Congenital Microcephaly: A Debate on Diagnostic Challenges and Etiological Paradigm of the Shift from Isolated/Non-Syndromic to Syndromic Microcephaly
Abstract
:1. The Definition of Congenital (Primary) Microcephaly and Its Subtypes
2. The Inconsistent Diagnostic Criterion
Inconsistencies with Using the Terms Primary Microcephaly and MCPH
3. Genetic Etiology of Microcephaly Primary Hereditary (MCPH)
Locus | Gene | Protein | Subcellular Localization | Cellular Process | References |
---|---|---|---|---|---|
MCPH1 | MCPH1 | Microcephalin | Nucleus (interphase), centrosome (interphase and mitosis) | DNA damage signaling and repair, the regulation of chromosome condensation, cell-cycle progression, telomere replication and repair, and centrosome function | [68,79,80,81] |
MCPH2 | WDR62 | WD-repeat containing protein 62 | Centrosome (interphase), spindle poles (mitosis) | Mitogenic kinase signaling, centrosome function, cytoskeletal organization, and cell cycle progression | [63,64] |
MCPH3 | CDK5RAP2 | Cyclin-dependent kinase 5 regulatory subunit-associated protein 2 | Centrosome | Centrosome function, DNA damage response, and cell cycle progression | [4,22] |
MCPH4 | KNL1 * | Kinetochore scaffold 1 | Kinetochore | Kinetochore assembly, chromosome congression, and mitotic checkpoint signaling | [40,82] |
MCPH5 | ASPM | Abnormal spindle-like microcephaly-associated protein | Centrosome (interphase), spindle poles (mitosis) | Spindle organization, cytokinesis, centriole biogenesis, and microtubule disassembly | [83,84] |
MCPH6 | CENPJ | Centromere protein J | Centrosome | Centriole biogenesis, cilium disassembly, and cell cycle progression | [22,85] |
MCPH7 | STIL | SCL/TAL1-interrupting locus protein | Centrosome | Centriole duplication and cell cycle progression | [4,86] |
MCPH8 | CEP135 | Centrosomal protein of 135 kDa | Centrosome | Centriole biogenesis | [87,88] |
MCPH9 | CEP152 | Centrosomal protein of 152 kDa | Centrosome | Centriole duplication and DNA damage response through ATR-mediated checkpoint signaling | [20,21] |
MCPH10 | ZNF335 | Zinc finger protein 335 | Nucleus | Transcription regulation | [4,71] |
MCPH11 | PHC1 | Polyhomeotic-like protein 1 | Nucleus | Chromatin remodeling, DNA damage and repair, and cell cycle regulation | [4,33] |
MCPH12 | CDK6 | Cyclin-dependent kinase 6 | Cytosol and nucleus (interphase), centrosome (mitosis) | Organization of microtubules, centrosome integrity, and cell proliferation | [60] |
MCPH13 | CENPE | Centromere-associated protein E | Centromere, kinetochore, spindle midzone | Chromosome alignment and movement toward microtubule bundles | [67,89] |
MCPH14 | SASS6 | Spindle assembly abnormal protein 6 homolog | Centrosome | Centriole duplication | [4,90] |
MCPH15 | MFSD2A | Sodium-dependent lysophosphatidylcholine symporter 1 | Cell membrane | Lipid metabolism and transportation through the blood–brain barrier | [91] |
MCPH16 | ANKLE2 | Ankyrin repeat- and LEM domain-containing protein 2 | The endoplasmic reticulum, nuclear envelope | Maintain nuclear envelope morphology, cell division, and proliferation | [92,93] |
MCPH17 | CIT | Citron Rho-interacting kinase | Cleavage furrow and midbody | Cytokinesis | [94] |
MCPH18 | WDFY3 | WD repeat and FYVE domain-containing protein 3 | Cytosol and nucleus | Wnt signaling (autophagy-dependent manner) | [14] |
MCPH19 | COPB2 | Coatomer subunit beta | Golgi apparatus membrane | May regulate autophagy and maintain the integrity of cellular organelles and cell homeostasis | [72] |
MCPH20 | KIF14 | Kinesin-like protein KIF14 | Spindle midzone and the midbody | Cytokinesis | [65] |
MCPH21 | NCAPD2 | Condensin complex subunit 1 | Cytoplasm, nucleus (interphase), chromatin (mitosis) | Mitotic chromosome condensation | [70] |
MCPH22 | NCAPD3 | Condensin-2 complex subunit D3 | Cytoplasm, nucleus (interphase), chromatin (mitosis) | Mitotic chromosome condensation | [70] |
MCPH23 | NCAPH | Condensin complex subunit 2 | Cytoplasm, nucleus (interphase), chromatin (mitosis) | Mitotic chromosome condensation | [70] |
MCPH24 | NUP37 | Nucleoporin Nup37 | Nuclear envelop (interphase), kinetochore (mitosis) | Cell cycle progression | [73] |
MCPH25 | MAP11 | Trafficking protein particle complex subunit 14 | Spindle microtubules, cleavage furrow and midbody | Cytokinesis and cell abscission | [59] |
MCPH26 | LMNB1 | Lamin-B1 | Nuclear lamina | Cell cycle regulation, transcription regulation, and DNA repair | [74,95] |
MCPH27 | LMNB2 | Lamin-B2 | Nuclear lamina | Transcription regulation, mitosis, chromosome segregation, and nucleolar morphology | [74,95] |
MCPH28 | RRP7A | Ribosomal RNA-processing protein 7 homolog A | Nucleolus, centrosomes and cilia | Ribosomal RNA processing, primary cilia resorption, and cell cycle progression | [75] |
MCPH29 | PDCD6IP | Programmed cell death 6-interacting protein | Nucleus | Cytokinesis, cell proliferation, and abscission and autophagy | [61] |
MCPH30 | BUB1 | BUB1 mitotic checkpoint serine/threonine kinase | Nucleus (interphase), kinetochore (mitosis) | Chromosome congression and spindle assembly checkpoint | [13] |
MCPH31 | SNRPE | Small nuclear ribonucleoprotein E | Nucleus | Pre-mRNA processing | [51] |
MCPH32 | AKNA | Microtubule organization protein AKNA | Centrosome | Centrosomal microtubule organization | [52] |
4. Model Systems for Microcephaly and Pathomechanisms
5. The Shift from Non-Syndromic to Syndromic Microcephaly Remains Unsolved
5.1. The Fragility of Asymmetric Neuronal Division
5.2. Role of Genetic Modifiers/Multiple Allelism
5.3. Altered Splicing Events
5.4. Hypomorphic and Loss-of-Function Variants
5.5. De Novo Autosomal Dominant Mutations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Opitz, J.; Holt, M. Microcephaly: General considerations and aids to nosology. J. Craniofacial Genet. Dev. Biol. 1990, 10, 175–204. [Google Scholar]
