Prediction of Mortality in Patients on Peritoneal Dialysis Based on the Fibrinogen Mannosylation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Group
2.2. Samples
2.3. Fibrinogen Isolation and Glycoanalysis
2.4. Peritoneal Membrane Function
2.5. Comorbidity Assessment
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- de Vries, J.J.; Snoek, C.J.M.; Rijken, D.C.; de Maat, M.P.M. Effects of Post-Translational Modifications of Fibrinogen on Clot Formation, Clot Structure, and Fibrinolysis: A Systematic Review. Arterioscler. Thromb. Vasc. Biol. 2020, 40, 554–569. [Google Scholar] [CrossRef] [PubMed]
- Varki, A. Biological roles of glycans. Glycobiology 2017, 27, 3–49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aebi, M. N-linked protein glycosylation in the ER. Biochim. Biophys. Acta 2013, 1833, 2430–2437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoffmann, M.; Pioch, M.; Pralow, A.; Hennig, R.; Kottler, R.; Reichl, U.; Rapp, E. The Fine Art of Destruction: A Guide to In-Depth Glycoproteomic Analyses-Exploiting the Diagnostic Potential of Fragment Ions. Proteomics 2018, 18, e1800282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clerc, F.; Reiding, K.R.; Jansen, B.C.; Kammeijer, G.S.M.; Bondt, A.; Wuhrer, M. Human plasma protein N-glycosylation. Glycoconj. J. 2016, 33, 309–343. [Google Scholar] [CrossRef] [Green Version]
- Maghzal, G.J.; Brennan, S.O.; George, P.M. The sialic acid content of fibrinogen decreases during pregnancy and increases in response to fibrate therapy. Thromb. Res. 2005, 115, 293–299. [Google Scholar] [CrossRef] [PubMed]
- Nellenbach, K.; Kyu, A.; Guzzetta, N.; Brown, A.C. Differential sialic acid content in adult and neonatal fibrinogen mediates differences in clot polymerization dynamics. Blood Adv. 2021, 5, 5202–5214. [Google Scholar] [CrossRef]
- Gligorijević, N.; Križáková, M.Z.; Penezić, A.; Katrlík, J.; Nedić, O. Structural and functional changes of fibrinogen due to aging. Int. J. Biol. Macromol. 2018, 108, 1028–1034. [Google Scholar] [CrossRef]
- Gligorijević, N.; Minić, S.; Križáková, M.; Katrlík, J.; Nedić, O. Structural changes of fibrinogen as a consequence of cirrhosis. Thromb. Res. 2018, 166, 43–49. [Google Scholar] [CrossRef] [Green Version]
- Nagel, T.; Klaus, F.; Gil Ibanez, I.; Wege, H.; Lohse, A.; Meyer, B. Fast and facile analysis of glycosylation and phosphorylation of fibrinogen from human plasma—Correlation with liver cancer and liver cirrhosis. Anal. Bioanal. Chem. 2018, 410, 7965–7977. [Google Scholar] [CrossRef]
- Baralić, M.; Gligorijević, N.; Brković, V.; Katrlík, J.; Pažitná, L.; Šunderić, M.; Miljuš, G.; Penezić, A.; Dobrijević, Z.; Laušević, M.; et al. Fibrinogen Fucosylation as a Prognostic Marker of End-Stage Renal Disease in Patients on Peritoneal Dialysis. Biomolecules 2020, 10, 1165. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Lin, T.; Huang, N.; Xia, X.; Li, J.; Qiu, Y.; Yang, X.; Mao, H.; Huang, F. Plasma fibrinogen and mortality in patients undergoing peritoneal dialysis: A prospective cohort study. BMC Nephrol. 2020, 21, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Robajac, D.; Križáková, M.; Šunderić, M.; Miljuš, G.; Gemeiner, P.; Nedić, O.; Katrlík, J. Lectin-Based Protein Microarray for the Glycan Analysis of Colorectal Cancer Biomarkers: The Insulin-Like Growth Factor System. Methods Mol. Biol. 2022, 2460, 207–222. [Google Scholar] [PubMed]
- Wang, Z.; Yu, D.; Cai, Y.; Ma, S.; Zhao, B.; Zhao, Z.; Simmons, D. Dialysate glucose response phenotypes during peritoneal equilibration test and their association with cardiovascular death: A cohort study. Medicine (Baltimore). Medicine 2020, 99, e20447. [Google Scholar] [CrossRef]
- Cnossen, T.T.; Smit, W.; Konings, C.J.; Kooman, J.P.; Leunissen, K.M.; Krediet, R.T. Quantification of Free Water Transport during the Peritoneal Equilibration Test. Perit. Dial. Int. J. Int. Soc. Perit. Dial. 2009, 29, 523–527. [Google Scholar] [CrossRef]
- Miskulin, D.C.; Athienites, N.V.; Yan, G.; Martin, A.A.; Ornt, D.B.; Kusek, J.W.; Meyer, K.B.; Levey, A.S.; for the Hemodialysis (HEMO) Study Group. Comorbidity assessment using the Index of Coexistent Diseases in a multicenter clinical trial. Kidney Int. 2001, 60, 1498–1510. [Google Scholar] [CrossRef] [Green Version]
- Available online: www.mdcalc.com/charlson-comorbidity-index-cci (accessed on 23 April 2019).
