Beyond Cellular Immunity: On the Biological Significance of Insect Hemocytes
Abstract
1. Introduction
2. Hemocyte Actions during Molting
3. Hemocytes Contribute to Surviving Severe Hypoxia
4. PPO Actions beyond Immunity
5. Hemocytes Produce Vitellogenin in a Rice Leafhopper
6. Drosophila Hemocytes Act in Cancer Recognition and Responses
7. Clearing Apoptotic Cells from CNS
8. Hemocytes Create Hematopoietic Niches
9. Hemocytes Produce and Transport the Lipoprotein, ApoLP-III
10. Hemocytes Transport Iron
11. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, Q.Y.; Yan, Z.B.; Meng, Y.M.; Hong, X.Y.; Shao, G.; Ma, J.J.; Cheng, X.R.; Lin, J.; Kang, J.; Fu, C.Y. Antimicrobial peptides: Mechanism of action, activity and clinical potential. Mil. Med. Res. 2021, 8, 48. [Google Scholar] [CrossRef] [PubMed]
- Dunn, P.E.; Drake, D.R. Fate of bacteria injected into naïve and immunized larvae of the tobacco hornworm Manduca sexta. J. Invertebr. Pathol. 1993, 41, 77–85. [Google Scholar] [CrossRef]
- Miller, J.S.; Nguyen, T.; Stanley-Samuelson, D.W. Eicosanoids mediate insect nodulation response to bacterial infections. Proc. Natl. Acad. Sci. USA 1994, 91, 12418–12422. [Google Scholar] [CrossRef]
- Rizki, M.T.M. Alterations in the haemocyte population of Drosophila melanogaster. J. Morph. 1957, 100, 437–458. [Google Scholar] [CrossRef]
- Gillespie, J.P.; Kanost, M.R.; Trenczek, T. Biological mediators of insect immunity. Annu. Rev. Entomol. 1997, 42, 611–643. [Google Scholar] [CrossRef] [PubMed]
- Lemaitre, B.; Hoffmann, J. The host defense of Drosophila melanogaster. Annu. Rev. Immunol. 2007, 25, 697–743. [Google Scholar] [CrossRef]
- Yang, L.; Qiu, L.M.; Fang, Q.; Stanley, D.W.; Ye, G.Y. Cellular humoral immune interactions between Drosophila and its parasitoids. Insect Sci. 2021, 28, 1208–1227. [Google Scholar] [CrossRef]
- Lazzarro, B.P. Special issue on Insect Immunity. Insects. 2012. Available online: https://www.mdpi.com/journal/insects/special_issues/insect_immunity?view=abstract&listby=type (accessed on 10 December 2022).
- Kingsolver, M.B.; Hardy, R.W. Making connections in insect innate immunity. Proc. Natl. Acad. Sci. USA 2012, 109, 18639–18640. [Google Scholar] [CrossRef]
- Cooper, D.; Eleftherianos, I. Memory and specificity in the insect immune system; current perspectives and future challenges. Front. Immunol. 2017, 8, 539. [Google Scholar] [CrossRef]
- Stanley, D.; Kim, Y. Eicosanoid signaling in insects: From discovery to plant protection. Crit. Rev. Plant Sci. 2014, 33, 20–63. [Google Scholar] [CrossRef]
- Stanley, D.; Kim, Y. Insect prostaglandins and other eicosanoids: From molecular to physiological actions. Adv. Insect Physiol. 2019, 56, 283–343. [Google Scholar]
- Kim, Y.; Stanley, D. Eicosanoid signaling in insect immunology: New genes and unresolved issues. Genes 2021, 12, 211. [Google Scholar] [CrossRef] [PubMed]
- Moret, Y.; Schmid-Hempel, P. Survival for immunity: The price of immune system activation for bumblebee workers. Science 2000, 290, 1166–1168. [Google Scholar] [CrossRef] [PubMed]
- Bedick, J.C.; Pardy, R.L.; Howard, R.W.; Stanley, D.W. Insect cellular reactions to the lipopolysaccharide component of the bacterium Serratia marcescens are mediated by eicosanoids. J. Insect Physiol. 2000, 46, 1481–1487. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Ringbauer, J.A.; Goodman, C.L.; Reall, T.; Jiang, X.F.; Stanley, D. Prostaglandin-mediated recovery from bacteremia delays larval development in fall armyworm, Spodoptera frugiperda. Arch. Insect Biochem. Physiol. 2018, 97, e21444. [Google Scholar] [CrossRef]
- Ardia, D.R.; Gantz, J.E.; Schneider, B.C.; Strebel, S. Costs of immunity in insects: An induced immune response increases metabolic rate and decreases antimicrobial activity. Funct. Ecol. 2012, 26, 732–739. [Google Scholar] [CrossRef]
