; Chierotti, M.R.; et al. Unexpected Salt/Cocrystal Polymorphism of the Ketoprofen–Lysine System: Discovery of a New Ketoprofen–l-Lysine Salt Polymorph with Different Physicochemical and Pharmacokinetic Properties. Pharmaceuticals 2021, 14, 555. [Google Scholar] [CrossRef]
- Warner, T.D.; Giuliano, F.; Vojnovic, I.; Bukasa, A.; Mitchell, J.A.; Vane, J.R. Nonsteroid Drug Selectivities for Cyclo-Oxygenase-1 Rather than Cyclo-Oxygenase-2 Are Associated with Human Gastrointestinal Toxicity: A Full in Vitro Analysis. Proc. Natl. Acad. Sci. USA 1999, 96, 7563–7568. [Google Scholar] [CrossRef] [Green Version]
- Cryer, B.; Feldman, M. Cyclooxygenase-1 and Cyclooxygenase-2 Selectivity of Widely Used Nonsteroidal Anti-Inflammatory Drugs. Am. J. Med. 1998, 104, 413–421. [Google Scholar] [CrossRef]
- Sarzi- Puttini, P.; Atzeni, F.; Lanata, L.; Bagnasco, M.; Colombo, M.; Fischer, F.; D’Imporzano, M. Pain and Ketoprofen: What Is Its Role in Clinical Practice? Reumatismo 2011, 62, 172–188. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Schwacha, M.G.; Chaudry, I.H.; Choudhry, M.A. Acute alcohol intoxication potentiates neutrophil-mediated intestinal tissue damage after burn injury. Shock 2008, 29, 377–383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.; Akhtar, S.; Kovacs, E.J.; Gamelli, R.L.; Choudhry, M.A. Inflammatory Response in Multiple Organs in a Mouse Model of Acute Alcohol Intoxication and Burn Injury. J. Burn Care Res. 2011, 32, 489–497. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Franceschetti, L.; Bonomini, F.; Rodella, L.F.; Rezzani, R. Critical Role of NFκB in the Pathogenesis of Non-Alcoholic Fatty Liver Disease: A Widespread Key Regulator. CMM 2021, 21, 495–505. [Google Scholar] [CrossRef]
- Mulero, M.C.; Huxford, T.; Ghosh, G. NF-ΚB, IκB, and IKK: Integral Components of Immune System Signaling. Adv. Exp. Med. Biol. 2019, 1172, 207–226. [Google Scholar] [CrossRef]
- Mathes, E.; O’Dea, E.L.; Hoffmann, A.; Ghosh, G. NF-ΚB Dictates the Degradation Pathway of IκBα. EMBO J. 2008, 27, 1357–1367. [Google Scholar] [CrossRef] [Green Version]
- Su, C.G.; Wen, X.; Bailey, S.T.; Jiang, W.; Rangwala, S.M.; Keilbaugh, S.A.; Flanigan, A.; Murthy, S.; Lazar, M.A.; Wu, G.D. A Novel Therapy for Colitis Utilizing PPAR-γ Ligands to Inhibit the Epithelial Inflammatory Response. J. Clin. Investig. 1999, 104, 383–389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gervois, P.; Fruchart, J.-C.; Delerive, P.; Staels, B. Induction of IκBα Expression as a Mechanism Contributing to the Anti-Inflammatory Activities of Peroxisome Proliferator-Activated Receptor-α Activators. J. Biol. Chem. 2000, 275, 36703–36707. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perperopoulou, F.; Pouliou, F.; Labrou, N.E. Recent Advances in Protein Engineering and Biotechnological Applications of Glutathione Transferases. Crit. Rev. Biotechnol. 2018, 38, 511–528. [Google Scholar] [CrossRef]
- Balogh, L.M.; Atkins, W.M. Interactions of Glutathione Transferases with 4-Hydroxynonenal. Drug Metab. Rev. 2011, 43, 165–178. [Google Scholar] [CrossRef] [Green Version]
- Thwaites, D.T.; Markovich, D.; Murer, H.; Simmons, N.L. Na+-Independent Lysine Transport in Human Intestinal Caco-2 Cells. J. Membr. Biol. 1996, 151, 215–224. [Google Scholar] [CrossRef] [PubMed]
- Ferruzza, S.; Ranaldi, G.; Di Girolamo, M.; Sambuy, Y. The Efflux of Lysine from the Basolateral Membrane of Human Cultured Intestinal Cells (Caco-2) Occurs by Different Mechanisms Depending on the Extracellular Availability of Amino Acids. J. Nutr. 1997, 127, 1183–1190. [Google Scholar] [CrossRef] [Green Version]