- Lu, H.-Y.; Liao, K.-M. Increased risk of deep vein thrombosis in end-stage renal disease patients. BMC Nephrol. 2018, 19, 204. [Google Scholar] [CrossRef]
- Preciado, P.; Zhang, H.; Thijssen, S.; Kooman, J.P.; Van Der Sande, F.M.; Kotanko, P. All-cause mortality in relation to changes in relative blood volume during hemodialysis. Nephrol. Dial. Transplant. 2019, 34, 1401–1408. [Google Scholar] [CrossRef]
- Lukowsky, L.R.; Mehrotra, R.; Kheifets, L.; Arah, O.; Nissenson, A.R.; Kalantar-Zadeh, K. Comparing Mortality of Peritoneal and Hemodialysis Patients in the First 2 Years of Dialysis Therapy: A Marginal Structural Model Analysis. Clin. J. Am. Soc. Nephrol. 2013, 8, 619–628. [Google Scholar] [CrossRef] [Green Version]
- Charlson, M.E.; Pompei, P.; Ales, K.L.; MacKenzie, C.R. A new method of classifying prognostic comorbidity in longitudinal studies: Development and validation. J. Chronic Dis. 1987, 40, 373–383. [Google Scholar] [CrossRef]
- Charlson, M.E.; Charlson, R.E.; Peterson, J.C.; Marinopoulos, S.S.; Briggs, W.M.; Hollenberg, J.P. The Charlson comorbidity index is adapted to predict costs of chronic disease in primary care patients. J. Clin. Epidemiol. 2008, 61, 1234–1240. [Google Scholar] [CrossRef] [PubMed]
- Kitterer, D.; Segerer, S.; Braun, N.; Alscher, M.D.; Latus, J. Gender-Specific Differences in Peritoneal Dialysis. Kidney Blood Press. Res. 2017, 42, 276–283. [Google Scholar] [CrossRef] [PubMed]
- La Milia, V. Peritoneal transport testing. J. Nephrol. 2010, 23, 633–647. [Google Scholar]
- Brown, E.A.; Blake, P.G.; Boudville, N.; Davies, S.; De Arteaga, J.; Dong, J.; Finkelstein, F.; Foo, M.; Hurst, H.; Johnson, D.W.; et al. International Society for Peritoneal Dialysis practice recommendations: Prescribing high-quality goal-directed peritoneal dialysis. Perit. Dial. Int. 2020, 40, 244–253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pérez-Flores, I.; Coronel, F.; Cigarrán, S.; Herrero, J.A.; Calvo, N. Relationship between residual renal function, inflammation, and anemia in peritoneal dialysis. Adv. Perit. Dial. 2007, 23, 140–143. [Google Scholar]
- Fu, S.; Chen, J.; Liu, B.; Liang, P.; Zeng, Y.; Feng, M.; Xu, Z.; Zheng, G.; Yang, S.; Xu, A.; et al. Systemic inflammation modulates the ability of serum ferritin to predict all-cause and cardiovascular mortality in peritoneal dialysis patients. BMC Nephrol. 2020, 21, 237. [Google Scholar] [CrossRef]
- Peritoneal Dialysis Adequacy Work Group. Clinical practice guidelines for peritoneal dialysis adequacy. Am. J. Kidney Dis. 2006, 48, S98–S129. [Google Scholar] [CrossRef]
- Yu, C.; Yang, N.; Wang, W.; Du, X.; Tang, Q.; Lin, H.; Li, L. Blocking core fucosylation of epidermal growth factor (EGF) receptor prevents peritoneal fibrosis progression. Ren. Fail. 2021, 43, 869–877. [Google Scholar] [CrossRef]
- Li, C.-Y.; Meng, L.; Liu, B.; Bao, J.-K. Galanthus nivalis Agglutinin (GNA)-Related Lectins: Traditional Proteins, Burgeoning Drugs? Curr. Chem. Biol. 2009, 3, 324–333. [Google Scholar] [CrossRef]
