Molecular Aspects of Allergen-Specific Immunotherapy in Patients with Seasonal Allergic Rhinitis
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Sources and Searches
2.2. Study Selection
2.3. Data Synthesis and Analysis
3. Results
3.1. Patient Characteristics
3.2. Evaluation of Component-Resolved Diagnosis
3.3. Efficiency of Component-Resolved Diagnosis for Use in ASIT
3.4. Outcomes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tsabouri, S.; Tseretopoulou, X.; Priftis, K.; Ntzani, E.E. Omalizumab for the Treatment of Inadequately Controlled Allergic Rhinitis: A Systematic Review and Meta-Analysis of Randomized Clinical Trials. J. Allergy Clin. Immunol. Pract. 2014, 2, 332–340.e1. [Google Scholar] [CrossRef] [PubMed]
- Morjaria, J.B.; Caruso, M.; Emma, R.; Russo, C.; Polosa, R. Treatment of Allergic Rhinitis as a Strategy for Preventing Asthma. Curr. Allergy Asthma Rep. 2018, 18, 23. [Google Scholar] [CrossRef] [PubMed]
- Brożek, J.L.; Bousquet, J.; Agache, I.; Agarwal, A.; Bachert, C.; Bosnic-Anticevich, S.; Brignardello-Petersen, R.; Canonica, G.W.; Casale, T.; Chavannes, N.H.; et al. Allergic Rhinitis and its Impact on Asthma (ARIA) guidelines—2016 revision. J. Allergy Clin. Immunol. 2017, 140, 950–958. [Google Scholar] [CrossRef] [PubMed]
- Jutel, M.; Agache, I.; Bonini, S.; Burks, A.W.; Calderon, M.; Canonica, W.; Cox, L.; Demoly, P.; Frew, A.J.; O’Hehir, R.; et al. International Consensus on Allergen Immunotherapy II: Mechanisms, standardization, and pharmacoeconomics. J. Allergy Clin. Immunol. 2016, 137, 358–368. [Google Scholar] [CrossRef] [PubMed]
- Reddel, H.K.; FitzGerald, J.M.; Bateman, E.D.; Bacharier, L.B.; Becker, A.; Brusselle, G.; Buhl, R.; Cruz, A.A.; Fleming, L.; Inoue, H.; et al. GINA 2019: A fundamental change in asthma management: Treatment of asthma with short-acting bronchodilators alone is no longer recommended for adults and adolescents. Eur. Respir. J. 2019, 53, 1901046. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, K.; Mathie, R.T.; Costelloe, C.; Howick, J. Homeopathy for Allergic Rhinitis: A Systematic Review. J. Altern. Complement. Med. 2017, 23, 426–444. [Google Scholar] [CrossRef]
- Senti, G.; Freiburghaus, A.U.; Larenas-Linnemann, D.; Hoffmann, H.J.; Patterson, A.M.; Klimek, L.; Di Bona, D.; Pfaar, O.; Ahlbeck, L.; Akdis, M.; et al. Intralymphatic Immunotherapy: Update and Unmet Needs. Int. Arch. Allergy Immunol. 2019, 178, 141–149. [Google Scholar] [CrossRef]
- Larsson, O.; Hellkvist, L.; Peterson-Westin, U.; Cardell, L.O. Novel strategies for the treatment of grass pollen-induced allergic rhinitis. Expert Opin. Biol. Ther. 2016, 16, 1143–1150. [Google Scholar] [CrossRef]
- May, J.R.; Dolen, W.K. Management of Allergic Rhinitis: A Review for the Community Pharmacist. Clin. Ther. 2017, 39, 2410–2419. [Google Scholar] [CrossRef]
- Alessandri, C.; Ferrara, R.; Bernardi, M.L.; Zennaro, D.; Tuppo, L.; Giangrieco, I.; Ricciardi, T.; Tamburrini, M.; Ciardiello, M.A.; Mari, A. Molecular approach to a patient’s tailored diagnosis of the oral allergy syndrome. Clin. Transl. Allergy 2020, 10, 22. [Google Scholar] [CrossRef]
- Pablos, I.; Wildner, S.; Asam, C.; Wallner, M.; Gadermaier, G. Pollen Allergens for Molecular Diagnosis. Curr. Allergy Asthma Rep. 2016, 16, 31. [Google Scholar] [CrossRef] [PubMed]
- Crisci, C.D.; Ardusso, L.R.F. A Precision Medicine Approach to Rhinitis Evaluation and Management. Curr. Treat Options Allergy 2020, 7, 93–109. [Google Scholar] [CrossRef] [PubMed]
- Lipworth, B.; Newton, J.; Ram, B.; Small, I.; Schwarze, J. An algorithm recommendation for the pharmacological management of allergic rhinitis in the UK: A consensus statement from an expert panel. npj Prim. Care Respir. Med. 2017, 27, 3. [Google Scholar] [CrossRef] [PubMed]
- Bozek, A. Pharmacological Management of Allergic Rhinitis in the Elderly. Drugs Aging 2017, 34, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Wallace, D.V.; Dykewicz, M.S. Seasonal Allergic Rhinitis: A focused systematic review and practice parameter update. Curr. Opin. Allergy Clin. Immunol. 2017, 17, 286–294. [Google Scholar] [CrossRef] [PubMed]
- Hoyte, F.C.L.; Nelson, H.S. Recent advances in allergic rhinitis [version 1; peer review: 2 approved]. F1000Research 2018, 7, 1333. [Google Scholar] [CrossRef]