- Brune, K.; Geisslinger, G.; Menzel-Soglowek, S. Pure Enantiomers of 2-Arylpropionic Acids: Tools in Pain Research and Improved Drugs in Rheumatology. J. Clin. Pharmacol. 1992, 32, 944–952. [Google Scholar] [CrossRef]
- Ghezzi, P.; Melillo, G.; Meazza, C.; Sacco, S.; Pellegrini, L.; Asti, C.; Porzio, S.; Marullo, A.; Sabbatini, V.; Caselli, G.; et al. Differential Contribution of R and S Isomers in Ketoprofen Anti-Inflammatory Activity: Role of Cytokine Modulation. J. Pharmacol. Exp. Ther. 1998, 287, 969–974. [Google Scholar]
- Bertini, R.; Caselli, G. Analgesic Effect of Ketoprofen Is Mainly Associated to Its R -Enantiomer: Role of Cytokine Modulation. Analgesia 1999, 4, 181–186. [Google Scholar] [CrossRef]
- Faucheron, J.-L.; Parc, R. Non-Steroidal Anti-Inflammatory Drug-Induced Colitis. Int. J. Colorectal Dis. 1996, 11, 99–101. [Google Scholar] [CrossRef]
- Yap, P.; Goh, K.-L. Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) Induced Dyspepsia. CPD 2015, 21, 5073–5081. [Google Scholar] [CrossRef] [PubMed]
- Soylu, A.; Dolapcioglu, C.; Dolay, K.; Ciltas, A.; Yasar, N.; Kalayci, M.; Alis, H.; Sever, N. Endoscopic and Histopathological Evaluation of Acute Gastric Injury in High-Dose Acetaminophen and Nonsteroidal Anti-Inflammatory Drug Ingestion with Suicidal Intent. WJG 2008, 14, 6704. [Google Scholar] [CrossRef] [PubMed]
- Tai, F.W.D.; McAlindon, M.E. Non-Steroidal Anti-Inflammatory Drugs and the Gastrointestinal Tract. Clin. Med. 2021, 21, 131–134. [Google Scholar] [CrossRef] [PubMed]
- Zihni, C.; Mills, C.; Matter, K.; Balda, M.S. Tight Junctions: From Simple Barriers to Multifunctional Molecular Gates. Nat. Rev. Mol. Cell Biol. 2016, 17, 564–580. [Google Scholar] [CrossRef]
- Thakre-Nighot, M.; Blikslager, A.T. Indomethacin Induces Increase in Gastric Epithelial Tight Junction Permeability via Redistribution of Occludin and Activation of P38 MAPK in MKN-28 Cells. Tissue Barriers 2016, 4, e1187325. [Google Scholar] [CrossRef] [Green Version]
- Stolfi, C.; Maresca, C.; Monteleone, G.; Laudisi, F. Implication of Intestinal Barrier Dysfunction in Gut Dysbiosis and Diseases. Biomedicines 2022, 10, 289. [Google Scholar] [CrossRef]
- Usuda, H.; Okamoto, T.; Wada, K. Leaky Gut: Effect of Dietary Fiber and Fats on Microbiome and Intestinal Barrier. Int. J. Mol. Sci. 2021, 22, 7613. [Google Scholar] [CrossRef]
- Elamin, E.; Masclee, A.; Troost, F.; Pieters, H.-J.; Keszthelyi, D.; Aleksa, K.; Dekker, J.; Jonkers, D. Ethanol Impairs Intestinal Barrier Function in Humans through Mitogen Activated Protein Kinase Signaling: A Combined In Vivo and In Vitro Approach. PLoS ONE 2014, 9, e107421. [Google Scholar] [CrossRef] [Green Version]
- Martin, H. Role of PPAR-Gamma in Inflammation. Prospects for Therapeutic Intervention by Food Components. Mutat. Res. Fundam. Mol. Mech. Mutagen. 2010, 690, 57–63. [Google Scholar] [CrossRef]
- Polvani, S.; Tarocchi, M.; Galli, A. PPARγ and Oxidative Stress: Con(β) Catenating NRF2 and FOXO. PPAR Res. 2012, 2012, 641087. [Google Scholar] [CrossRef] [Green Version]
- Liu, T.; Zhang, L.; Joo, D.; Sun, S.-C. NF-ΚB Signaling in Inflammation. Signal Transduct. Target. Ther. 2017, 2, 17023. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carabaza, A.; Cabré, F.; Rotllan, E.; Gómez, M.; Gutiérrez, M.; García, M.L.; Mauleón, D. Stereoselective Inhibition of Inducible Cyclooxygenase by Chiral Nonsteroidal Antiinflammatory Drugs. J. Clin. Pharmacol. 1996, 36, 505–512. [Google Scholar] [CrossRef] [PubMed]