- Banerjee, U.; Girard, J.R.; Goins, L.M.; Spratford, C.M. Drosophila as a genetic model for hematopoiesis. Genetics 2019, 211, 367–417. [Google Scholar] [CrossRef]
- Mase, A.; Augsburger, J.; Brückner, K. Macrophages and their organ locations shape each other in development and homeostasis—A Drosophila perspective. Front. Cell Dev. Biol. 2021, 9, 630272. [Google Scholar] [CrossRef]
- Wigglesworth, V.B. The role of the haemocytes in the growth and moulting of an insect, Rhodnius prolixus (Hemiptera). J. Exp. Biol. 1955, 32, 649–663. [Google Scholar] [CrossRef]
- Wigglesworth, V.B. The haemocytes and connective tissue formation in an insect, Rhodnius prolixus (Hemiptera). Q. J. Microsc. Sci. 1956, 97, 89–98. [Google Scholar] [CrossRef]
- Ley, K.; Kansas, G.S. Selectins in T-cell recruitment to non-lymphoid tissues and sites of inflammation. Nature Rev. Immunol. 2004, 4, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Okazaki, T.; Okudaira, N.; Iwabuchi, K.; Fugo, H.; Nagai, T. Apoptosis and adhesion of hemocytes during molting stage of silkworm, Bombyx mori. Zool. Sci. 2006, 23, 299–304. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Sass, M.; Kiss, A.; Locke, M. Integument and hemocyte peptides. J. Insect Physiol. 1994, 40, 407–421. [Google Scholar] [CrossRef]
- Csikos, G.; Molnar, K.; Borhegyi, N.H.; Sass, M. Localization of a cuticular protein during the postembryonal development of Manduca sexta. Acta Biolog. Hung. 2001, 52, 457–471. [Google Scholar]
- Huang, C.H.; Chon, K.Y.; Lei, K.F. Analysis of the internal hypoxic environment in solid tumor tissue using a folding paper system. ACS Appl. Mater. Interfaces 2021, 13, 33885–33893. [Google Scholar] [CrossRef] [PubMed]
- Carpenter, S.R. Eutrophication of aquatic ecosystems: Bistability and soil phosphorus. Proc. Natl. Acad. Sci. USA 2005, 102, 10002–10005. [Google Scholar] [CrossRef] [PubMed]
- Rabalais, N.N.; Turner, R.E. Gulf of Mexico hypoxia: Past, Present and Future. Limnol. Oceanogr. Bull. 2019, 28, 117–124. [Google Scholar] [CrossRef]
- Holter, P. Concentrations of oxygen, carbon dioxide and methane in the air within dung pats. Pedobiologia 1991, 35, 381–386. [Google Scholar]
- Whipple, S.D.; Cavallaro, M.; Hoback, W.W. Immersion tolerance in dung beetles (Coleoptera: Scarabaeidae) differs among species but not behavioral groups. Coleopt. Bull. 2013, 67, 257–263. [Google Scholar] [CrossRef]
- Carvallaro, M.C.; Barnhart, M.C.; Hoback, W.W. Causes of rapid carrion beetle (Coleoptera: Silphidae) death in flooded pitfall traps, response to soil flooding, immersion tolerance, and swimming behavior. Environ. Entomol. 2017, 46, 362–368. [Google Scholar]
- Azad, P.; Zhou, D.; Russo, E.; Haddad, G.G. Distinct mechanisms underlying tolerance to intermittent and constant hypoxia in Drosophila melanogaster. PLoS ONE 2009, 4, e5371. [Google Scholar] [CrossRef] [PubMed]
- Azad, P.; Ryu, J.; Haddad, G.G. Distinct role of Hsp70 in Drosophila hemocytes during severe hypoxia. Free Radic. Biol. Med. 2011, 51, 530–538. [Google Scholar] [CrossRef] [PubMed]
- Shrestha, S.; Stanley, D.; Kim, Y. PGE2 induces oenocytoid cell lysis via a G protein- coupled receptor in the beet armyworm, Spodoptera exigua. J. Insect Physiol. 2011, 57, 1568–1576. [Google Scholar] [CrossRef] [PubMed]
- Lu, A.; Zhang, Q.; Zhang, J.; Yang, B.; Wu, K.; Xie, W.; Luan, Y.X.; Ling, E. Insect prophenoloxidase: The view beyond immunity. Front. Physiol. 2014, 5, 252. [Google Scholar] [CrossRef]
- Shao, Q.; Yang, B.; Xu, Q.; Li, X.; Lu, Z.; Wang, C.; Huang, Y.; Söderhäll, K.; Ling, E. Hindgut innate immunity and regulation of fecal microbiota through melanization in insects. J. Biol. Chem. 2012, 287, 14270–14279. [Google Scholar] [CrossRef]