- Shaheen, R.; Maddirevula, S.; Ewida, N.; Alsahli, S.; Abdel-Salam, G.M.; Zaki, M.S.; Tala, S.A.; Alhashem, A.; Softah, A.; Al-Owain, M. Genomic and phenotypic delineation of congenital microcephaly. Genet. Med. 2019, 21, 545–552. [Google Scholar] [CrossRef]
- DeSilva, M.; Munoz, F.M.; Sell, E.; Marshall, H.; Kawai, A.T.; Kachikis, A.; Heath, P.; Klein, N.P.; Oleske, J.M.; Jehan, F. Congenital microcephaly: Case definition & guidelines for data collection, analysis, and presentation of safety data after maternal immunisation. Vaccine 2017, 35, 6472. [Google Scholar]
- Jayaraman, D.; Bae, B.I.; Walsh, C.A. The Genetics of Primary Microcephaly. Annu. Rev. Genom. Hum. Genet. 2018, 19, 177–200. [Google Scholar] [CrossRef] [Green Version]
- Piro, E.; Antona, V.; Consiglio, V.; Ballacchino, A.; Graziano, F. Microcephaly a clinical-genetic and neurologic approach. Acta Med. Mediterr. 2013, 29, 327–331. [Google Scholar]
- Ashwal, S.; Michelson, D.; Plawner, L.; Dobyns, W.B. Practice parameter: Evaluation of the child with microcephaly (an evidence-based review): Report of the Quality Standards Subcommittee of the American Academy of Neurology and the Practice Committee of the Child Neurology Society. Neurology 2009, 73, 887–897. [Google Scholar] [CrossRef] [Green Version]
- Von der Hagen, M.; Pivarcsi, M.; Liebe, J.; Von Bernuth, H.; Didonato, N.; Hennermann, J.B.; Bührer, C.; Wieczorek, D.; Kaindl, A.M. Diagnostic approach to microcephaly in childhood: A two-center study and review of the literature. Dev. Med. Child Neurol. 2014, 56, 732–741. [Google Scholar] [CrossRef]
- Nellhaus, G. Head circumference from birth to eighteen years: Practical composite international and interracial graphs. Pediatrics 1968, 41, 106–114. [Google Scholar] [CrossRef]
- Prader, A.; Largo, R.H.; Molinari, L.; Issler, C. Physical growth of Swiss children from birth to 20 years of age. First Zurich longitudinal study of growth and development. Helv. Paediatr. Acta. Suppl. 1989, 52, 1–125. [Google Scholar]
- Elvander, C.; Högberg, U.; Ekeus, C. The influence of fetal head circumference on labor outcome: A population-based register study. Acta Obstet. Et Gynecol. Scand. 2012, 91, 470–475. [Google Scholar] [CrossRef]
- Lunde, A.; Melve, K.K.; Gjessing, H.K.; Skjærven, R.; Irgens, L.M. Genetic and environmental influences on birth weight, birth length, head circumference, and gestational age by use of population-based parent-offspring data. Am. J. Epidemiol. 2007, 165, 734–741. [Google Scholar] [CrossRef] [Green Version]
- Janssen, P.A.; Thiessen, P.; Klein, M.C.; Whitfield, M.F.; MacNab, Y.C.; Cullis-Kuhl, S.C. Standards for the measurement of birth weight, length and head circumference at term in neonates of European, Chinese and South Asian ancestry. Open Med. 2007, 1, e74. [Google Scholar]
- Carvalhal, S.; Bader, I.; Rooimans, M.A.; Oostra, A.B.; Balk, J.A.; Feichtinger, R.G.; Beichler, C.; Speicher, M.R.; van Hagen, J.M.; Waisfisz, Q. Biallelic BUB1 mutations cause microcephaly, developmental delay, and variable effects on cohesion and chromosome segregation. Sci. Adv. 2022, 8, eabk0114. [Google Scholar] [CrossRef]
- Kadir, R.; Harel, T.; Markus, B.; Perez, Y.; Bakhrat, A.; Cohen, I.; Volodarsky, M.; Feintsein-Linial, M.; Chervinski, E.; Zlotogora, J.; et al. ALFY-Controlled DVL3 Autophagy Regulates Wnt Signaling, Determining Human Brain Size. PLoS Genet. 2016, 12, e1005919. [Google Scholar] [CrossRef] [Green Version]
- Pagnamenta, A.T.; Howard, M.F.; Knight, S.J.; Keays, D.A.; Quaghebeur, G.; Taylor, J.C.; Kini, U. Activation of an exonic splice-donor site in exon 30 of CDK5RAP2 in a patient with severe microcephaly and pigmentary abnormalities. Clin. Case Rep. 2016, 4, 952. [Google Scholar] [CrossRef] [Green Version]
- Nasser, H.; Vera, L.; Elmaleh-Bergès, M.; Steindl, K.; Letard, P.; Teissier, N.; Ernault, A.; Guimiot, F.; Afenjar, A.; Moutard, M.L. CDK5RAP2 primary microcephaly is associated with hypothalamic, retinal and cochlear developmental defects. J. Med. Genet. 2020, 57, 389–399. [Google Scholar] [CrossRef]
- Abdullah, U.; Farooq, M.; Mang, Y.; Bakhtiar, S.M.; Fatima, A.; Hansen, L.; Kjaer, K.W.; Larsen, L.A.; Faryal, S.; Tommerup, N.; et al. A novel mutation in CDK5RAP2 gene causes primary microcephaly with speech impairment and sparse eyebrows in a consanguineous Pakistani family. Eur. J. Med. Genet. 2017, 60, 627–630. [Google Scholar] [CrossRef]
- Alfares, A.; Alhufayti, I.; Alsubaie, L.; Alowain, M.; Almass, R.; Alfadhel, M.; Kaya, N.; Eyaid, W. A new association between CDK5RAP2 microcephaly and congenital cataracts. Ann. Hum. Genet. 2018, 82, 165–170. [Google Scholar] [CrossRef]
- Makhdoom, E.U.H.; Waseem, S.S.; Iqbal, M.; Abdullah, U.; Hussain, G.; Asif, M.; Budde, B.; Höhne, W.; Tinschert, S.; Saadi, S.M. Modifier genes in microcephaly: A report on WDR62, CEP63, RAD50 and PCNT variants exacerbating disease caused by biallelic mutations of ASPM and CENPJ. Genes 2021, 12, 731. [Google Scholar] [CrossRef]
- Guernsey, D.L.; Jiang, H.; Hussin, J.; Arnold, M.; Bouyakdan, K.; Perry, S.; Babineau-Sturk, T.; Beis, J.; Dumas, N.; Evans, S.C. Mutations in centrosomal protein CEP152 in primary microcephaly families linked to MCPH4. Am. J. Hum. Genet. 2010, 87, 40–51. [Google Scholar] [CrossRef] [Green Version]
- Kalay, E.; Yigit, G.; Aslan, Y.; Brown, K.E.; Pohl, E.; Bicknell, L.S.; Kayserili, H.; Li, Y.; Tuysuz, B.; Nurnberg, G.; et al. CEP152 is a genome maintenance protein disrupted in Seckel syndrome. Nat. Genet. 2011, 43, 23–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bond, J.; Roberts, E.; Springell, K.; Lizarraga, S.B.; Scott, S.; Higgins, J.; Hampshire, D.J.; Morrison, E.E.; Leal, G.F.; Silva, E.O.; et al. A centrosomal mechanism involving CDK5RAP2 and CENPJ controls brain size. Nat. Genet. 2005, 37, 353–355. [Google Scholar] [CrossRef] [PubMed]