- Chesné, J.; Schmidt-Weber, C.B.; von-Bieren, J.E. The Use of Adjuvants for Enhancing Allergen Immunotherapy Efficacy. Immunol. Allergy Clin. North Am. 2016, 36, 125–145. [Google Scholar] [CrossRef]
- Ciprandi, G.; Incorvaia, C.; Frati, F. Management of polysensitized patient: From molecular diagnostics to biomolecular immunotherapy. Expert Rev. Clin. Immunol. 2015, 11, 973–976. [Google Scholar] [CrossRef]
- Jutel, M.; Kosowska, A.; Smolinska, S. Allergen Immunotherapy: Past, Present, and Future. Allergy Asthma Immunol. Res. 2016, 8, 191–197. [Google Scholar] [CrossRef]
- Dretzke, J.; Meadows, A.; Novielli, N.; Huissoon, A.; Fry-Smith, A.; Meads, C. Subcutaneous and sublingual immunotherapy for seasonal allergic rhinitis: A systematic review and indirect comparison. J. Allergy Clin. Immunol. 2013, 131, 1361–1366. [Google Scholar] [CrossRef]
- Casale, T.B.; Cox, L.S.; Wahn, U.; Golden, D.B.K.; Bons, B.; Didier, A. Safety Review of 5-Grass Pollen Tablet from Pooled Data of Clinical Trials. J. Allergy Clin. Immunol. Pract. 2017, 5, 1717–1727.e1. [Google Scholar] [CrossRef] [PubMed]
- Arasi, S.; Corsello, G.; Villani, A.; Pajno, G.B. The future outlook on allergen immunotherapy in children: 2018 and beyond. Ital. J. Pediatr. 2018, 44, 80. [Google Scholar] [CrossRef] [PubMed]
- Pfaar, O.; Alvaro, M.; Cardona, V.; Hamelmann, E.; Mösges, R.; Kleine-Tebbe, J. Clinical trials in allergen immunotherapy: Current concepts and future needs. Allergy 2018, 73, 1775–1783. [Google Scholar] [CrossRef] [PubMed]
- Jutel, M.; Agache, I.; Bonini, S.; Burks, A.W.; Calderon, M.; Canonica, W.; Cox, L.; Demoly, P.; Frew, A.J.; O’Hehir, R.; et al. International consensus on allergy immunotherapy. J. Allergy Clin. Immunol. 2015, 136, 556–568. [Google Scholar] [CrossRef]
- Bousquet, J.; Khaltaev, N.; Cruz, A.A.; Denburg, J.; Fokkens, W.J.; Togias, A.; Zuberbier, T.; Canonica, G.W.; Weel, C.V.; Agache, I.; et al. Allergic Rhinitis and its Impact on Asthma (ARIA) 2008. Prim. Care 2008, 63, 8–160. [Google Scholar]
- Jutel, M.; Bartkowiak-Emeryk, M.; Bręborowicz, A.; Cichocka-Jarosz, E.; Emeryk, A.; Gawlik, R.; Gonerko, P.; Rogala, B.; Nowak-Węgrzyn, A.; Samoliński, B. Sublingual immunotherapy (SLIT)—Indications, mechanism, and efficacy: Position paper prepared by the section of immunotherapy, polish society of allergy. Ann. Agric. Environ. Med. 2016, 23, 44–53. [Google Scholar] [CrossRef]
- Passalacqua, G.; Canonica, G.W. AIT (allergen immunotherapy): A model for the “precision medicine”. Clin. Mol. Allergy 2015, 13, 24. [Google Scholar] [CrossRef]
- Curin, M.; Khaitov, M.; Karaulov, A.; Namazova-Baranova, L.; Campana, R.; Garib, V.; Valenta, R. Next-Generation of Allergen-Specific Immunotherapies: Molecular Approaches. Curr. Allergy Asthma Rep. 2018, 18, 39. [Google Scholar] [CrossRef]
- Varadé, J.; Magadán, S.; González-fernández, Á. Human immunology and immunotherapy: Main achievements and challenges. Cell. Mol. Immunol. 2020, 18, 805–828. [Google Scholar] [CrossRef]
- Cardona, V.; Luengo, O.; Labrador-Horrillo, M. Immunotherapy in allergic rhinitis and lower airway outcomes. Allergy Eur. J. Allergy Clin. Immunol. 2017, 72, 35–42. [Google Scholar] [CrossRef]
- Petalas, K.; Durham, S.R. Allergen immunotherapy for allergic rhinitis. Rhinology 2013, 51, 99–110. [Google Scholar] [CrossRef]
- Zuberbier, T.; Bachert, C.; Bousquet, P.J.; Passalacqua, G.; Canonica, G.W.; Merk, H.; Worm, M.; Wahn, U.; Bousquet, J. GA2LEN/EAACI pocket guide for allergen-specific immunotherapy for allergic rhinitis and asthma. Allergy Eur. J. Allergy Clin. Immunol. 2010, 65, 1525–1530. [Google Scholar] [CrossRef] [PubMed]
- Shamji, M.H.; Kappen, J.H.; Akdis, M.; Jensen-Jarolim, E.; Knol, E.F.; Kleine-Tebbe, J.; Bohle, B.; Chaker, A.M.; Till, S.J.; Valenta, R.; et al. Biomarkers for monitoring clinical efficacy of allergen immunotherapy for allergic rhinoconjunctivitis and allergic asthma: An EAACI Position Paper. Allergy Eur. J. Allergy Clin. Immunol. 2017, 72, 1156–1173. [Google Scholar] [CrossRef] [PubMed]
- Incorvaia, C. Preventive capacity of allergen immunotherapy on the natural history of allergy. J. Prev. Med. Hyg. 2013, 54, 71–74. [Google Scholar] [CrossRef]