- Fernandez-Poza, S.; Padros, A.; Thompson, R.; Butler, L.; Islam, M.; Mosely, J.; Scrivens, J.H.; Rehman, M.F.; Akram, M.S. Tailor-made recombinant prokaryotic lectins for characterisation of glycoproteins. Anal. Chim. Acta 2021, 1155, 338352. [Google Scholar] [CrossRef]
- Šunderić, M.; Šedivá, A.; Robajac, D.; Miljuš, G.; Gemeiner, P.; Nedić, O.; Katrlík, J. Lectin-based protein microarray analysis of differences in serum alpha-2-macroglobulin glycosylation between patients with colorectal cancer and persons without cancer. Biotechnol. Appl. Biochem. 2016, 63, 457–464. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Zhan, T.; Deng, Z.; Li, Q.; Liu, Y.; Yang, S.; Ji, D.; Li, Y. Glycan analysis of colorectal cancer samples reveals stage-dependent changes in CEA glycosylation patterns. Clin. Proteom. 2018, 15, 9. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.-L.; Cao, Y.-M.; Liao, T.; Qu, N.; Zhu, Y.-X.; Wei, W.-J. Multiple lectin assays in detecting glycol-alteration status of serum NRG1 in papillary thyroid cancer. Transl. Cancer Res. 2021, 10, 3218–3224. [Google Scholar] [CrossRef] [PubMed]
- Nagae, M.; Yamaguchi, Y.; Taniguchi, N.; Kizuka, Y. 3D Structure and Function of Glycosyltransferases Involved in N-glycan Maturation. Int. J. Mol. Sci. 2020, 21, 437. [Google Scholar] [CrossRef] [Green Version]
- Stanley, P. Mannosyl (Alpha-1,3-)-Glycoprotein Beta-1,2-N-Acetylglucosaminyltransferase (MGAT1). In Handbook of Glycosyltransferases and Related Genes; Springer: Tokyo, Japan, 2014; pp. 183–194. [Google Scholar]
- Takayama, H.; Ohta, M.; Iwashita, Y.; Uchida, H.; Shitomi, Y.; Yada, K.; Inomata, M. Altered glycosylation associated with dedifferentiation of hepatocellular carcinoma: A lectin microarray-based study. BMC Cancer 2020, 20, 192–198. [Google Scholar] [CrossRef]
- Park, D.D.; Phoomak, C.; Xu, G.; Olney, L.P.; Tran, K.A.; Park, S.S.; Haigh, N.E.; Luxardi, G.; Lert-Itthiporn, W.; Shimoda, M.; et al. Metastasis of cholangiocarcinoma is promoted by extended high-mannose glycans. Proc. Natl. Acad. Sci. USA 2020, 117, 7633–7644. [Google Scholar] [CrossRef]
- Talabnin, K.; Talabnin, C.; Ishihara, M.; Azadi, P. Increased expression of the high-mannose M6N2 and NeuAc3H3N3M3N2F tri-antennary N-glycans in cholangiocarcinoma. Oncol. Lett. 2018, 15, 1030–1036. [Google Scholar] [CrossRef]
- de Leoz, M.L.A.; Young, L.J.T.; An, H.J.; Kronewitter, S.R.; Kim, J.; Miyamoto, S.; Borowsky, A.D.; Chew, H.K.; Lebrilla, C.B. High-Mannose Glycans are Elevated during Breast Cancer Progression. Mol. Cell. Proteom. 2011, 10. [Google Scholar] [CrossRef] [Green Version]
- Balog, C.I.; Stavenhagen, K.; Fung, W.L.; Koeleman, C.A.; McDonnell, L.A.; Verhoeven, A.; Mesker, W.E.; Tollenaar, R.A.E.M.; Deelder, A.M.; Wuhrer, M. N-glycosylation of colorectal cancer tissues: A liquid chromatography and mass spectrometry-based investigation. Mol. Cell. Proteom. 2012, 11, 571–585. [Google Scholar] [CrossRef] [Green Version]
