Mitochondrial Metabolomics of Sym1-Depleted Yeast Cells Revealed Them to Be Lysine Auxotroph
Abstract
:1. Introduction
2. Materials and Methods
2.1. Yeast Culture and Mitochondria Isolation
2.2. Phenotype Test of Sym1Δ Cells
2.3. Combined GC–MS Profiling and Targeted LC–MS
2.4. U(H)PLC–QTOF Workflow
3. Results
3.1. GC–MS-Based Metabolic Profiling Combined with Targeted LC–MS
3.2. Sym1Δ Cells Are Lysine Auxotroph
3.3. Establishment of a Workflow for Detection of Unknown Metabolites
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Siess, E.A.; Brocks, D.G.; Wieland, O.H. Distribution of Metabolites Between the Cytosolic and Mitochondrial Compartments of Hepatocytes Isolated from Fed Rats. Hoppe-Seyler’s Z. Physiol. Chem. 1978, 359, 785–798. [Google Scholar] [CrossRef] [PubMed]
- Pan, D.; Lindau, C.; Lagies, S.; Wiedemann, N.; Kammerer, B. Metabolic profiling of isolated mitochondria and cytoplasm reveals compartment-specific metabolic responses. Metabolomics 2018, 14, 59. [Google Scholar] [CrossRef] [Green Version]
- Pan, D.; Wiedemann, N.; Kammerer, B. Heat Stress-Induced Metabolic Remodeling in Saccharomyces cerevisiae. Metabolites 2019, 9, 266. [Google Scholar] [CrossRef] [Green Version]
- Roede, J.R.; Park, Y.; Li, S.; Strobel, F.H.; Jones, D.P. Detailed Mitochondrial Phenotyping by High Resolution Metabolomics. PLoS ONE 2012, 7, e33020. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.W.; Freinkman, E.; Wang, T.; Birsoy, K.; Sabatini, D.M. Absolute Quantification of Matrix Metabolites Reveals the Dynamics of Mitochondrial Metabolism. Cell 2016, 166, 1324–1337.e11. [Google Scholar] [CrossRef]
- Matuszczyk, J.-C.; Teleki, A.; Pfizenmaier, J.; Takors, R. Compartment-specific metabolomics for CHO reveals that ATP pools in mitochondria are much lower than in cytosol. Biotechnol. J. 2015, 10, 1639–1650. [Google Scholar] [CrossRef]
- Spinazzola, A.; Viscomi, C.; Fernandez-Vizarra, E.; Carrara, F.; D’Adamo, A.P.; Calvo, S.; Marsano, R.M.; Donnini, C.; Weiher, H.; Strisciuglio, P.; et al. MPV17 encodes an inner mitochondrial membrane protein and is mutated in infantile hepatic mitochondrial DNA depletion. Nat. Genet. 2006, 38, 570–575. [Google Scholar] [CrossRef]
- Suomalainen, A.; Isohanni, P. Mitochondrial DNA depletion syndromes—Many genes, common mechanisms. Neuromuscul. Disord. 2010, 20, 429–437. [Google Scholar] [CrossRef]
- El-Hattab, A.W.; Wang, J.; Dai, H.; Almannai, M.; Staufner, C.; Alfadhel, M.; Gambello, M.J.; Prasun, P.; Raza, S.; Lyons, H.J.; et al. MPV17-related mitochondrial DNA maintenance defect: New cases and review of clinical, biochemical, and molecular aspects. Hum. Mutat. 2018, 39, 461–470. [Google Scholar] [CrossRef]
- Löllgen, S.; Weiher, H. The role of the Mpv17 protein mutations of which cause mitochondrial DNA depletion syndrome (MDDS): Lessons from homologs in different species. Biol. Chem. 2015, 396, 13–25. [Google Scholar] [CrossRef]
- Dallabona, C.; Marsano, R.M.; Arzuffi, P.; Ghezzi, D.; Mancini, P.; Zeviani, M.; Ferrero, I.; Donnini, C. Sym1, the yeast ortholog of the MPV17 human disease protein, is a stress-induced bioenergetic and morphogenetic mitochondrial modulator. Hum. Mol. Genet. 2010, 19, 1098–1107. [Google Scholar] [CrossRef]
- Antonenkov, V.D.; Isomursu, A.; Mennerich, D.; Vapola, M.H.; Weiher, H.; Kietzmann, T.; Hiltunen, J.K. The Human Mitochondrial DNA Depletion Syndrome Gene MPV17 Encodes a Non-selective Channel That Modulates Membrane Potential. J. Biol. Chem. 2015, 290, 13840–13861. [Google Scholar] [CrossRef] [Green Version]