- Fitzhugh, D.J.; Lockey, R.F. Allergen immunotherapy: A history of the first 100 years. Curr. Opin. Allergy Clin. Immunol. 2011, 11, 554–559. [Google Scholar] [CrossRef]
- Didier, A.; Malling, H.J.; Worm, M.; Horak, F.; Sussman, G.; Melac, M.; Soulié, S.; Zeldin, R.K. Post-treatment efficacy of discontinuous treatment with 300IR 5-grass pollen sublingual tablet in adults with grass pollen-induced allergic rhinoconjunctivitis. Clin. Exp. Allergy 2013, 43, 568–577. [Google Scholar] [CrossRef]
- Würtzen, P.A.; Gupta, S.; Brand, S.; Andersen, P.S. Grass pollen immunotherapy: Where are we now. Immunotherapy 2016, 8, 399–411. [Google Scholar] [CrossRef]
- Komlósi, Z.I.; Kovács, N.; Sokolowska, M.; van de Veen, W.; Akdis, M.; Akdis, C.A. Highlights of Novel Vaccination Strategies in Allergen Immunotherapy. Immunol. Allergy Clin. N. Am. 2020, 40, 15–24. [Google Scholar] [CrossRef] [PubMed]
- Durham, S.R.; Penagos, M. Sublingual or subcutaneous immunotherapy for allergic rhinitis? J. Allergy Clin. Immunol. 2016, 137, 339–349.e10. [Google Scholar] [CrossRef] [PubMed]
- Demoly, P.; Emminger, W.; Rehm, D.; Backer, V.; Tommerup, L.; Kleine-Tebbe, J. Effective treatment of house dust mite-induced allergic rhinitis with 2 doses of the SQ HDM SLIT-tablet: Results from a randomized, double-blind, placebo-controlled phase III trial. J. Allergy Clin. Immunol. 2016, 137, 444–451.e8. [Google Scholar] [CrossRef]
- Mosbech, H.; Canonica, G.W.; Backer, V.; De Blay, F.; Klimek, L.; Broge, L.; Ljørring, C. SQ house dust mite sublingually administered immunotherapy tablet (ALK) improves allergic rhinitis in patients with house dust mite allergic asthma and rhinitis symptoms. Ann. Allergy, Asthma Immunol. 2015, 114, 134–140.e1. [Google Scholar] [CrossRef] [PubMed]
- Dorofeeva, Y.; Shilovskiy, I.; Tulaeva, I.; Focke-tejkl, M.; Flicker, S.; Kudlay, D.; Khaitov, M.; Karsonova, A.; Riabova, K.; Karaulov, A.; et al. Past, present, and future of allergen immunotherapy vaccines. Allergy Eur. J. Allergy Clin. Immunol. 2021, 76, 131–149. [Google Scholar] [CrossRef] [PubMed]
- Di Bona, D.; Plaia, A.; Leto-Barone, M.S.; La Piana, S.; Di Lorenzo, G. Efficacy of subcutaneous and sublingual immunotherapy with grass allergens for seasonal allergic rhinitis: A meta-analysis-based comparison. J. Allergy Clin. Immunol. 2012, 130, 1097–1107.e2. [Google Scholar] [CrossRef]
- Calderon, M.A.; Cox, L.; Casale, T.B.; Moingeon, P.; Demoly, P. Multiple-allergen and single-allergen immunotherapy strategies in polysensitized patients: Looking at the published evidence. J. Allergy Clin. Immunol. 2012, 129, 929–934. [Google Scholar] [CrossRef] [PubMed]
- Bousquet, J.; Anto, J.M.; Wickman, M.; Keil, T.; Valenta, R.; Haahtela, T.; Lodrup, K.; Wright, J.; Zuberbier, T.; Arshad, S.H.; et al. Are allergic multimorbidities and IgE polysensitization associated with the persistence or re-occurrence of foetal type 2 signalling? The MeDALL hypothesis. Allergy 2015, 70, 1062–1078. [Google Scholar] [CrossRef] [PubMed]
- Kalic, T.; Breiteneder, H. Advances and novel developments in molecular allergology. Allergy 2020, 75, 3027–3038. [Google Scholar] [CrossRef]
- Cox, L.; Nelson, H.; Lockey, R.; Spector, S.L.; Tilles, S.; Wallace, D. Task force report Allergen immunotherapy: A practice parameter third update. J. Allergy Clin. Immunol. 2011, 127, S1–S55. [Google Scholar] [CrossRef]
- Bousquet, J.; Pfaar, O.; Togias, A.; Schünemann, H.J.; Ansotegui, I.; Papadopoulos, N.G.; Tsiligianni, I.; Agache, I.; Anto, J.M.; Bachert, C.; et al. 2019 ARIA Care pathways for allergen immunotherapy. Allergy Eur. J. Allergy Clin. Immunol. 2019, 74, 2087–2102. [Google Scholar] [CrossRef]
- Klimek, L.; Bachert, C.; Pfaar, O.; Becker, S.; Bieber, T.; Brehler, R.; Buhl, R.; Casper, I.; Chaker, A.; Czech, W.; et al. ARIA guideline 2019: Treatment of allergic rhinitis in the German health system. Allergol. J. Int. 2019, 28, 255–276. [Google Scholar] [CrossRef]
- Alvaro-Lozano, M.; Akdis, C.A.; Akdis, M.; Alviani, C.; Angier, E.; Arasi, S.; Arzt-Gradwohl, L.; Barber, D.; Bazire, R.; Cavkaytar, O.; et al. Allergen Immunotherapy in Children User’s Guide. Pediatr. Allergy Immunol. 2020, 31, 1–101. [Google Scholar] [CrossRef]
- Frati, F.; Cecchi, L.; Scala, E.; Ridolo, E.; Albani, I.D.; Makrì, E.; Pajno, G.; Incorvaia, C. New product development with the innovative biomolecular sublingual immunotherapy formulations for the management of allergic rhinitis. Biol. Targets Ther. 2014, 8, 221–226. [Google Scholar] [CrossRef] [PubMed]