- Kaprio, T.; Satomaa, T.; Heiskanen, A.; Hokke, C.H.; Deelder, A.M.; Mustonen, H.K.; Hagström, J.; Carpen, O.; Saarinen, J.; Haglund, C. N-glycomic Profiling as a Tool to Separate Rectal Adenomas from Carcinomas. Mol. Cell. Proteom. 2015, 14, 277–288. [Google Scholar] [CrossRef] [Green Version]
- van de Bovenkamp, F.S.; Hafkenscheid, L.; Rispens, T.; Rombouts, Y. The Emerging Importance of IgG Fab Glycosylation in Immunity. J. Immunol. 2016, 196, 1435–1441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goetze, A.M.; Liu, Y.D.; Zhang, Z.; Shah, B.; Lee, E.; Bondarenko, P.V.; Flynn, G.C. High-mannose glycans on the Fc region of therapeutic IgG antibodies increase serum clearance in humans. Glycobiology 2011, 21, 949–959. [Google Scholar] [CrossRef] [PubMed]
- Cunningham, M.A.; Pipe, S.W.; Zhang, B.; Hauri, H.-P.; Ginsburg, D.; Kaufman, R.J. LMAN1 is a molecular chaperone for the secretion of coagulation factor VIII. J. Thromb. Haemost. 2003, 1, 2360–2367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beulaja Manikandan, S.; Manikandan, R.; Arumugam, M.; Mullainadhan, P. An overview on human serum lectins. Heliyon 2020, 6, e04623. [Google Scholar] [CrossRef]
- Li, J.; Li, Y.; Zou, Y.; Chen, Y.; He, L.; Wang, Y.; Zhou, J.; Xiao, F.; Niu, H.; Lu, L. Use of the systemic inflammation response index (SIRI) as a novel prognostic marker for patients on peritoneal dialysis. Ren. Fail. 2022, 44, 1227–1235. [Google Scholar] [CrossRef]
- Baralić, M.; Spasojević, I.; Miljuš, G.; Šunderić, M.; Robajac, D.; Dobrijević, Z.; Gligorijević, N.; Nedić, O.; Penezić, A. Albumin at the intersection between antioxidant and pro-oxidant in patients on peritoneal dialysis. Free Radic. Biol. Med. 2022, 187, 105–112. [Google Scholar] [CrossRef]
- Yongqing, T.; Drentin, N.; Duncan, R.C.; Wijeyewickrema, L.C.; Pike, R.N. Mannose-binding lectin serine proteases and associated proteins of the lectin pathway of complement: Two genes, five proteins and many functions? Biochim. Biophys. Acta 2012, 1824, 253–262. [Google Scholar] [CrossRef]
- Pągowska-Klimek, I.; Cedzyński, M. Mannan-Binding Lectin in Cardiovascular Disease. BioMed Res. Int. 2014, 2014, 616817. [Google Scholar] [CrossRef] [Green Version]
- Li, X.-Q.; Chang, D.-Y.; Chen, M.; Zhao, M.-H. Complement activation in patients with diabetic nephropathy. Diabetes Metab. 2019, 45, 248–253. [Google Scholar] [CrossRef] [Green Version]
- Bus, P.; Chua, J.S.; Klessens, C.Q.; Zandbergen, M.; Wolterbeek, R.; van Kooten, C.; Trouw, L.; Bruijn, J.A.; Baelde, H.J. Complement Activation in Patients With Diabetic Nephropathy. Kidney Int. Rep. 2017, 3, 302–313. [Google Scholar] [CrossRef] [Green Version]
- Cai, K.; Ma, Y.; Wang, J.; Nie, W.; Guo, J.; Zhang, M.; Yang, Y.; Chen, J.; Han, F. Mannose-binding lectin activation is associated with the progression of diabetic nephropathy in type 2 diabetes mellitus patients. Ann. Transl. Med. 2020, 8, 1399. [Google Scholar] [CrossRef] [PubMed]