- Krauss, J.; Astrinides, P.; Frohnhöfer, H.G.; Walderich, B.; Nüsslein-Volhard, C. Transparent, a gene affecting stripe formation in Zebrafish, encodes the mitochondrial protein Mpv17 that is required for iridophore survival. Biol. Open 2013, 2, 703–710. [Google Scholar] [CrossRef] [Green Version]
- Trott, A.; Morano, K.A. SYM1 Is the Stress-Induced Saccharomyces cerevisiae Ortholog of the Mammalian Kidney Disease Gene Mpv17 and Is Required for Ethanol Metabolism and Tolerance during Heat Shock. Eukaryot. Cell 2004, 3, 620–631. [Google Scholar] [CrossRef] [Green Version]
- Weiher, H.; Noda, T.; Gray, D.A.; Sharpe, A.H.; Jaenisch, R. Transgenic mouse model of kidney disease: Insertional inactivation of ubiquitously expressed gene leads to nephrotic syndrome. Cell 1990, 62, 425–434. [Google Scholar] [CrossRef]
- Rosa, I.D.; Cámara, Y.; Durigon, R.; Moss, C.F.; Vidoni, S.; Akman, G.; Hunt, L.; Johnson, M.A.; Grocott, S.; Wang, L.; et al. MPV17 Loss Causes Deoxynucleotide Insufficiency and Slow DNA Replication in Mitochondria. PLoS Genet. 2016, 12, e1005779. [Google Scholar] [CrossRef]
- Alonzo, J.R.; Venkataraman, C.; Field, M.; Stover, P.J. The mitochondrial inner membrane protein MPV17 prevents uracil accumulation in mitochondrial DNA. J. Biol. Chem. 2018, 293, 20285–20294. [Google Scholar] [CrossRef] [Green Version]
- Gilberti, M.; Baruffini, E.; Donnini, C.; Dallabona, C. Pathological alleles of MPV17 modeled in the yeast Saccharomyces cerevisiae orthologous gene SYM1 reveal their inability to take part in a high molecular weight complex. PLoS ONE 2018, 13, e0205014. [Google Scholar] [CrossRef]
- Ammar, S.; Abidi, J.; Luca, S.V.; Boumendjel, M.; Skalicka-Woźniak, K.; Bouaziz, M. Untargeted metabolite profiling and phytochemical analysis based on RP-HPLC-DAD-QTOF-MS and MS/MS for discovering new bioactive compounds in Rumex algeriensis flowers and stems. Phytochem. Anal. 2020, 31, 616–635. [Google Scholar] [CrossRef]
- Rocchetti, G.; Gallo, A.; Nocetti, M.; Lucini, L.; Masoero, F. Milk metabolomics based on ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry to discriminate different cows feeding regimens. Food Res. Int. 2020, 134, 109279. [Google Scholar] [CrossRef]
- Armitage, E.G.; Barbas, C. Metabolomics in cancer biomarker discovery: Current trends and future perspectives. J. Pharm. Biomed. Anal. 2014, 87, 1–11. [Google Scholar] [CrossRef]
- Lagies, S.; Schlimpert, M.; Braun, L.M.; Kather, M.; Plagge, J.; Erbes, T.; Wittel, U.A.; Kammerer, B. Unraveling altered RNA metabolism in pancreatic cancer cells by liquid-chromatography coupling to ion mobility mass spectrometry. Anal. Bioanal. Chem. 2019, 411, 6319–6328. [Google Scholar] [CrossRef]
- De Vos, R.C.H.; Moco, S.; Lommen, A.; Keurentjes, J.; Bino, R.J.; Hall, R. Untargeted large-scale plant metabolomics using liquid chromatography coupled to mass spectrometry. Nat. Protoc. 2007, 2, 778–791. [Google Scholar] [CrossRef]
- Pang, Z.; Chong, J.; Zhou, G.; de Lima Morais, D.A.; Chang, L.; Barrette, M.; Gauthier, C.; Jacques, P.-É.; Li, S.; Xia, J. MetaboAnalyst 5.0: Narrowing the gap between raw spectra and functional insights. Nucleic Acids Res. 2021, 49, W388–W396. [Google Scholar] [CrossRef]
- Zabriskie, T.M.; Jackson, M.D. Lysine biosynthesis and metabolism in fungi. Nat. Prod. Rep. 2000, 17, 85–97. [Google Scholar] [CrossRef]
- Strathern, J.N.; Jones, E.W.; Broach, J.R. The Molecular Biology of the Yeast Saccharomyces; Cold Spring Harbor Laboratory: New York, NY, USA, 1981–1982; ISBN 0879691395. [Google Scholar]