- Chapman, M.D.; Wuenschmann, S.; King, E.; Pomés, A. Technological Innovations for High-Throughput Approaches to In Vitro Allergy Diagnosis. Physiol. Behav. 2019, 176, 139–148. [Google Scholar] [CrossRef]
- Matricardi, P.M.; Dramburg, S.; Potapova, E.; Skevaki, C.; Renz, H. Molecular diagnosis for allergen immunotherapy. J. Allergy Clin. Immunol. 2019, 143, 831–843. [Google Scholar] [CrossRef] [PubMed]
- Zidarn, M.; Robič, M.; Krivec, A.; Šilar, M.; Resch-Marat, Y.; Vrtala, S.; Kopač, P.; Bajrović, N.; Valenta, R.; Korošec, P. Clinical and immunological differences between asymptomatic HDM-sensitized and HDM-allergic rhinitis patients. Clin. Exp. Allergy 2019, 49, 808–818. [Google Scholar] [CrossRef] [PubMed]
- Matricardi, P.M.; Hoffmann, H.J.; Valenta, R.; Hilger, C.; Hofmaier, S.; Aalberse, R.C.; Agache, I.; Asero, R.; Barber, D.; Beyer, K.; et al. EAACI Molecular Allergology User’s Guide. Pediatr. Allergy Immunol. 2016, 27, 1–250. [Google Scholar] [CrossRef]
- Scala, E.; Alessandri, C.; Bernardi, M.L.; Ferrara, R.; Palazzo, P.; Pomponi, D.; Quaratino, D.; Rasi, C.; Zaffiro, A.; Zennaro, D.; et al. Cross-sectional survey on immunoglobulin E reactivity in 23 077 subjects using an allergenic molecule-based microarray detection system. Clin. Exp. Allergy 2010, 40, 911–921. [Google Scholar] [CrossRef]
- Liao, C.; Liang, C.; Hu, H.; Luo, W.; Wu, G.; Huang, Z.; Wu, L.; Sun, B. Major Pollen Allergen Components and CCD Detection in Bermuda Grass Sensitized Patients in Guangzhou, China. J. Asthma Allergy 2020, 13, 615–623. [Google Scholar] [CrossRef]
- Kristiansen, M.; Dhami, S.; Netuveli, G.; Halken, S.; Muraro, A.; Roberts, G.; Larenas-Linnemann, D.; Calderón, M.A.; Penagos, M.; Du Toit, G.; et al. Allergen immunotherapy for the prevention of allergy: A systematic review and meta-analysis. Pediatr. Allergy Immunol. 2017, 28, 18–29. [Google Scholar] [CrossRef]
- Santosa, A.; Andiappan, A.K.; Rotzschke, O.; Wong, H.C.; Chang, A.; Bigliardi-Qi, M.; Wang, D.Y.; Bigliardi, P.L. Evaluation of the applicability of the Immuno-solidphase allergen chip (ISAC) assay in atopic patients in Singapore. Clin. Transl. Allergy 2015, 5, 9. [Google Scholar] [CrossRef]
- González-Manceboa, E.; Domínguez-Ortegab, J.; Blanco-Bermejoc, S.; González-Secod, E.; Trujilloe, M.J.; de la Torre, F. Comparison of two diagnostic techniques, skin-prick test and component resolved diagnosis in the follow-up of a cohort of paediatric patients with pollinosis. Multicentre pilot study in a highly exposed allergenic area. Allergol. Immunopathol. 2017, 45, 121–126. [Google Scholar] [CrossRef]
- Moingeon, P. Biomarkers for Allergen Immunotherapy: A “Panoromic” View. Immunol. Allergy Clin. N. Am. 2016, 36, 161–179. [Google Scholar] [CrossRef] [PubMed]
- Baron-Bodo, V.; Horiot, S.; Lautrette, A.; Chabre, H.; Drucbert, A.S.; Danzé, P.M.; Sénéchal, H.; Peltre, G.; Galvain, S.; Zeldin, R.K.; et al. Heterogeneity of antibody responses among clinical responders during grass pollen sublingual immunotherapy. Clin. Exp. Allergy 2013, 43, 1362–1373. [Google Scholar] [CrossRef] [PubMed]
- Moingeon, P.; Lombardi, V.; Baron-Bodo, V.; Mascarell, L. Enhancing Allergen-Presentation Platforms for Sublingual Immunotherapy. J. Allergy Clin. Immunol. Pract. 2017, 5, 23–31. [Google Scholar] [CrossRef] [PubMed]
- Van De Veen, W.; Stanic, B.; Yaman, G.; Wawrzyniak, M.; Söllner, S.; Akdis, D.G.; Rückert, B.; Akdis, C.A.; Akdis, M. IgG4 production is confined to human IL-10-producing regulatory B cells that suppress antigen-specific immune responses. J. Allergy Clin. Immunol. 2013, 131, 1204–1212. [Google Scholar] [CrossRef] [PubMed]
- Peng, H.B.Y.; Agache, I.; Diamant, Z.; Eiwegger, T.; Traidl-hoffmann, W.J.F.C.; Nadeau, K.; Hehir, R.E.O.; Mahony, L.O.; Pfaar, O.; Torres, M.J.; et al. Biomarkers for diagnosis and prediction of therapy responses in allergic diseases and asthma. Allergy 2020, 75, 3039–3068. [Google Scholar] [CrossRef]
- Shamji, M.H.; Ljørring, C.; Francis, J.N.; A Calderon, M.; Larché, M.; Kimber, I.; Frew, A.J.; Ipsen, H.; Lund, K.; Würtzen, P.A.; et al. Functional rather than immunoreactive levels of IgG4 correlate closely with clinical response to grass pollen immunotherapy. Allergy Eur. J. Allergy Clin. Immunol. 2012, 67, 217–226. [Google Scholar] [CrossRef]