- Poppelaars, F.; da Costa, M.G.; Berger, S.P.; Assa, S.; Meter-Arkema, A.H.; Daha, M.R.; van Son, W.J.; Franssen, C.F.M.; Seelen, M.A.J. Strong predictive value of mannose-binding lectin levels for cardiovascular risk of hemodialysis patients. J. Transl. Med. 2016, 14, 236, Erratum in J. Transl. Med. 2016, 14, 245. [Google Scholar] [CrossRef] [PubMed]
- Adrian, T.; Hornum, M.; Eriksson, F.; Hansen, J.M.; Pilely, K.; Garred, P.; Feldt-Rasmussen, B. Mannose-binding lectin genotypes and outcome in end-stage renal disease: A prospective cohort study. Nephrol. Dial. Transplant. 2018, 33, 1991–1997. [Google Scholar] [CrossRef] [PubMed]
- Rizk, D.V.; Maillard, N.; Julian, B.A.; Knoppova, B.; Green, T.J.; Novak, J.; Wyatt, R.J. The Emerging Role of Complement Proteins as a Target for Therapy of IgA Nephropathy. Front. Immunol. 2019, 10, 504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matthijsen, R.A.; de Winther, M.; Kuipers, D.; Van Der Made, I.; Weber, C.; Herias, M.V.; Gijbels, M.J.; Buurman, W.A. Macrophage-Specific Expression of Mannose-Binding Lectin Controls Atherosclerosis in Low-Density Lipoprotein Receptor–Deficient Mice. Circulation 2009, 119, 2188–2195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biezeveld, M.H.; Geissler, J.; Weverling, G.J.; Kuipers, I.M.; Lam, J.; Ottenkamp, J.; Kuijpers, T.W. Polymorphisms in the mannose-binding lectin gene as determinants of age-defined risk of coronary artery lesions in Kawasaki disease. Arthritis Rheum. 2006, 54, 369–376. [Google Scholar] [CrossRef]
Mean | SD | Min–Max Value | |
---|---|---|---|
Peritonitis rate prior to the beginning of study | 0.58 | 0.94 | 0–4 |
Residual urine (L/day) | 0.93 | 0.82 | 0–3.70 |
Ultrafiltration (L/day) | 1.10 | 0.52 | 0.1–2.80 |
Clearance of urea (Kt/V) | 3.47 | 0.53 | 1.38–4.07 |
Weekly clearance of creatinine (L/week) | 78.65 | 19.77 | 49.14–118.70 |
Peritoneal equilibration test with glucose (PETgly) | 0.46 | 0.10 | 0.21–0.67 |
Peritoneal equilibration test with creatinine (PETcr) | 0.63 | 0.11 | 0.31–0.87 |
Mean | SD | Min–Max Value | |
---|---|---|---|
Index of physical impairment (IPI) | 0.71 | 0.72 | 0–2 |
Index of disease severity (IDS) | 2.25 | 0.79 | 1–3 |
Index of coexistent disease (ICED) | 2.27 | 0.79 | 1–3 |
Charlson comorbidity index (CCI) | 7.63 | 2.19 | 3–15 |
Hazard Ratio | 95% Confidence Interval | p-Value | ||
---|---|---|---|---|
Lower | Upper | |||
Age | 0.995 | 0.958 | 1.034 | 0.810 |
Albumin | 0.977 | 0.859 | 1.111 | 0.722 |
Peritoneal equilibration test for creatinine (PETcr) | 0.042 | 0.001 | 3.045 | 0.147 |
Peritoneal equilibration test for glucose (PETgly) | 0.480 | 0.003 | 72.866 | 0.774 |
Prathyroid hormone (iPTH) | 1.000 | 0.999 | 1.001 | 0.830 |
Urea clearance (Kt/V) | 0.289 | 0.083 | 1.007 | 0.051 |
Weekly creatinine clearance (Ccr) | 0.979 | 0.951 | 1.007 | 0.146 |
Glucose | 1.098 | 0.985 | 1.224 | 0.093 |
Ferritin | 1.001 | 1.000 | 1.002 | 0.001 |