- Yigit, G.; Brown, K.E.; Kayserili, H.; Pohl, E.; Caliebe, A.; Zahnleiter, D.; Rosser, E.; Bogershausen, N.; Uyguner, Z.O.; Altunoglu, U.; et al. Mutations in CDK5RAP2 cause Seckel syndrome. Mol. Genet. Genom. Med. 2015, 3, 467–480. [Google Scholar] [CrossRef] [PubMed]
- Stouffs, K.; Stergachis, A.B.; Vanderhasselt, T.; Dica, A.; Janssens, S.; Vandervore, L.; Gheldof, A.; Bodamer, O.; Keymolen, K.; Seneca, S. Expanding the clinical spectrum of biallelic ZNF335 variants. Clin. Genet. 2018, 94, 246–251. [Google Scholar] [CrossRef]
- Verloes, A.; Drunat, S.; Passemard, S. ASPM Primary Microcephaly; 2 April 2020; GeneReviews® [Internet]; Adam, M.P., Everman, D.B., Mirzaa, G.M., Pagon, R.A., Wallace, S.E., Bean, L.J.H., Gripp, K.W., Amemiya, A., Eds.; University of Washington: Seattle, WA, USA, 1993. [Google Scholar]
- Abdel-Hamid, M.S.; Ismail, M.F.; Darwish, H.A.; Effat, L.K.; Zaki, M.S.; Abdel-Salam, G.M. Molecular and phenotypic spectrum of ASPM-related primary microcephaly: Identification of eight novel mutations. Am. J. Med. Genet. Part A 2016, 170, 2133–2140. [Google Scholar] [CrossRef]
- Papari, E.; Bastami, M.; Farhadi, A.; Abedini, S.; Hosseini, M.; Bahman, I.; Mohseni, M.; Garshasbi, M.; Moheb, L.A.; Behjati, F. Investigation of primary microcephaly in Bushehr province of Iran: Novel STIL and ASPM mutations. Clin. Genet. Int. J. Genet. Med. 2013, 83, 488–490. [Google Scholar]
- Naqvi, S.F.; Shabbir, R.M.K.; Tolun, A.; Basit, S.; Malik, S. A Two-Base Pair Deletion in IQ Repeats in ASPM Underlies Microcephaly in a Pakistani Family. Genet. Test. Mol. Biomark. 2022, 26, 37–42. [Google Scholar] [CrossRef] [PubMed]
- Hashmi, J.A.; Al-Harbi, K.M.; Ramzan, K.; Albalawi, A.M.; Mehmood, A.; Samman, M.I.; Basit, S. A novel splice-site mutation in the ASPM gene underlies autosomal recessive primary microcephaly. Ann. Saudi Med. 2016, 36, 391–396. [Google Scholar] [CrossRef] [Green Version]
- Darvish, H.; Esmaeeli-Nieh, S.; Monajemi, G.; Mohseni, M.; Ghasemi-Firouzabadi, S.; Abedini, S.; Bahman, I.; Jamali, P.; Azimi, S.; Mojahedi, F. A clinical and molecular genetic study of 112 Iranian families with primary microcephaly. J. Med. Genet. 2010, 47, 823–828. [Google Scholar] [CrossRef] [Green Version]
- Passemard, S.; Titomanlio, L.; Elmaleh, M.; Afenjar, A.; Alessandri, J.-L.; Andria, G.; de Villemeur, T.B.; Boespflug-Tanguy, O.; Burglen, L.; Del Giudice, E. Expanding the clinical and neuroradiologic phenotype of primary microcephaly due to ASPM mutations. Neurology 2009, 73, 962–969. [Google Scholar] [CrossRef]
- Mouden, C.; de Tayrac, M.; Dubourg, C.; Rose, S.; Carre, W.; Hamdi-Roze, H.; Babron, M.-C.; Akloul, L.; Heron-Longe, B.; Odent, S. Homozygous STIL mutation causes holoprosencephaly and microcephaly in two siblings. PLoS ONE 2015, 10, e0117418. [Google Scholar] [CrossRef]
- Awad, S.; Al-Dosari, M.S.; Al-Yacoub, N.; Colak, D.; Salih, M.A.; Alkuraya, F.S.; Poizat, C. Mutation in PHC1 implicates chromatin remodeling in primary microcephaly pathogenesis. Hum. Mol. Genet. 2013, 22, 2200–2213. [Google Scholar] [CrossRef] [Green Version]
- Garshasbi, M.; Motazacker, M.M.; Kahrizi, K.; Behjati, F.; Abedini, S.S.; Nieh, S.E.; Firouzabadi, S.G.; Becker, C.; Rüschendorf, F.; Nürnberg, P. SNP array-based homozygosity mapping reveals MCPH1 deletion in family with autosomal recessive mental retardation and mild microcephaly. Hum. Genet. 2006, 118, 708–715. [Google Scholar] [CrossRef] [PubMed]
- Caraffi, S.G.; Pollazzon, M.; Farooq, M.; Fatima, A.; Larsen, L.A.; Zuntini, R.; Napoli, M.; Garavelli, L. MCPH1: A Novel Case Report and a Review of the Literature. Genes 2022, 13, 634. [Google Scholar] [CrossRef] [PubMed]
- Zombor, M.; Kalmár, T.; Nagy, N.; Berényi, M.; Telcs, B.; Maróti, Z.; Brandau, O.; Sztriha, L. A novel WDR62 missense mutation in microcephaly with abnormal cortical architecture and review of the literature. J. Appl. Genet. 2019, 60, 151–162. [Google Scholar] [CrossRef] [Green Version]
- Cherkaoui Jaouad, I.; Zrhidri, A.; Jdioui, W.; Lyahyai, J.; Raymond, L.; Egéa, G.; Taoudi, M.; El Mouatassim, S.; Sefiani, A. A novel non sense mutation in WDR62 causes autosomal recessive primary microcephaly: A case report. BMC Med. Genet. 2018, 19, 118. [Google Scholar] [CrossRef] [PubMed]
- Aryan, H.; Zokaei, S.; Farhud, D.; Keykhaei, M.; Ashrafi, M.R.; Rasulinezhad, M.; Hosseini, S.M.M.; Razmara, E.; Tavasoli, A.R. Novel phenotype and genotype spectrum of WDR62 in two patients with associated primary autosomal recessive microcephaly. Ir. J. Med. Sci. (1971-) 2022, 191, 2733–2741. [Google Scholar] [CrossRef] [PubMed]
- Saadi, A.; Verny, F.; Siquier-Pernet, K.; Bole-Feysot, C.; Nitschke, P.; Munnich, A.; Abada-Dendib, M.; Chaouch, M.; Abramowicz, M.; Colleaux, L. Refining the phenotype associated with CASC5 mutation. Neurogenetics 2016, 17, 71–78. [Google Scholar] [CrossRef] [PubMed]
- Genin, A.; Desir, J.; Lambert, N.; Biervliet, M.; Van Der Aa, N.; Pierquin, G.; Killian, A.; Tosi, M.; Urbina, M.; Lefort, A.; et al. Kinetochore KMN network gene CASC5 mutated in primary microcephaly. Hum. Mol. Genet. 2012, 21, 5306–5317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Issa, L.; Mueller, K.; Seufert, K.; Kraemer, N.; Rosenkotter, H.; Ninnemann, O.; Buob, M.; Kaindl, A.M.; Morris-Rosendahl, D.J. Clinical and cellular features in patients with primary autosomal recessive microcephaly and a novel CDK5RAP2 mutation. Orphanet J. Rare Dis. 2013, 8, 59. [Google Scholar] [CrossRef] [Green Version]