- An, S.; Dong, S.; Wang, Q.; Li, S.; Gilbert, L.I.; Stanley, D.; Song, Q. Insect neuropeptide bursicon homodimers induce innate immune and stress genes during molting by activating the NF-kB transcription factor Relish. PLoS ONE 2012, 7, e34510. [Google Scholar] [CrossRef]
- Wang, Q.; Li, J.; Dang, C.; Chang, X.; Fang, Q.; Stanley, D.; Ye, G. Rice dwarf virus infection alters green rice hopper host preference and feeding behavior. PLoS ONE 2018, 13, e0203364. [Google Scholar]
- Huo, Y.; Yu, Y.; Chen, L.; Li, Q.; Zhang, M.; Song, Z.; Chen, X.; Fang, R.; Zhang, L. Insect tissue-specific vitellogenin facilitates transmission of plant virus. PLoS Pathog. 2018, 14, e1006909. [Google Scholar] [CrossRef]
- Cardoso-Jaime, V.; Tikhe, C.V.; Dong, S.; Dimopoulos, G. The role of mosquito hemocytes in viral infections. Viruses 2022, 14, 2088. [Google Scholar] [CrossRef]
- Cheng, G.; Cox, J.; Wang, P.; Krishnan, M.N.; Dai, J.; Qian, F.; Anderson, J.F.; Fikrig, E. A C-type lectin collaborates with a CD45 phosphatase homolog to facilitate West Nile Virus infection of mosquitoes. Cell 2010, 142, 714–725. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, F.; Liu, J.; Xiao, X.; Zhang, S.; Qin, C.; Xiang, Y.; Wang, P.; Cheng, G. Transmission-blocking antibodies against mosquito C-type lectins for Dengue prevention. PLoS Pathog. 2014, 10, e1003931. [Google Scholar] [CrossRef] [PubMed]
- Mirzoyan, Z.; Sollazzo, M.; Allocca, M.; Valenza, A.M.; Grifoni, D.; Bellcosta, P. Drosophila melanogaster: A model organism to study cancer. Front. Genet. 2019, 10, 51. [Google Scholar] [CrossRef] [PubMed]
- Bilder, D. Epithelial polarity and proliferation control: Links from the Drosophila neoplastic tumor suppressors. Genes Dev. 2004, 18, 1909–1925. [Google Scholar] [CrossRef] [PubMed]
- Parisi, F.; Stefanatos, R.K.; Strathdee, K.; Yu, Y.; Vidal, M. Transformed epithelia trigger non-tissue-autonomous tumor suppressor response by adipocytes via activation of Toll and Eiger/TNF signaling. Cell Rep. 2014, 6, 855–867. [Google Scholar] [CrossRef]
- Araki, M.; Kurihara, M.; Kinoshita, S.; Awane, R.; Sato, T.; Ohkawa, Y.; Inoue, Y.H. Anti-tumour effects of antimicrobial peptides, components of the innate immune system, against haematopoietic tumours in Drosophila mxc mutants. Dis. Model. Mech. 2019, 12, dmm037721. [Google Scholar] [CrossRef]
- Parvy, J.P.; Yu, Y.; Dostalova, A.; Kondo, S.; Kurjan, A.; Bulet, P.; Lemaître, B.; Vidal, M.; Cordero, J.B. The antimicrobial peptide defensin cooperates with tumor necrosis factor to drive tumor cell death in Drosophila. eLife 2019, 8, e45061. [Google Scholar] [CrossRef]
- Roddie, H.G.; Armitage, E.L.; Coates, J.A.; Johnston, S.A.; Evans, I.R. Simu-dependent clearance of dying cells regulates macrophage function and inflammation resolution. PLoS Biol. 2019, 17, e2006741. [Google Scholar] [CrossRef]
- Freeman, M.R.; Doherty, J. Glial cell biology in Drosophila and vertebrates. Trends Neurosci. 2006, 29, 82–90. [Google Scholar] [CrossRef]
- Han, C.; Song, Y.; Xiao, H.; Wang, D.; Franc, N.C.; Jan, L.Y.; Jan, Y.N. Epidermal cells are the primary phagocytes in the fragmentation and clearance of degenerating dendrites in Drosophila. Neuron 2013, 81, 544–560. [Google Scholar] [CrossRef]
- Martinez-Agosto, J.A.; Mikkola, H.K.A.; Hartenstein, V.; Banerjee, U. The hematopoietic stem cell and its niche: A comparative view. Genes Dev. 2022, 21, 3044–3060. [Google Scholar] [CrossRef]