Systolic blood pressure | 0.970 | 0.936 | 1.006 | 0.097 |
Diastolic blood pressure | 0.940 | 0.881 | 1.002 | 0.058 |
Peritonitis rate | 1.729 | 1.218 | 2.454 | 0.002 |
Dialysis duration | 1.007 | 0.995 | 1.018 | 0.255 |
Duration of chronic kidney disease | 0.791 | 0.665 | 0.942 | 0.008 |
Index of physical impairment (IPI) | 2.853 | 1.427 | 5.705 | 0.003 |
Index of coexistent disease (ICED) | 2.488 | 1.064 | 5.820 | 0.035 |
Residual urine | 0.457 | 0.183 | 1.140 | 0.093 |
Ultrafiltration | 1.121 | 0.426 | 2.949 | 0.817 |
GNL signal | 0.042 | 0.993 | 1.111 | 0.087 |
Patients, n | Diseased, n | Hazard Ratio | 95% Confidence Interval | p-Value | ||
---|---|---|---|---|---|---|
Lower | Upper | |||||
Diabetes mellitus | 16 | 4 | 0.805 | 0.256 | 2.529 | 0.710 |
Arterial hypertension | 13 | 3 | 1.592 | 0.542 | 4.672 | 0.397 |
Glomerulonephritis | 11 | 3 | 0.884 | 0.249 | 3.133 | 0.848 |
Autosomal dominant polycystic kidney disease | 4 | 1 | 0.731 | 0.096 | 5.568 | 0.763 |
Tubulointerstitial nephritis | 6 | 2 | 1.158 | 0.261 | 5.135 | 0.847 |
Obsturctive uropathy | 2 | - | 0.048 | 0.000 | 184,480.792 | 0.695 |
Hazard Ratio | 95% Confidence Interval | p-Value | ||
---|---|---|---|---|
Lower | Upper | |||
Age | 1.062 | 0.985 | 1.144 | 0.115 |
Albumin | 0.991 | 0.833 | 1.177 | 0.914 |
Duration of chronic kidney disease | 0.011 | 0.000 | 44.582 | 0.289 |
Peritonitis rate | 0.825 | 0.462 | 1.475 | 0.517 |
index of coexisting disease (ICED) | 1.784 | 0.338 | 9.410 | 0.495 |
Urea clearance (Kt/V) | 0.750 | 0.180 | 3.116 | 0.692 |
Glucose | 1.144 | 1.008 | 1.297 | 0.037 |
Ferritin | 1.001 | 1.000 | 1.002 | 0.119 |
Systolic blood pressure | 0.992 | 0.940 | 1.047 | 0.781 |
Residual urine | 3.971 | 0.626 | 25.192 | 0.144 |
GNL signal | 1.100 | 1.023 | 1.183 | 0.010 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baralić, M.; Pažitná, L.; Brković, V.; Laušević, M.; Gligorijević, N.; Katrlík, J.; Nedić, O.; Robajac, D. Prediction of Mortality in Patients on Peritoneal Dialysis Based on the Fibrinogen Mannosylation. Cells 2023, 12, 351. https://doi.org/10.3390/cells12030351
Baralić M, Pažitná L, Brković V, Laušević M, Gligorijević N, Katrlík J, Nedić O, Robajac D. Prediction of Mortality in Patients on Peritoneal Dialysis Based on the Fibrinogen Mannosylation. Cells. 2023; 12(3):351. https://doi.org/10.3390/cells12030351
Chicago/Turabian StyleBaralić, Marko, Lucia Pažitná, Voin Brković, Mirjana Laušević, Nikola Gligorijević, Jaroslav Katrlík, Olgica Nedić, and Dragana Robajac. 2023. "Prediction of Mortality in Patients on Peritoneal Dialysis Based on the Fibrinogen Mannosylation" Cells 12, no. 3: 351. https://doi.org/10.3390/cells12030351
APA StyleBaralić, M., Pažitná, L., Brković, V., Laušević, M., Gligorijević, N., Katrlík, J., Nedić, O., & Robajac, D. (2023). Prediction of Mortality in Patients on Peritoneal Dialysis Based on the Fibrinogen Mannosylation. Cells, 12(3), 351. https://doi.org/10.3390/cells12030351