- Tan, C.A.; Topper, S.; Ward Melver, C.; Stein, J.; Reeder, A.; Arndt, K.; Das, S. The first case of CDK5RAP2-related primary microcephaly in a non-consanguineous patient identified by next generation sequencing. Brain Dev. 2014, 36, 351–355. [Google Scholar] [CrossRef]
- Rasool, S.; Baig, J.M.; Moawia, A.; Ahmad, I.; Iqbal, M.; Waseem, S.S.; Asif, M.; Abdullah, U.; Makhdoom, E.U.H.; Kaygusuz, E. An update of pathogenic variants in ASPM, WDR62, CDK5RAP2, STIL, CENPJ, and CEP135 underlying autosomal recessive primary microcephaly in 32 consanguineous families from Pakistan. Mol. Genet. Genom. Med. 2020, 8, e1408. [Google Scholar] [CrossRef]
- Rauch, A. The shortest of the short: Pericentrin mutations and beyond. Best Pract. Res. Clin. Endocrinol. Metab. 2011, 25, 125–130. [Google Scholar] [CrossRef]
- Aggarwal, A.; Mittal, H.; Patil, R.; Debnath, S.; Rai, A. Clinical profile of children with developmental delay and microcephaly. J. Neurosci. Rural Pract. 2013, 4, 288–291. [Google Scholar] [CrossRef]
- Derwińska, K.; Smyk, M.; Cooper, M.L.; Bader, P.; Cheung, S.W.; Stankiewicz, P. PTCH1 duplication in a family with microcephaly and mild developmental delay. Eur. J. Hum. Genet. 2009, 17, 267–271. [Google Scholar] [CrossRef] [Green Version]
- Yatsuka, Y.; Kishita, Y.; Formosa, L.E.; Shimura, M.; Nozaki, F.; Fujii, T.; Nitta, K.R.; Ohtake, A.; Murayama, K.; Ryan, M.T. A homozygous variant in NDUFA8 is associated with developmental delay, microcephaly, and epilepsy due to mitochondrial complex I deficiency. Clin. Genet. 2020, 98, 155–165. [Google Scholar] [CrossRef]
- Lee, J.; Park, J.E.; Lee, C.; Kim, A.R.; Kim, B.J.; Park, W.-Y.; Ki, C.-S.; Lee, J. Genomic analysis of Korean patients with microcephaly. Front. Genet. 2020, 11, 1850. [Google Scholar] [CrossRef]
- Naseer, M.I.; Rasool, M.; Abdulkareem, A.A.; Chaudhary, A.G.; Zaidi, S.K.; Al-Qahtani, M.H. Novel compound heterozygous mutations in WDR62 gene leading to developmental delay and Primary Microcephaly in Saudi Family. Pak. J. Med. Sci. 2019, 35, 764. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Castillo, A.; Martín-Lucas, M.A.; Abrisqueta, J. Is a gene for microcephaly located on chromosome 1? Hum. Genet. 1984, 67, 230–232. [Google Scholar] [CrossRef]
- Chen, T.; Zhang, B.; Ziegenhals, T.; Prusty, A.B.; Fröhler, S.; Grimm, C.; Hu, Y.; Schaefke, B.; Fang, L.; Zhang, M. A missense mutation in SNRPE linked to non-syndromal microcephaly interferes with U snRNP assembly and pre-mRNA splicing. PLoS Genet. 2019, 15, e1008460. [Google Scholar] [CrossRef] [Green Version]
- Waseem, S.S.; Moawia, A.; Budde, B.; Tariq, M.; Khan, A.; Ali, Z.; Khan, S.; Iqbal, M.; Malik, N.A.; Haque, S.u. A Homozygous AKNA Frameshift Variant Is Associated with Microcephaly in a Pakistani Family. Genes 2021, 12, 1494. [Google Scholar] [CrossRef] [PubMed]
- Duerinckx, S.; Abramowicz, M. The genetics of congenitally small brains. Semin. Cell Dev. Biol. 2018, 76, 76–85. [Google Scholar] [CrossRef] [PubMed]
- Zaqout, S.; Morris-Rosendahl, D.; Kaindl, A.M. Autosomal Recessive Primary Microcephaly (MCPH): An Update. Neuropediatrics 2017, 48, 135–142. [Google Scholar] [CrossRef] [PubMed]
- Kousar, R.; Hassan, M.J.; Khan, B.; Basit, S.; Mahmood, S.; Mir, A.; Ahmad, W.; Ansar, M. Mutations in WDR62 gene in Pakistani families with autosomal recessive primary microcephaly. BMC Neurol. 2011, 11, 119. [Google Scholar] [CrossRef] [Green Version]
- Barbelanne, M.; Tsang, W.Y. Molecular and cellular basis of autosomal recessive primary microcephaly. BioMed Res. Int. 2014, 2014, 547986. [Google Scholar] [CrossRef] [Green Version]
- Cox, J.; Jackson, A.P.; Bond, J.; Woods, C.G. What primary microcephaly can tell us about brain growth. Trends Mol. Med. 2006, 12, 358–366. [Google Scholar] [CrossRef]
- Wollnik, B. A common mechanism for microcephaly. Nat. Genet. 2010, 42, 923–924. [Google Scholar] [CrossRef]
- Perez, Y.; Bar-Yaacov, R.; Kadir, R.; Wormser, O.; Shelef, I.; Birk, O.S.; Flusser, H.; Birnbaum, R.Y. Mutations in the microtubule-associated protein MAP11 (C7orf43) cause microcephaly in humans and zebrafish. Brain 2019, 142, 574–585. [Google Scholar] [CrossRef] [Green Version]
- Hussain, M.S.; Baig, S.M.; Neumann, S.; Peche, V.S.; Szczepanski, S.; Nurnberg, G.; Tariq, M.; Jameel, M.; Khan, T.N.; Fatima, A.; et al. CDK6 associates with the centrosome during mitosis and is mutated in a large Pakistani family with primary microcephaly. Hum. Mol. Genet. 2013, 22, 5199–5214. [Google Scholar] [CrossRef]
- Khan, A.; Alaamery, M.; Massadeh, S.; Obaid, A.; Kashgari, A.A.; Walsh, C.A.; Eyaid, W. PDCD6IP, encoding a regulator of the ESCRT complex, is mutated in microcephaly. Clin. Genet. 2020, 98, 80–85. [Google Scholar] [CrossRef]
- Kaindl, A.M.; Passemard, S.; Kumar, P.; Kraemer, N.; Issa, L.; Zwirner, A.; Gerard, B.; Verloes, A.; Mani, S.; Gressens, P. Many roads lead to primary autosomal recessive microcephaly. Prog. Neurobiol. 2010, 90, 363–383. [Google Scholar] [CrossRef]
- Nicholas, A.K.; Khurshid, M.; Desir, J.; Carvalho, O.P.; Cox, J.J.; Thornton, G.; Kausar, R.; Ansar, M.; Ahmad, W.; Verloes, A.; et al. WDR62 is associated with the spindle pole and is mutated in human microcephaly. Nat. Genet. 2010, 42, 1010–1014. [Google Scholar] [CrossRef] [PubMed]
- Jayaraman, D.; Kodani, A.; Gonzalez, D.M.; Mancias, J.D.; Mochida, G.H.; Vagnoni, C.; Johnson, J.; Krogan, N.; Harper, J.W.; Reiter, J.F.; et al. Microcephaly Proteins Wdr62 and Aspm Define a Mother Centriole Complex Regulating Centriole Biogenesis, Apical Complex, and Cell Fate. Neuron 2016, 92, 813–828. [Google Scholar] [CrossRef] [Green Version]
- Moawia, A.; Shaheen, R.; Rasool, S.; Waseem, S.S.; Ewida, N.; Budde, B.; Kawalia, A.; Motameny, S.; Khan, K.; Fatima, A.; et al. Mutations of KIF14 cause primary microcephaly by impairing cytokinesis. Ann. Neurol. 2017, 82, 562–577. [Google Scholar] [CrossRef] [PubMed]