- Patelis, A.; Borres, M.P.; Kober, A.; Berthold, M. Multiplex component-based allergen microarray in recent clinical studies. Clin. Exp. Allergy 2016, 46, 1022–1032. [Google Scholar] [CrossRef] [PubMed]
- Sastre, J.; Sastre-Ibañez, M. Molecular diagnosis and immunotherapy. Curr. Opin. Allergy Clin. Immunol. 2016, 16, 565–570. [Google Scholar] [CrossRef]
- Lee, J.; Kim, S.; Choi, H.; Jung, C.; Ban, G.; Shin, Y.S.; Nahm, D.; Park, H.; Ye, Y. A Retrospective Study of Clinical Response Predictors in Subcutaneous Allergen Immunotherapy With House Dust Mites for Allergic Rhinitis. Allergy Asthma Immunol. Res. 2018, 10, 18–24. [Google Scholar] [CrossRef]
- Canonica, G.W.; Bachert, C.; Hellings, P.; Ryan, D.; Valovirta, E.; Wickman, M.; De Beaumont, O.; Bousquet, J. Allergen Immunotherapy (AIT): A prototype of Precision Medicine. World Allergy Organ. J. 2015, 8, 31. [Google Scholar] [CrossRef]
- Van Hage, M.; Schmid-Grendelmeier, P.; Skevaki, C.; Plebani, M.; Canonica, W.; Kleine-Tebbe, J.; Nystrand, M.; Jafari-Mamaghani, M.; Jakob, T. Performance evaluation of ImmunoCAP® ISAC 112: A multi-site study. Clin. Chem. Lab. Med. 2017, 55, 571–577. [Google Scholar] [CrossRef]
- Movérare, R.; Larsson, H.; Carlsson, R.; Holmquist, I. Mugwort-Sensitized Individuals from North Europe, South Europe and North America Show Different IgE Reactivity Patterns. Int. Arch. Allergy Immunol. 2011, 154, 164–172. [Google Scholar] [CrossRef] [PubMed]
- Sastre, J.; Landivar, M.E.; Ruiz-García, M.; Andregnette-Rosigno, M.V.; Mahillo, I. How Molecular Diagnosis Can Change Allergen-Specific Immunotherapy Prescription in a Complex Pollen Area. Allergy 2012, 67, 709–711. [Google Scholar] [CrossRef] [PubMed]
- Letrán, A.; Espinazo, M.; Moreno, F. Measurement of IgE to Pollen Allergen Components Is Helpful in Selecting Patients for Immunotherapy. Ann. Allergy, Asthma Immunol. 2013, 111, 295–297. [Google Scholar] [CrossRef] [PubMed]
- Moreno, C.; Justicia, J.L.; Quiralte, J.; Moreno-Ancillo, Á.; Iglesias-Cadarso, A.; Torrecillas, M.; Labarta, N.; García, M.A.; Dávila, I. Olive, Grass or Both? Molecular Diagnosis for the Allergen Immunotherapy Selection in Polysensitized Pollinic Patients. Allergy 2014, 69, 1357–1363. [Google Scholar] [CrossRef]
- Stringari, G.; Tripodi, S.; Caffarelli, C.; Dondi, A.; Asero, R.; Bellini, F.; Maiello, N.; Frediani, T.; Peparini, I.; Dascola, P.; et al. The effect of component-resolved diagnosis on specific immunotherapy prescription in children with hay fever. J. Allergy Clin. Immunol. 2014, 134, 75–81. [Google Scholar] [CrossRef]
- Darsow, U.; Brockow, K.; Pfab, F.; Jakob, T.; Petersson, C.J.; Borres, M.P.; Ring, J.; Behrendt, H.; Huss-Marp, J. Heterogeneity of Molecular Sensitization Profiles in Grass Pollen Allergy—Implications for Immunotherapy? Clin. Exp. Allergy 2014, 44, 778–786. [Google Scholar] [CrossRef]
- Schmid, J.M.; Würtzen, P.A.; Dahl, R.; Hoffmann, H.J. Pretreatment IgE Sensitization Patterns Determine the Molecular Profile of the IgG4 Response during Updosing of Subcutaneous Immunotherapy with Timothy Grass Pollen Extract. J. Allergy Clin. Immunol. 2016, 137, 562–570. [Google Scholar] [CrossRef]
- Luo, W.; Pan, G.; Huang, H.; Zheng, P.; Wei, N.; Zhang, Y.; Zeng, G.; Sun, B. A Component-Resolved Diagnostic Approach for a Study on Grass Pollen Allergens in Chinese Southerners with Allergic Rhinitis and/or Asthma. J. Vis. Exp. 2017, 2017, e55723. [Google Scholar] [CrossRef]
- Martinez-Cañavate, A.; Torres Borrego, J.; Terán, A.B.M.; Higueras, J.L.C.; Figueroa, B.E.G.; Pacheco, R.R.; Aguilar, C.D.I.M. Molecular Sensitization Patterns and Influence of Molecular Diagnosis in Immunotherapy Prescription in Children Sensitized to Both Grass and Olive Pollen. Int. J. Lab. Hematol. 2018, 29, 369–374. [Google Scholar] [CrossRef]
- Camacho, G.D.-R.; Arjona, A.M.M.; Padial, J.F.-C.; Catalán, J.R. How Molecular Diagnosis May Modify Immunotherapy Prescription in Multi-Sensitized Pollen-Allergic Children. Allergol. Immunopathol. 2018, 46, 552–556. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.; Luo, W.; Wu, Z.; Cai, C.; Huang, H.; Sun, B. A Pilot Study on the Allergen-Speci Fi c IgE to Molecular Components on Polysensitized Mite Allergic Asthmatic Patients in Guangzhou, China. Mol. Immunol. 2019, 105, 38–45. [Google Scholar] [CrossRef] [PubMed]