- Jerussi, T.P.; Caubet, J.-F.; McCray, J.E.; Handley, D.A. Clinical Endoscopic Evaluation of the Gastroduodenal Tolerance to (R)-Ketoprofen, (R)-Flurbiprofen, Racemic Ketoprofen, and Paracetamol: A Randomized, Single-Blind, Placebo-Controlled Trial. J. Clin. Pharmacol. 1998, 38, 19S–24S. [Google Scholar] [CrossRef] [PubMed]
- Kopp, E.; Ghosh, S. Inhibition of NF-ΚB by Sodium Salicylate and Aspirin. Science 1994, 265, 956–959. [Google Scholar] [CrossRef]
- Kazmi, S.M.I.; Plante, R.K.; Visconti, V.; Taylor, G.R.; Zhou, L.; Lau, C.Y. Suppression of NFκB Activation and NFκB-Dependent Gene Expression by Tepoxalin, a Dual Inhibitor of Cyclooxygenase and 5-Lipoxygenase. J. Cell. Biochem. 1995, 57, 299–310. [Google Scholar] [CrossRef]
- Scheuren, N.; Bang, H.; Münster, T.; Brune, K.; Pahl, A. Modulation of Transcription Factor NF-ΚB by Enantiomers of the Nonsteroidal Drug Ibuprofen: Inhibition of NF-ΚB by R-Ibuprofen. Br. J. Pharmacol. 1998, 123, 645–652. [Google Scholar] [CrossRef]
- Chen, C.; Fan, J.; Chuang, N. Effects of Prenyl Pyrophosphates on the Binding of S-Ras Proteins with KSR. J. Exp. Zool. 2002, 293, 551–560. [Google Scholar] [CrossRef]
- Takada, Y.; Bhardwaj, A.; Potdar, P.; Aggarwal, B.B. Nonsteroidal Anti-Inflammatory Agents Differ in Their Ability to Suppress NF-ΚB Activation, Inhibition of Expression of Cyclooxygenase-2 and Cyclin D1, and Abrogation of Tumor Cell Proliferation. Oncogene 2004, 23, 9247–9258. [Google Scholar] [CrossRef] [Green Version]
- Luo, J.-G.; Zhao, X.-L.; Xu, W.-C.; Zhao, X.-J.; Wang, J.-N.; Lin, X.-W.; Sun, T.; Fu, Z.-J. Activation of Spinal NF-ΚB/P65 Contributes to Peripheral Inflammation and Hyperalgesia in Rat Adjuvant-Induced Arthritis: Spinal NF-ΚB/P65 in Rat Arthritis. Arthritis Rheumatol. 2014, 66, 896–906. [Google Scholar] [CrossRef]
- Li, Y.; Yang, Y.; Guo, J.; Guo, X.; Feng, Z.; Zhao, X. Spinal NF-KB Upregulation Contributes to Hyperalgesia in a Rat Model of Advanced Osteoarthritis. Mol. Pain 2020, 16, 174480692090569. [Google Scholar] [CrossRef]
- Palazzo, I.; Todd, L.J.; Hoang, T.V.; Reh, T.A.; Blackshaw, S.; Fischer, A.J. NFκB-signaling Promotes Glial Reactivity and Suppresses Müller Glia-mediated Neuron Regeneration in the Mammalian Retina. Glia 2022, 70, 1380–1401. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
d’Angelo, M.; Brandolini, L.; Catanesi, M.; Castelli, V.; Giorgio, C.; Alfonsetti, M.; Tomassetti, M.; Zippoli, M.; Benedetti, E.; Cesta, M.C.; et al. Differential Effects of Nonsteroidal Anti-Inflammatory Drugs in an In Vitro Model of Human Leaky Gut. Cells 2023, 12, 728. https://doi.org/10.3390/cells12050728
d’Angelo M, Brandolini L, Catanesi M, Castelli V, Giorgio C, Alfonsetti M, Tomassetti M, Zippoli M, Benedetti E, Cesta MC, et al. Differential Effects of Nonsteroidal Anti-Inflammatory Drugs in an In Vitro Model of Human Leaky Gut. Cells. 2023; 12(5):728. https://doi.org/10.3390/cells12050728
Chicago/Turabian Styled’Angelo, Michele, Laura Brandolini, Mariano Catanesi, Vanessa Castelli, Cristina Giorgio, Margherita Alfonsetti, Mara Tomassetti, Mara Zippoli, Elisabetta Benedetti, Maria Candida Cesta, and et al. 2023. "Differential Effects of Nonsteroidal Anti-Inflammatory Drugs in an In Vitro Model of Human Leaky Gut" Cells 12, no. 5: 728. https://doi.org/10.3390/cells12050728