- Kline, S.L.; Cheeseman, I.M.; Hori, T.; Fukagawa, T.; Desai, A. The human Mis12 complex is required for kinetochore assembly and proper chromosome segregation. J. Cell Biol. 2006, 173, 9–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mirzaa, G.M.; Vitre, B.; Carpenter, G.; Abramowicz, I.; Gleeson, J.G.; Paciorkowski, A.R.; Cleveland, D.W.; Dobyns, W.B.; O’Driscoll, M. Mutations in CENPE define a novel kinetochore-centromeric mechanism for microcephalic primordial dwarfism. Hum. Genet. 2014, 133, 1023–1039. [Google Scholar] [CrossRef] [Green Version]
- Cicconi, A.; Rai, R.; Xiong, X.; Broton, C.; Al-Hiyasat, A.; Hu, C.; Dong, S.; Sun, W.; Garbarino, J.; Bindra, R.S. Microcephalin 1/BRIT1-TRF2 interaction promotes telomere replication and repair, linking telomere dysfunction to primary microcephaly. Nat. Commun. 2020, 11, 5861. [Google Scholar] [CrossRef] [PubMed]
- Basit, S.; Al-Harbi, K.M.; Alhijji, S.A.; Albalawi, A.M.; Alharby, E.; Eldardear, A.; Samman, M.I. CIT, a gene involved in neurogenic cytokinesis, is mutated in human primary microcephaly. Hum. Genet. 2016, 135, 1199–1207. [Google Scholar] [CrossRef]
- Martin, C.A.; Murray, J.E.; Carroll, P.; Leitch, A.; Mackenzie, K.J.; Halachev, M.; Fetit, A.E.; Keith, C.; Bicknell, L.S.; Fluteau, A.; et al. Mutations in genes encoding condensin complex proteins cause microcephaly through decatenation failure at mitosis. Genes Dev. 2016, 30, 2158–2172. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.W.J.; Baltus, A.E.; Mathew, R.S.; Murphy, E.A.; Evrony, G.D.; Gonzalez, D.M.; Wang, E.P.; Marshall-Walker, C.A.; Barry, B.J.; Murn, J.; et al. Microcephaly Gene Links Trithorax and REST/NRSF to Control Neural Stem Cell Proliferation and Differentiation. Cell 2012, 151, 1097–1112. [Google Scholar] [CrossRef] [Green Version]
- DiStasio, A.; Driver, A.; Sund, K.; Donlin, M.; Muraleedharan, R.M.; Pooya, S.; Kline-Fath, B.; Kaufman, K.M.; Prows, C.A.; Schorry, E.; et al. Copb2 is essential for embryogenesis and hypomorphic mutations cause human microcephaly. Hum. Mol. Genet. 2017, 26, 4836–4848. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Braun, D.A.; Lovric, S.; Schapiro, D.; Schneider, R.; Marquez, J.; Asif, M.; Hussain, M.S.; Daga, A.; Widmeier, E.; Rao, J.; et al. Mutations in multiple components of the nuclear pore complex cause nephrotic syndrome. J. Clin. Investig. 2018, 128, 4313–4328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parry, D.A.; Martin, C.-A.; Greene, P.; Marsh, J.A.; Blyth, M.; Cox, H.; Donnelly, D.; Greenhalgh, L.; Greville-Heygate, S.; Harrison, V. Heterozygous lamin B1 and lamin B2 variants cause primary microcephaly and define a novel laminopathy. Genet. Med. 2021, 23, 408–414. [Google Scholar] [CrossRef] [PubMed]
- Farooq, M.; Lindbæk, L.; Krogh, N.; Doganli, C.; Keller, C.; Mönnich, M.; Gonçalves, A.B.; Sakthivel, S.; Mang, Y.; Fatima, A. RRP7A links primary microcephaly to dysfunction of ribosome biogenesis, resorption of primary cilia, and neurogenesis. Nat. Commun. 2020, 11, 5816. [Google Scholar] [CrossRef] [PubMed]
- Chellas-Gery, B.; Wolf, K.; Tisoncik, J.; Hackstadt, T.; Fields, K. Biochemical and localization analyses of putative type III secretion translocator proteins CopB and CopB2 of Chlamydia trachomatis reveal significant distinctions. Infect. Immun. 2011, 79, 3036–3045. [Google Scholar] [CrossRef] [Green Version]
- Boonsawat, P.; Joset, P.; Steindl, K.; Oneda, B.; Gogoll, L.; Azzarello-Burri, S.; Sheth, F.; Datar, C.; Verma, I.C.; Puri, R.D. Elucidation of the phenotypic spectrum and genetic landscape in primary and secondary microcephaly. Genet. Med. 2019, 21, 2043–2058. [Google Scholar] [CrossRef] [Green Version]
- Jean, F.; Stuart, A.; Tarailo-Graovac, M. Dissecting the genetic and etiological causes of primary microcephaly. Front. Neurol. 2020, 11, 570830. [Google Scholar] [CrossRef]
- Jackson, A.P.; Eastwood, H.; Bell, S.M.; Adu, J.; Toomes, C.; Carr, I.M.; Roberts, E.; Hampshire, D.J.; Crow, Y.J.; Mighell, A.J. Identification of microcephalin, a protein implicated in determining the size of the human brain. Am. J. Hum. Genet. 2002, 71, 136–142. [Google Scholar] [CrossRef] [Green Version]
- Zhong, X.; Pfeifer, G.P.; Xu, X. Microcephalin encodes a centrosomal protein. Cell Cycle 2006, 5, 457–458. [Google Scholar] [CrossRef]
- Zhou, Z.-W.; Tapias, A.; Bruhn, C.; Gruber, R.; Sukchev, M.; Wang, Z.-Q. DNA damage response in microcephaly development of MCPH1 mouse model. DNA Repair 2013, 12, 645–655. [Google Scholar] [CrossRef]
- Javed, A.O.; Li, Y.; Muffat, J.; Su, K.-C.; Cohen, M.A.; Lungjangwa, T.; Aubourg, P.; Cheeseman, I.M.; Jaenisch, R. Microcephaly modeling of kinetochore mutation reveals a brain-specific phenotype. Cell Rep. 2018, 25, 368–382.e365. [Google Scholar] [CrossRef] [Green Version]
- Bond, J.; Roberts, E.; Mochida, G.H.; Hampshire, D.J.; Scott, S.; Askham, J.M.; Springell, K.; Mahadevan, M.; Crow, Y.J.; Markham, A.F. ASPM is a major determinant of cerebral cortical size. Nat. Genet. 2002, 32, 316–320. [Google Scholar] [CrossRef]
- Gai, M.; Bianchi, F.T.; Vagnoni, C.; Vernì, F.; Bonaccorsi, S.; Pasquero, S.; Berto, G.E.; Sgrò, F.; Chiotto, A.M.; Annaratone, L. ASPM and CITK regulate spindle orientation by affecting the dynamics of astral microtubules. EMBO Rep. 2016, 17, 1396–1409. [Google Scholar] [CrossRef] [Green Version]