- Haidar, L.; Tamas, T.-P.; Stolz, F.; Patrascu, R.F.P.; Chen, K.-W.; Panaitescu, C. Symptom Patterns and Comparison of Diagnostic Methods in Ragweed Pollen Allergy. Exp. Ther. Med. 2021, 21, 525. [Google Scholar] [CrossRef]
- Villalta, D.; Tonutti, E.; Bizzaro, N.; Brusca, I.; Sargentini, V.; Asero, R.; Bilò, M.B.; Manzotti, G.; Murzilli, F.; Cecchi, L.; et al. Recommendations for the Use of Molecular Diagnostics in the Diagnosis of Allergic Diseases. Eur. Ann. Allergy Clin. Immunol. 2018, 50, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Canonica, G.W.; Ansotegui, I.J.; Pawankar, R.; Schmid-Grendelmeier, P.; Van Hage, M.; Baena-Cagnani, C.E.; Melioli, G.; Nunes, C.; Passalacqua, G.; Rosenwasser, L.; et al. A WAO-ARIA-GA2LEN Consensus Document on Molecular-Based Allergy Diagnostics. World Allergy Organ. J. 2013, 6, 17. [Google Scholar] [CrossRef]
- Sastre, J. Molecular Diagnosis in Allergy. Clin. Exp. Allergy 2010, 40, 1442–1460. [Google Scholar] [CrossRef]
- Dodig, S.; Čepelak, I. The Potential of Component-Resolved Diagnosis in Laboratory Diagnostics of Allergy. Biochem. Medica 2018, 28, 020501. [Google Scholar] [CrossRef]
- Akarsu, A.; Ocak, M.; Sahiner, U.M.; Soyer, O.; Sekerel, B.E. Multiplex Component-Based Allergen Macroarray Test Is Useful to Predict Clinical Reactivity to Tree Nuts in Children. Allergol. Int. 2022, 71, 236–247. [Google Scholar] [CrossRef]
- Hoover, H.; Leatherman, B.; Ryan, M.; McMains, K.; Veling, M. Evidence-Based Dosing of Maintenance Subcutaneous Immunotherapy: A Contemporary Review of State-of-the-Art Practice. Int. Forum Allergy Rhinol. 2018, 8, 806–816. [Google Scholar] [CrossRef]
- Roberts, G.; Pfaar, O.; Akdis, C.A.; Ansotegui, I.J.; Durham, S.R.; van Wijk, R.G.; Halken, S.; Larenas-Linnemann, D.; Pawankar, R.; Pitsios, C.; et al. EAACI Guidelines on Allergen Immunotherapy: Allergic Rhinoconjunctivitis. Allergy Eur. J. Allergy Clin. Immunol. 2018, 73, 765–798. [Google Scholar] [CrossRef]
- Calderon, M.A.; Demoly, P.; Van Wijk, R.G.; Bousquet, J.; Sheikh, A.; Frew, A.; Scadding, G.; Bachert, C.; Malling, H.J.; Valenta, R.; et al. EAACI: A European Declaration on Immunotherapy. Designing the Future of Allergen Specific Immunotherapy. Clin. Transl. Allergy 2012, 2, 20. [Google Scholar] [CrossRef] [PubMed]


| Author, Year of Publication | Age of Patients | Sample Size | Type of Allergy | Country | Main Findings | Ottawa-Newcastle Score |
|---|---|---|---|---|---|---|
| Movérare, 2011 [72] | All ages | 110 | Mugwort allergy | Sweden, Estonia, Switzerland, Spain, Greece, United States, Canada | This research indicates a role for cross-reactive IgE antibodies in positive test results for mugwort in these subjects. Mugwort-sensitized subjects have different IgE reactivity profiles to weed allergens (Art v 3, Amb a 1, Par j 2, Sal k 1, Bet v 2, Bet v 4, CCDs). CRD in clinical practice leads to more detailed information on IgE reactivity at the molecular level that could be helpful to choose appropriate pollen extracts for ASIT *. | 4 |
| Sastre, 2012 [73] | All ages | 141 | Allergic rhinitis/asthma | Spain | There was a very low agreement between indications and use of allergens for specific immunotherapy before and after performing Component-resolved diagnosis (46% of patients). | 4 |
| Letrán, 2013 [74] | 6–62 years | 175 | Seasonal pollen-allergic rhinoconjunctivitis and/or asthma | Spain | The use of Component-resolved diagnosis helped to carefully select allergens for ASIT. CRD # changed the selection of allergens for ASIT in more than 50% of cases, as compared with the baseline selection. | 4 |
| Moreno, 2014 [75] | 5–65 years | 1263 | Seasonal allergic rhinitis, asthma, allergic conjunctivitis | Spain | The majority of patients (922 patients, 73%) would have been indicated for a mixture of grass and olive pollens for the provision of allergen immunotherapy. In 56.8% of patients, there was noncoincidence in the composition of allergen immunotherapy that would be selected before and after the investigation. CRD could help improve the selection of AIT in polysensitized patients. | 4 |