- Csordás, G.; Grawe, F.; Uhlirova, M. Eater cooperates with multiplexin to drive the formation of hematopoietic compartments. eLife 2020, 9, e57297. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.J.; Je, H.J.; Park, S.Y.; Lee, I.H.; Jin, B.R.; Yun, H.K.; Yun, C.Y.; Han, Y.S.; Kang, Y.J.; Seo, S.J. Immune activation of apolipophorin-III and its distribution in hemocyte from Hyphantria cunea. Insect Biochem. Mol. Biol. 2004, 34, 1011–1023. [Google Scholar] [CrossRef] [PubMed]
- Locke, M.; Nichol, H. Iron economy in insects: Transport, metabolism and storage. Annu. Rev. Entomol. 1992, 37, 195–215. [Google Scholar] [CrossRef]
- Locke, M. Apoferritin in the vacuolar system of insect hemocytes. Tissue Cell 1991, 23, 367–375. [Google Scholar] [CrossRef]
- Qia, L.; Gao, J.R.; Clark, J.M. Sequencing and characterization of a cDNA encoding a ferritin subunit of Colorado potato beetle, Leptinotarsa decemlineata. Arch. Insect Biochem. Physiol. 2005, 60, 140–150. [Google Scholar] [CrossRef]
- Pham, D.Q.-D.; Zhang, D.; Hufnagel, D.H.; Winzerling, J.J. Manduca sexta hemolymph ferritin: cDNA sequence and mRNA expression. Gene 1996, 172, 255–259. [Google Scholar] [CrossRef] [PubMed]
- Pham, D.Q.D.; Winzerling, J.J. Insect ferritins: Typical or atypical? Biochim. Biophys. Acta 2010, 1800, 824–833. [Google Scholar] [CrossRef]
- González-Morales, N.; Mendoza-Ortíz, M.Á.; Blowes, L.M.; Missirlis, F.; Riesgo-Escovar, J.R. Ferritin is required in multiple tissues during Drosophila melanogaster development. PLoS ONE 2015, 10, e0133499. [Google Scholar] [CrossRef] [PubMed]
- Pichon, R.; Pinaud, S.; Vignal, E.; Chaparro, C.; Pratlong, M.; Portet, A.; Duval, D.; Galinier, R.; Gourbal, B. Single cell RNA sequencing reveals hemocyte heterogeneity in Biomphalaria glabrata: Plasticity over diversity. Front. Immunol. 2022, 13, 956871. [Google Scholar] [CrossRef]
- Li, H.; Janssens, J.; De Waegeneer, M.; Kolluru, S.S.; Davie, K.; Gardeux, V.; Saelens, W.; David, F.P.; Brbić, M.; Spanier, K.; et al. Fly Call Atlas: A single-nucleus transcriptomic atlas of the adult fruit fly. Science 2022, 375, 991. [Google Scholar] [CrossRef]
- Dhahbi, A.B.; Cargui, Y.; Boulaaras, S.M.; Khalifa, S.B.; Koko, W.; Alresheedi, F. Mathematical modelling of the sterile insect technique using different release strategies. Math. Prob. Engin. 2020, 2020, 8896566. [Google Scholar]
Category | Physiological Functions | Model Insects | References |
---|---|---|---|
Immunity | Cellular immunity | Manduca sexta | [2] |
Phagocytosis | |||
Nodulation | |||
Encapsulation | |||
Humoral immunity | Drosophila melanogaster | [6] | |
Antimicrobial peptides | |||
Melanization | |||
Non-Immunity | Molting and development | Rhodnius prolixus | [20,21] |
Surviving severe hypoxia | Drosophila melanogaster | [33] | |
Phenoloxidase production | Bombyx mori | [36] | |
Vitellogenin production | Laodelphax striatellus | [38,39] | |
Recognition of cancer cells | Drosophila melanogaster | [45,46,47] | |
Clearing apoptotic cells | Drosophila melanogaster | [48,49] | |
Hematopoiesis | Drosophila melanogaster | [51,52] | |
Lipoprotein synthesis | Hyphantria cunea | [53] | |
Iron transport | Calpodes ethlius | [55] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stanley, D.; Haas, E.; Kim, Y. Beyond Cellular Immunity: On the Biological Significance of Insect Hemocytes. Cells 2023, 12, 599. https://doi.org/10.3390/cells12040599
Stanley D, Haas E, Kim Y. Beyond Cellular Immunity: On the Biological Significance of Insect Hemocytes. Cells. 2023; 12(4):599. https://doi.org/10.3390/cells12040599
Chicago/Turabian StyleStanley, David, Eric Haas, and Yonggyun Kim. 2023. "Beyond Cellular Immunity: On the Biological Significance of Insect Hemocytes" Cells 12, no. 4: 599. https://doi.org/10.3390/cells12040599
APA StyleStanley, D., Haas, E., & Kim, Y. (2023). Beyond Cellular Immunity: On the Biological Significance of Insect Hemocytes. Cells, 12(4), 599. https://doi.org/10.3390/cells12040599