- Gabriel, E.; Wason, A.; Ramani, A.; Gooi, L.M.; Keller, P.; Pozniakovsky, A.; Poser, I.; Noack, F.; Telugu, N.S.; Calegari, F.; et al. CPAP promotes timely cilium disassembly to maintain neural progenitor pool. EMBO J. 2016, 35, 803–819. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Girimaji, S.C.; Duvvari, M.R.; Blanton, S.H. Mutations in STIL, encoding a pericentriolar and centrosomal protein, cause primary microcephaly. Am. J. Hum. Genet. 2009, 84, 286–290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hussain, M.S.; Baig, S.M.; Neumann, S.; Nürnberg, G.; Farooq, M.; Ahmad, I.; Alef, T.; Hennies, H.C.; Technau, M.; Altmüller, J. A truncating mutation of CEP135 causes primary microcephaly and disturbed centrosomal function. Am. J. Hum. Genet. 2012, 90, 871–878. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, K.; Lee, S.; Chang, J.; Rhee, K. A novel function of CEP135 as a platform protein of C-NAP1 for its centriolar localization. Exp. Cell Res. 2008, 314, 3692–3700. [Google Scholar] [CrossRef] [PubMed]
- Tovini, L.; McClelland, S.E. Impaired CENP-E function renders large chromosomes more vulnerable to congression failure. Biomolecules 2019, 9, 44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, M.A.; Rupp, V.M.; Orpinell, M.; Hussain, M.S.; Altmüller, J.; Steinmetz, M.O.; Enzinger, C.; Thiele, H.; Höhne, W.; Nürnberg, G. A missense mutation in the PISA domain of HsSAS-6 causes autosomal recessive primary microcephaly in a large consanguineous Pakistani family. Hum. Mol. Genet. 2014, 23, 5940–5949. [Google Scholar] [CrossRef]
- Alakbarzade, V.; Hameed, A.; Quek, D.Q.; Chioza, B.A.; Baple, E.L.; Cazenave-Gassiot, A.; Nguyen, L.N.; Wenk, M.R.; Ahmad, A.Q.; Sreekantan-Nair, A. A partially inactivating mutation in the sodium-dependent lysophosphatidylcholine transporter MFSD2A causes a non-lethal microcephaly syndrome. Nat. Genet. 2015, 47, 814. [Google Scholar] [CrossRef]
- Yamamoto, S.; Jaiswal, M.; Charng, W.-L.; Gambin, T.; Karaca, E.; Mirzaa, G.; Wiszniewski, W.; Sandoval, H.; Haelterman, N.A.; Xiong, B. A drosophila genetic resource of mutants to study mechanisms underlying human genetic diseases. Cell 2014, 159, 200–214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Link, N.; Chung, H.; Jolly, A.; Withers, M.; Tepe, B.; Arenkiel, B.R.; Shah, P.S.; Krogan, N.J.; Aydin, H.; Geckinli, B.B. Mutations in ANKLE2, a ZIKA virus target, disrupt an asymmetric cell division pathway in Drosophila neuroblasts to cause microcephaly. Dev. Cell 2019, 51, 713–729.e716. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Bielas, S.L.; Zaki, M.S.; Ismail, S.; Farfara, D.; Um, K.; Rosti, R.O.; Scott, E.C.; Tu, S.; Chi, N.C. Biallelic mutations in citron kinase link mitotic cytokinesis to human primary microcephaly. Am. J. Hum. Genet. 2016, 99, 501–510. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ranade, D.; Koul, S.; Thompson, J.; Prasad, K.B.; Sengupta, K. Chromosomal aneuploidies induced upon Lamin B2 depletion are mislocalized in the interphase nucleus. Chromosoma 2017, 126, 223–244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sebastian, W.A.; Shiraishi, H.; Shimizu, N.; Umeda, R.; Lai, S.; Ikeuchi, M.; Morisaki, I.; Yano, S.; Yoshimura, A.; Hanada, R. Ankle2 deficiency-associated microcephaly and spermatogenesis defects in zebrafish are alleviated by heterozygous deletion of vrk1. Biochem. Biophys. Res. Commun. 2022, 624, 95–101. [Google Scholar] [CrossRef]
- Dragich, J.M.; Kuwajima, T.; Hirose-Ikeda, M.; Yoon, M.S.; Eenjes, E.; Bosco, J.R.; Fox, L.M.; Lystad, A.H.; Oo, T.F.; Yarygina, O. Autophagy linked FYVE (Alfy/WDFY3) is required for establishing neuronal connectivity in the mammalian brain. Elife 2016, 5, e14810. [Google Scholar] [CrossRef]
- Shi, L.; Qalieh, A.; Lam, M.M.; Keil, J.M.; Kwan, K.Y. Robust elimination of genome-damaged cells safeguards against brain somatic aneuploidy following Knl1 deletion. Nat. Commun. 2019, 10, 2588. [Google Scholar] [CrossRef] [Green Version]
- McIntyre, R.E.; Lakshminarasimhan Chavali, P.; Ismail, O.; Carragher, D.M.; Sanchez-Andrade, G.; Forment, J.V.; Fu, B.; Del Castillo Velasco-Herrera, M.; Edwards, A.; Van der Weyden, L. Disruption of mouse Cenpj, a regulator of centriole biogenesis, phenocopies Seckel syndrome. PLoS Genet. 2012, 8, e1003022. [Google Scholar] [CrossRef] [Green Version]
- Fujikura, K.; Setsu, T.; Tanigaki, K.; Abe, T.; Kiyonari, H.; Terashima, T.; Sakisaka, T. Kif14 mutation causes severe brain malformation and hypomyelination. PLoS ONE 2013, 8, e53490. [Google Scholar] [CrossRef] [Green Version]
- Guemez-Gamboa, A.; Nguyen, L.N.; Yang, H.; Zaki, M.S.; Kara, M.; Ben-Omran, T.; Akizu, N.; Rosti, R.O.; Rosti, B.; Scott, E. Inactivating mutations in MFSD2A, required for omega-3 fatty acid transport in brain, cause a lethal microcephaly syndrome. Nat. Genet. 2015, 47, 809–813. [Google Scholar] [CrossRef] [Green Version]
- Scala, M.; Chua, G.L.; Chin, C.F.; Alsaif, H.S.; Borovikov, A.; Riazuddin, S.; Riazuddin, S.; Chiara Manzini, M.; Severino, M.; Kuk, A. Biallelic MFSD2A variants associated with congenital microcephaly, developmental delay, and recognizable neuroimaging features. Eur. J. Hum. Genet. 2020, 28, 1509–1519. [Google Scholar] [CrossRef] [PubMed]
- Rao, C.V.; Yamada, H.Y.; Yao, Y.; Dai, W. Enhanced genomic instabilities caused by deregulated microtubule dynamics and chromosome segregation: A perspective from genetic studies in mice. Carcinogenesis 2009, 30, 1469–1474. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- González-Martínez, J.; Cwetsch, A.W.; Martínez-Alonso, D.; López-Sainz, L.R.; Almagro, J.; Melati, A.; Gómez, J.; Pérez-Martínez, M.; Megías, D.; Boskovic, J. Deficient adaptation to centrosome duplication defects in neural progenitors causes microcephaly and subcortical heterotopias. JCI Insight 2021, 6, e146364. [Google Scholar] [CrossRef]
- Szczepanski, S.; Hussain, M.S.; Sur, I.; Altmuller, J.; Thiele, H.; Abdullah, U.; Waseem, S.S.; Moawia, A.; Nurnberg, G.; Noegel, A.A.; et al. A novel homozygous splicing mutation of CASC5 causes primary microcephaly in a large Pakistani family. Hum. Genet. 2016, 135, 157–170. [Google Scholar] [CrossRef] [PubMed]