- Zhou, J.; Wang, X.; Wang, M.; Chang, Y.; Zhang, F.; Ban, Z.; Tang, R.; Gan, Q.; Wu, S.; Guo, Y.; et al. The lysine catabolite saccharopine impairs development by disrupting mitochondrial homeostasis. J. Cell Biol. 2019, 218, 580–597. [Google Scholar] [CrossRef] [Green Version]
- Romagnoli, G.; Verhoeven, M.D.; Mans, R.; Rey, Y.F.; Bel-Rhlid, R.; Broek, M.D.; Seifar, R.M.; Pierick, A.T.; Thompson, M.; Müller, V.; et al. An alternative, arginase-independent pathway for arginine metabolism in Kluyveromyces lactis involves guanidinobutyrase as a key enzyme. Mol. Microbiol. 2014, 93, 369–389. [Google Scholar] [CrossRef] [Green Version]
- Soga, T.; Sugimoto, M.; Honma, M.; Mori, M.; Igarashi, K.; Kashikura, K.; Ikeda, S.; Hirayama, A.; Yamamoto, T.; Yoshida, H.; et al. Serum metabolomics reveals γ-glutamyl dipeptides as biomarkers for discrimination among different forms of liver disease. J. Hepatol. 2011, 55, 896–905. [Google Scholar] [CrossRef]
- Wu, M.; Xu, Y.; Fitch, W.L.; Zheng, M.; Merritt, R.E.; Shrager, J.B.; Zhang, W.; Dill, D.L.; Peltz, G.; Hoang, C.D. Liquid chromatography/mass spectrometry methods for measuring dipeptide abundance in non-small-cell lung cancer. Rapid Commun. Mass Spectrom. 2013, 27, 2091–2098. [Google Scholar] [CrossRef] [Green Version]
Mito | Cyto | |||||
---|---|---|---|---|---|---|
Targets | Putative | Identified | Targets | Putative | Identified | |
WT | 34 | 27 | 7 | 62 | 47 | 24 |
sym1Δ | 27 | 12 | 8 | 58 | 39 | 21 |
Mito | |
---|---|
Reduced | Increased |
Arginine | 13E/Z-Docosenamide |
Gln Lys | 5-Methylcytidine |
GPEtn(18:1(6Z)/18:1(6Z))[U] | 5-Methylcytosine |
Hypoxanthine | Asn Asp |
Orotic acid | Gln Ser Met |
PC(10:0/18:1(9Z)) | Glutamine |
Sorbitol | Frag Gln |
Ser Glu | |
Cyto | |
Reduced | Increased |
1-Methylguanine | 5-Methylcytidine |
3-Hydroxy-DL-kynurenine | 5-Methylcytosine |
4-Guanidinobutanal | Ala Glu |
4-Guanidinobutanoate | Citrulline |
4-Methylene-L-glutamine | Glu Cys |
Arginine | Cys Met Tyr |
Arg Gly | Glu Thr Glu |
Asn Ser | Glutamine |
Asn Val Ser | His Gln Gln |
Gly Tyr | Ile Tyr Thr |
Guanosine | Ser Gln |
Methyl-myo-inositol or glucoside | Ser Glu |
N-Acetyl-L-glutamate 5-semialdehyde | Ser Glu |
Nα-Acetyl-L-arginine | Thr Ala Asp |
PC | Val Asp Asp |
PC | Isobutylglycine |
Phe Ile Ala | Queuine |
PS | Pyroglutamic acid |
Thiamine | |
Thr Asn | |
Thr-Arg | |
Val Gln | |
Val Thr | |
Val Trp |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lagies, S.; Pan, D.; Mohl, D.A.; Plattner, D.A.; Gentle, I.E.; Kammerer, B. Mitochondrial Metabolomics of Sym1-Depleted Yeast Cells Revealed Them to Be Lysine Auxotroph. Cells 2023, 12, 692. https://doi.org/10.3390/cells12050692
Lagies S, Pan D, Mohl DA, Plattner DA, Gentle IE, Kammerer B. Mitochondrial Metabolomics of Sym1-Depleted Yeast Cells Revealed Them to Be Lysine Auxotroph. Cells. 2023; 12(5):692. https://doi.org/10.3390/cells12050692
Chicago/Turabian StyleLagies, Simon, Daqiang Pan, Daniel A. Mohl, Dietmar A. Plattner, Ian E. Gentle, and Bernd Kammerer. 2023. "Mitochondrial Metabolomics of Sym1-Depleted Yeast Cells Revealed Them to Be Lysine Auxotroph" Cells 12, no. 5: 692. https://doi.org/10.3390/cells12050692
APA StyleLagies, S., Pan, D., Mohl, D. A., Plattner, D. A., Gentle, I. E., & Kammerer, B. (2023). Mitochondrial Metabolomics of Sym1-Depleted Yeast Cells Revealed Them to Be Lysine Auxotroph. Cells, 12(5), 692. https://doi.org/10.3390/cells12050692