| Stringari, 2014 [76] | 4–18 years | 651 | Allergic rhinitis, asthma | Italy | The decision on prescription or composition of specific immunotherapy was changed in 277 (42%) of 651 children or 315 (48%) of 651 children, depending on the European or American approach, respectively. | 4 |
| Darsow, 2014 [77] | >18 years | 101 | Allergic rhinoconjunctivitis | Germany | There was significant heterogeneity in molecular sensitization profiles. None of the patients exactly matched the allergen composition of previous specific immunotherapy, containing Phl p 1, Phl p 2, Phl p 5a/b, and Phl p 6, the selection of which was based on conjunctival and nasal provocation tests. | 4 |
| Schmid, 2016 [78] | All ages | 24 | Seasonal rhinoconjunctivitis | Denmark | CRD suggests a personalized approach to ASIT. Change in IgE and IgG4 levels may be used as an early biomarker for ASIT effectiveness. | 7 |
| Luo, 2017 [79] | All ages | 346 | Allergic rhinitis and/or asthma | China | Only 17.1% of patients were sensitized to major allergens Phl p 1 and Phl p 5, and 100.0% of patients were sensitized to cross-reactive component Phl p 4. The authors conclude that ASIT is not indicated to all patients with timothy grass pollen sensitization. | 4 |
| Martínez-Cañavate Burgos, 2018 [80] | 5–18 years | 281 | Seasonal allergic rhinitis | Spain | Double sensitization to grass and olive pollen allergens was found in vitro in 76% of children for an IgE cutoff point of 0.35 kU/L. When the component-resolved diagnosis results were known, the composition of the prescribed immunotherapy was changed in 52.87% of cases. | 4 |
| Del-Río Camacho, 2018 [81] | 8–12 years | 70 | Allergic rhinitis and/or asthma | Spain | CRD led to a modified immunotherapy prescription in 54.3% of patients. Indications to the single-allergen therapy increased from 18% to 51% when the component-resolved diagnosis was included. The decision to prescribe immunotherapy was reversed following component-resolved diagnosis in 9.3% of cases. | 4 |
| Hu, 2019 [82] | 1–85 years | 57 | Allergic rhinitis, asthma | China | CRD identified the main dust mite allergen components leading to sensitization (nDer p 1, rDer p 2, nDer f 1, and rDer f 2) as well as cross-reactive components rDer p 10, which helped to make a meaningful selection of allergens for ASIT. | 4 |
| Haidar, 2021 [83] | All ages | 83 | Rhinitis, conjunctivitis, asthma | Romania | Most patients were polysensitized (62.65%), especially to other pollens, house dust mites, and animal danders. Only 90% of the patients with positive skin prick test to ragweed pollen extract also had increased specific serum IgE to Amb a 1. | 4 |
| Allergen Type (Source) | Allergenic Molecule | Group Type | Marker Type | Cross-Reactive Allergens |
|---|---|---|---|---|
| Major Components of Airborne Allergens | ||||
| Grass pollens | ||||
| Bermuda grass | nCyn d 1 | Group 1 | Major allergen | Grass pollen |
| Timothy grass | rPhl p 1 | Group 2 | Major allergen | Grass pollen |
| rPhl p 2 | Group 2 | Minor allergen | Grass pollen | |
| rPhl p 4 | Berberine bridge enzyme | Minor allergen | Grass pollen | |
| rPhl p 5 | Group 5 | Major allergen | Grass pollen | |
| rPhl p 6 | Group 6 | Minor allergen | Grass pollen | |
| rPhl p 11 | Ole-e-1-related protein | Minor allergen | Grass pollen | |
| Tree pollens | ||||
| Birch | rBet v 1 | PR-10 protein | Major allergen | Fruits, vegetables, nuts, seeds, beans, tree pollens (birch, alder, hazel, hornbeam), carrot, celery, apple, apricot, cherry, pear, spices |
| Japanese cedar | nCry j 1 | Pectate lyase | Major allergen | Tree pollens |
| Cypress | nCup a 1 | Pectate lyase | Major allergen | Tree pollens (cypress family: juniper, cypress, cedar) |
| Olive | rOle e 1 | General olive group 5 | Major allergen | Tree pollens It is a marker of a high degree of cross-reactivity with ash, privet, lilac, and angustifolia, although these pollens are not identical. rOle e1 is homologous with proteins of sycamore, plantain, saffron, and cereal crop: timothy grass, rye, and corn. |
| rOle e 9 | 1,3-beta-glucanase | Minor allergen | Tree pollen | |
| Platanus acerifolia, Plane tree | rPla a 1 | Invertase inhibitor | Major allergen | Tree pollen |
| rPla a 2 | Polygalacturonase | Minor allergen | Tree pollen | |