- Lancaster, M.A.; Renner, M.; Martin, C.A.; Wenzel, D.; Bicknell, L.S.; Hurles, M.E.; Homfray, T.; Penninger, J.M.; Jackson, A.P.; Knoblich, J.A. Cerebral organoids model human brain development and microcephaly. Nature 2013, 501, 373–379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, R.; Sun, L.; Fang, A.; Li, P.; Wu, Q.; Wang, X. Recapitulating cortical development with organoid culture in vitro and modeling abnormal spindle-like (ASPM related primary) microcephaly disease. Protein Cell 2017, 8, 823–833. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fish, J.L.; Kosodo, Y.; Enard, W.; Paabo, S.; Huttner, W.B. Aspm specifically maintains symmetric proliferative divisions of neuroepithelial cells. Proc. Natl. Acad Sci. USA 2006, 103, 10438–10443. [Google Scholar] [CrossRef] [Green Version]
- Fei, J.F.; Haffner, C.; Huttner, W.B. 3’UTR-dependent, miR-92-mediated restriction of Tis21 expression maintains asymmetric neural stem cell division to ensure proper neocortex size. Cell Rep. 2014, 7, 398–411. [Google Scholar] [CrossRef] [Green Version]
- Taverna, E.; Gotz, M.; Huttner, W.B. The cell biology of neurogenesis: Toward an understanding of the development and evolution of the neocortex. Annu. Rev. Cell Dev. Biol. 2014, 30, 465–502. [Google Scholar] [CrossRef]
- Marthiens, V.; Rujano, M.A.; Pennetier, C.; Tessier, S.; Paul-Gilloteaux, P.; Basto, R. Centrosome amplification causes microcephaly. Nat. Cell Biol. 2013, 15, 731–740. [Google Scholar] [CrossRef]
- Yu, T.W.; Mochida, G.H.; Tischfield, D.J.; Sgaier, S.K.; Flores-Sarnat, L.; Sergi, C.M.; Topcu, M.; McDonald, M.T.; Barry, B.J.; Felie, J.M.; et al. Mutations in WDR62, encoding a centrosome-associated protein, cause microcephaly with simplified gyri and abnormal cortical architecture. Nat. Genet. 2010, 42, 1015–1020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kriegstein, A.R.; Noctor, S.C. Patterns of neuronal migration in the embryonic cortex. Trends Neurosci. 2004, 27, 392–399. [Google Scholar] [CrossRef] [PubMed]
- Basto, R.; Brunk, K.; Vinadogrova, T.; Peel, N.; Franz, A.; Khodjakov, A.; Raff, J.W. Centrosome amplification can initiate tumorigenesis in flies. Cell 2008, 133, 1032–1042. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rahit, K.T.H.; Tarailo-Graovac, M. Genetic modifiers and rare mendelian disease. Genes 2020, 11, 239. [Google Scholar] [CrossRef] [Green Version]
- Poulton, C.J.; Schot, R.; Seufert, K.; Lequin, M.H.; Accogli, A.; Annunzio, G.D.; Villard, L.; Philip, N.; de Coo, R.; Catsman-Berrevoets, C.; et al. Severe presentation of WDR62 mutation: Is there a role for modifying genetic factors? Am. J. Med. Genet. Part A 2014, 164A, 2161–2171. [Google Scholar] [CrossRef] [PubMed]
- Duerinckx, S.; Jacquemin, V.; Drunat, S.; Vial, Y.; Passemard, S.; Perazzolo, C.; Massart, A.; Soblet, J.; Racapé, J.; Desmyter, L. Digenic inheritance of human primary microcephaly delineates centrosomal and non-centrosomal pathways. Hum. Mutat. 2020, 41, 512–524. [Google Scholar] [CrossRef] [Green Version]
- Snedeker, J.; Gibbons Jr, W.J.; Paulding, D.F.; Abdelhamed, Z.; Prows, D.R.; Stottmann, R.W. Gpr63 is a modifier of microcephaly in Ttc21b mouse mutants. PLoS Genet. 2019, 15, e1008467. [Google Scholar] [CrossRef] [Green Version]
- Barbosa-Morais, N.L.; Irimia, M.; Pan, Q.; Xiong, H.Y.; Gueroussov, S.; Lee, L.J.; Slobodeniuc, V.; Kutter, C.; Watt, S.; Çolak, R. The evolutionary landscape of alternative splicing in vertebrate species. Science 2012, 338, 1587–1593. [Google Scholar] [CrossRef] [Green Version]
- Bond, J.; Scott, S.; Hampshire, D.J.; Springell, K.; Corry, P.; Abramowicz, M.J.; Mochida, G.H.; Hennekam, R.C.; Maher, E.R.; Fryns, J.-P. Protein-truncating mutations in ASPM cause variable reduction in brain size. Am. J. Hum. Genet. 2003, 73, 1170–1177. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, I.; Baig, S.; Abdulkareem, A.; Hussain, M.; Sur, I.; Toliat, M.; Nürnberg, G.; Dalibor, N.; Moawia, A.; Waseem, S. Genetic heterogeneity in Pakistani microcephaly families revisited. Clin. Genet. 2017, 92, 62–68. [Google Scholar] [CrossRef]
- Farooq, M.; Fatima, A.; Mang, Y.; Hansen, L.; Kjaer, K.W.; Baig, S.M.; Larsen, L.A.; Tommerup, N. A novel splice site mutation in CEP135 is associated with primary microcephaly in a Pakistani family. J. Hum. Genet. 2016, 61, 271. [Google Scholar] [CrossRef] [PubMed]
- Cristofoli, F.; Moss, T.; Moore, H.W.; Devriendt, K.; Flanagan-Steet, H.; May, M.; Jones, J.; Roelens, F.; Fons, C.; Fernandez, A. De novo variants in LMNB1 cause pronounced syndromic microcephaly and disruption of nuclear envelope integrity. Am. J. Hum. Genet. 2020, 107, 753–762. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, H.; Pang, J.; Peng, Y.; Shu, L.; Wang, H. Novel SASS6 compound heterozygous mutations in a Chinese family with primary autosomal recessive microcephaly. Clin. Chim. Acta 2019, 491, 15–18. [Google Scholar] [CrossRef] [PubMed]
- Bettencourt-Dias, M.; Hildebrandt, F.; Pellman, D.; Woods, G.; Godinho, S.A. Centrosomes and cilia in human disease. Trends Genet. 2011, 27, 307–315. [Google Scholar] [CrossRef] [Green Version]
- Fujita, A.; Tsukaguchi, H.; Koshimizu, E.; Nakazato, H.; Itoh, K.; Kuraoka, S.; Komohara, Y.; Shiina, M.; Nakamura, S.; Kitajima, M. Homozygous splicing mutation in NUP133 causes Galloway–Mowat syndrome. Ann. Neurol. 2018, 84, 814–828. [Google Scholar] [CrossRef] [PubMed]
- Al-Dosari, M.S.; Shaheen, R.; Colak, D.; Alkuraya, F.S. Novel CENPJ mutation causes Seckel syndrome. J. Med. Genet. 2010, 47, 411–414. [Google Scholar] [CrossRef] [PubMed]