| Weed pollens | ||||
| Ambrosia | Amb a 1 | Pectate lyase | Major allergen | Weed pollens It is a marker of true sensitization to ambrosia and cross-reactivity with cereal crop and weed pollens. |
| Artemisia vulgaris | Art v 1 | Defensin | Major allergen | Weed, grass, and tree pollens. It is responsible for cross-reactivity with pollens of various plants: ragweed, daisy, chamomile, dandelion, sunflower, calendula, elecampane, string, coltsfoot, citrus fruits, kiwi, mango, sunflower seed, honey, chicory, parsley, carrots, tomatoes, peas, dill, hazelnuts, peanuts, red pepper. |
| Chenopodium album | rChe a 1 | Ole-e-1-related protein | Major allergen | Weed pollens |
| Pellitory | rPar j 2 | Lipid transport proteins (nsLTP) | Major allergen | Weed pollens |
| Plantain | rPla I 1 | Ole-e-1-related protein | Major allergen | Weed pollens |
| Kali tragus | nSal k 1 | Pectin methyl esterase | Major allergen | Weed pollens |
| Species-specific and cross-reactive components | ||||
| Olive pollen | Ole e 7 | Lipid transport proteins (nsLTP) | Minor allergens | Fruits, vegetables, nuts, seeds, beans, cereal crop, spices, tree, and weed pollens |
| Plane tree | Pla a 3 | |||
| Birch | Bet v 1 | PR-10 protein | Major allergens | Fruits, vegetables, nuts, seeds, beans, tree pollens (alder, hazel, hornbeam), carrot, celery, apple, peach, cherry, pear, spices, and peanuts. |
| Alder | Aln g 1 | |||
| Hazel | rCor a 1.0101 | |||
| Birch | rBet v 2 | Profilin | Minor allergens | Fruits, vegetables, nuts, seeds, beans, cereal crop, spices, latex, weed, grass, and tree pollens (olive, bermudagrass, pellitory, sunflower, date fruit, banana, pineapple, and exotic fruits) |
| Forest grass | rMer a 1 | |||
| Timothy grass | rPhl p 12 | |||
| Birch | rBet v 4 | Polcalcin | Minor allergens | Weed, grass, and tree pollens (Timothy grass, bermudagrass, turnip, rape, European olives, black alder) and could serve as a marker of polyvalent sensitization to plant allergens. |
| Timothy grass | rPhl p 7 | Weed, grass, and tree pollens (beech family: birch and olives) | ||
| Group Type | Degree of Cross-Reactivity | Properties | Inhalant Allergens |
|---|---|---|---|
| Polcalcins (calcium-binding proteins) | High | - | Bet v4, Phl p7 |
| Profilins | High | Susceptible to high temperatures and digestive enzymes | Bet v2, rMer a 1, Phl p12 |
| Nonspecific lipid transport proteins (nsLTP) | Various | Resistant to high temperatures and digestive enzymes | Art v 3, Ole e 7, Pla a 3 |
| Pathogenesis-related protein family 10 (PR-10), Bet v 1 homolog | High | Susceptible to high temperatures and digestive enzymes | Bet v 1, Aln g 1, rCor a 1.0101 |
| Cross-reactive carbo-hydrate determinants (CCD) | High | Resistant to high temperatures | nCyn d1, nOle e1, nCup a 1, nSal k 1, nPla a 2, nArt v 1, Phl p 4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Izmailovich, M.; Semenova, Y.; Abdushukurova, G.; Mukhamejanova, A.; Dyussupova, A.; Faizova, R.; Gazaliyeva, M.; Akhvlediani, L.; Glushkova, N.; Kalmakhanov, S.; et al. Molecular Aspects of Allergen-Specific Immunotherapy in Patients with Seasonal Allergic Rhinitis. Cells 2023, 12, 383. https://doi.org/10.3390/cells12030383
Izmailovich M, Semenova Y, Abdushukurova G, Mukhamejanova A, Dyussupova A, Faizova R, Gazaliyeva M, Akhvlediani L, Glushkova N, Kalmakhanov S, et al. Molecular Aspects of Allergen-Specific Immunotherapy in Patients with Seasonal Allergic Rhinitis. Cells. 2023; 12(3):383. https://doi.org/10.3390/cells12030383
Chicago/Turabian StyleIzmailovich, Marina, Yuliya Semenova, Gulzada Abdushukurova, Ainur Mukhamejanova, Azhar Dyussupova, Raida Faizova, Meruert Gazaliyeva, Leila Akhvlediani, Natalya Glushkova, Sundetgali Kalmakhanov, and et al. 2023. "Molecular Aspects of Allergen-Specific Immunotherapy in Patients with Seasonal Allergic Rhinitis" Cells 12, no. 3: 383. https://doi.org/10.3390/cells12030383
APA StyleIzmailovich, M., Semenova, Y., Abdushukurova, G., Mukhamejanova, A., Dyussupova, A., Faizova, R., Gazaliyeva, M., Akhvlediani, L., Glushkova, N., Kalmakhanov, S., & Bjørklund, G. (2023). Molecular Aspects of Allergen-Specific Immunotherapy in Patients with Seasonal Allergic Rhinitis. Cells, 12(3), 383. https://doi.org/10.3390/cells12030383