- Arboleda, V.A.; Lee, H.; Dorrani, N.; Zadeh, N.; Willis, M.; Macmurdo, C.F.; Manning, M.A.; Kwan, A.; Hudgins, L.; Barthelemy, F. De novo nonsense mutations in KAT6A, a lysine acetyl-transferase gene, cause a syndrome including microcephaly and global developmental delay. Am. J. Hum. Genet. 2015, 96, 498–506. [Google Scholar] [CrossRef] [Green Version]
- Breuss, M.; Heng, J.I.-T.; Poirier, K.; Tian, G.; Jaglin, X.H.; Qu, Z.; Braun, A.; Gstrein, T.; Ngo, L.; Haas, M. Mutations in the β-tubulin gene TUBB5 cause microcephaly with structural brain abnormalities. Cell Rep. 2012, 2, 1554–1562. [Google Scholar] [CrossRef] [Green Version]
- Dinwiddie, D.L.; Soden, S.E.; Saunders, C.J.; Miller, N.A.; Farrow, E.G.; Smith, L.D.; Kingsmore, S.F. De novo frameshift mutation in ASXL3 in a patient with global developmental delay, microcephaly, and craniofacial anomalies. BMC Med. Genom. 2013, 6, 32. [Google Scholar] [CrossRef] [Green Version]
- Dhamija, R.; Graham Jr, J.M.; Smaoui, N.; Thorland, E.; Kirmani, S. Novel de novo SPOCK1 mutation in a proband with developmental delay, microcephaly and agenesis of corpus callosum. Eur. J. Med. Genet. 2014, 57, 181–184. [Google Scholar] [CrossRef]
- Mirzaa, G.M.; Enyedi, L.; Parsons, G.; Collins, S.; Medne, L.; Adams, C.; Ward, T.; Davitt, B.; Bicknese, A.; Zackai, E. Congenital microcephaly and chorioretinopathy due to de novo heterozygous KIF11 mutations: Five novel mutations and review of the literature. Am. J. Med. Genet. Part A 2014, 164, 2879–2886. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, N.; Xu, Y.; Li, G.; Yu, T.; Yao, R.-E.; Wang, X.; Wang, J. Exome sequencing identifies a de novo mutation of CTNNB1 gene in a patient mainly presented with retinal detachment, lens and vitreous opacities, microcephaly, and developmental delay: Case report and literature review. Medicine 2017, 96, e6914. [Google Scholar] [CrossRef] [PubMed]
- Jacob, A.; Pasquier, J.; Carapito, R.; Auradé, F.; Molitor, A.; Froguel, P.; Fakhro, K.; Halabi, N.; Viot, G.; Bahram, S. A de novo synonymous variant in EFTUD2 disrupts normal splicing and causes mandibulofacial dysostosis with microcephaly: Case report. BMC Med. Genet. 2020, 21, 182. [Google Scholar] [CrossRef] [PubMed]
Gene | Variant | No. of Patients | Additional Phenotypes | Diagnosis/Common Features | Study |
---|---|---|---|---|---|
ASPM | c.688delG/c.3340delA | 2 | SS | MCPH/SH, SGP, ID, BP | [26] |
c.688delG/c.9190C > T | 1 | SS | |||
c.3979C > T | 1 | SS | |||
c.9541C > T | 1 | SS | |||
Not identified | - | 1 | SS, syndactyly, strabismus | MCPH/SH, ID | [27] |
ASPM | c.6854_6855del | 5 | SS | MCPH/ SH, ID, DD, speech delay | [28] |
ASPM | c.3742-1G > C | 2 | SS | MCPH/SGP, ID, epilepsy, speech delay | [29] |
ASPM | c.9286C > T | 3 | SS, hearing impairment | MCPH, ID | [30] |
c.3055C > T | 8 | SS | |||
c.9319C > T | 3 | SS | |||
Not identified | - | 2 | SS | MCPH | [30] |
2 | SS, joint deformity | ||||
3 | SS, cataract | ||||
3 | SS, strabismus, ataxia | ||||
2 | SS | ||||
ASPM | c.3945_3946delAG/c.8191_8194delGAAA | 1 | SS | MCPH, ID | [31] |
PHC1 | c.2974C > T | 2 | SS | PM/SH | [33] |
STIL | c.2150G > A | 2 | SS, sleep defects | MCPH, ID | [32] |
STIL | c.4849C > T | 2 | SS, Holoprosencephaly | MCPH, ID | [27] |
MCPH1 | 150–200 kb deletion of first 6 exons | 6 | SS | MCPH, ID | [34] |
MCPH1 | 61 kb homozygous deletion of first 8 exon | 1 | SS, strabismus, ventriculomegaly | CM, ID, SGP, speech delay | [35] |
WDR62 | c.668T > C | 2 | SS, Cortical malformations: hemispherical asymmetry, diffuse pachygyria, thick gray matter, indistinct gray-white matter junction, corpus callosum and white matter hypoplasia | CM, ID, DD | [36] |
WDR62 | c.1027C > T | 2 | SS, delayed motor skills | MCPH, ID, DD, speech delay | [37] |
WDR62 | c.1598A > G | 2 | SS, structural abnormalities and cortical malformation of the brain, motor impairment, increased deep tendon reflexes, flexible joint contractures, sensorineural hearing loss, vertical nystagmus, focal seizures | MCPH, ID, DD, speech delay | [38] |
WDR62 | c.2195C > T; p.(Thr732Ile) | 5 | SS, seizures | MCPH, ID, speech delay | [43] |
CDK5RAP2 | c. 4441C > T | 1 | SS at birth (only), motor delay Simian crease, large map-like hyperpigmentation, tic disorder | MCPH, SPG, ID, DD, speech delay | [41] |
CDK5RAP2 | c.524_528del/c.4005-1G > A | 1 | SS, delayed bone age, asthma, sleep apnea | MCPH, ID, DD, speech defects | [42] |
CDK5RAP2 | c.448C > T; p.(Arg150*) | 3 | SS | MCPH, DD, ID, speech delay | [43] |
KNL1 | c.6125G > A | 4 | SS | MCPH, ID, DD, speech delay | [40] |
KNL1 | c.6125G > A | 4 | SS, cerebellar vermis hypoplasia | MCPH, ID, DD, speech delay | [39] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Asif, M.; Abdullah, U.; Nürnberg, P.; Tinschert, S.; Hussain, M.S. Congenital Microcephaly: A Debate on Diagnostic Challenges and Etiological Paradigm of the Shift from Isolated/Non-Syndromic to Syndromic Microcephaly. Cells 2023, 12, 642. https://doi.org/10.3390/cells12040642
Asif M, Abdullah U, Nürnberg P, Tinschert S, Hussain MS. Congenital Microcephaly: A Debate on Diagnostic Challenges and Etiological Paradigm of the Shift from Isolated/Non-Syndromic to Syndromic Microcephaly. Cells. 2023; 12(4):642. https://doi.org/10.3390/cells12040642
Chicago/Turabian StyleAsif, Maria, Uzma Abdullah, Peter Nürnberg, Sigrid Tinschert, and Muhammad Sajid Hussain. 2023. "Congenital Microcephaly: A Debate on Diagnostic Challenges and Etiological Paradigm of the Shift from Isolated/Non-Syndromic to Syndromic Microcephaly" Cells 12, no. 4: 642. https://doi.org/10.3390/cells12040642
APA StyleAsif, M., Abdullah, U., Nürnberg, P., Tinschert, S., & Hussain, M. S. (2023). Congenital Microcephaly: A Debate on Diagnostic Challenges and Etiological Paradigm of the Shift from Isolated/Non-Syndromic to Syndromic Microcephaly. Cells, 12(4), 642. https://doi.org/10.3390/cells12040642