Mapping Chromatin Occupancy of Ppp1r1b-lncRNA Genome-Wide Using Chromatin Isolation by RNA Purification (ChIRP)-seq
Abstract
:1. Introduction
2. Materials and Methods
2.1. ChIRP Assay
2.1.1. Probe Design for ChIRP
2.1.2. Cell Culture
2.1.3. Cross-Linking, Sonication, and Hybridization
2.2. ChIRP-Seq
2.2.1. Library Preparation and High-Throughput Sequencing
2.2.2. Bioinformatic Analysis Workflow
2.2.3. Functional Enrichment of Peaks’ Related Genes
2.3. Statistical Analysis
3. Results
3.1. Quality Control and Alignment Statistics Results
3.2. Genome and Gene Depth Distribution Analysis
3.3. Peak Calling
3.4. Functional Annotation of Peaks’ Related Genes
3.5. Promoter Mapped Peaks
3.6. Enhancer Mapped Peaks
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alexander, R.P.; Fang, G.; Rozowsky, J.; Snyder, M.; Gerstein, M.B. Annotating non-coding regions of the genome. Nat. Rev. Genet. 2010, 11, 559–571. [Google Scholar] [CrossRef]
- Touma, M. Genome regulation by long noncoding RNAs in neonatal heart maturation and congenital heart defects. J. Clin. Mol. Med. 2020, 3, 2516–5593. [Google Scholar] [CrossRef]
- Touma, M.; Kang, X.; Zhao, Y.; Cass, A.A.; Gao, F.; Biniwale, R.; Coppola, G.; Xiao, X.; Reemtsen, B.; Wang, Y. Decoding the Long Noncoding RNA During Cardiac Maturation: A Roadmap for Functional Discovery. Circ. Cardiovasc. Genet. 2016, 9, 395–407. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, J.C.R.; Acuña, S.M.; Aoki, J.I.; Floeter-Winter, L.M.; Muxel, S.M. Long Non-Coding RNAs in the Regulation of Gene Expression: Physiology and Disease. Noncoding RNA 2019, 5, 17. [Google Scholar] [CrossRef] [PubMed]
- Mercer, T.R.; Dinger, M.E.; Mattick, J.S. Long non-coding RNAs: Insights into functions. Nat. Rev. Genet. 2009, 10, 155–159. [Google Scholar] [CrossRef] [PubMed]
- Mattick, J.S.; Amaral, P.P.; Carninci, P.; Carpenter, S.; Chang, H.Y.; Chen, L.L.; Chen, R.; Dean, C.; Dinger, M.E.; Fitzgerald, K.A.; et al. Long non-coding RNAs: Definitions, functions, challenges, and recommendations. Nat. Rev. Mol. Cell Biol. 2023, 24, 430–447. [Google Scholar] [CrossRef] [PubMed]
- Gupta, R.A.; Shah, N.; Wang, K.C.; Kim, J.; Horlings, H.M.; Wong, D.J.; Tsai, M.C.; Hung, T.; Argani, P.; Rinn, J.L.; et al. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 2010, 464, 1071–1076. [Google Scholar] [CrossRef] [PubMed]
- Klattenhoff, C.; Scheuermann, J.C.; Surface, L.E.; Bradley, R.K.; Fields, P.A.; Steinhauser, M.L.; Ding, H.; Butty, V.L.; Torrey, L.; Haas, S.; et al. Braveheart, a long non-coding RNA required for cardiovascular lineage commitment. Cell 2013, 152, 570–583. [Google Scholar] [CrossRef] [PubMed]
- Kouzarides, T. Chromatin modifications and their function. Cell 2007, 128, 693–705. [Google Scholar] [CrossRef]
- Aloia, L.; Di Stefano, B.; Di Croce, L. Polycomb complexes in stem cells and embryonic development. Development 2013, 140, 2525–2534. [Google Scholar] [CrossRef]
- Adam, R.C.; Fuchs, E. The yin and yang of chromatin dynamics in stem cell fate selection. Trends Genet. 2016, 32, 89–100. [Google Scholar] [CrossRef]
- Liu, Z.; Chen, O.; Zheng, M.; Wang, L.; Zhou, Y.; Yin, C.; Liu, J.; Qian, L. Re-patterning of H3K27me3, H3K4me3 and DNA methylation during fibroblast conversion into induced cardiomyocytes. Stem Cell Res. 2016, 16, 507–518. [Google Scholar] [CrossRef]
- Kang, X.; Zhao, Y.; Van Arsdell, G.; Nelson, S.F.; Touma, M. Ppp1r1b-lncRNA inhibits PRC2 at myogenic regulatory genes to promote cardiac and skeletal muscle development in mouse and human. RNA 2020, 26, 481–491. [Google Scholar] [CrossRef]
- Hernández-Hernández, J.M.; García-González, E.G.; Brun, C.E.; Rudnicki, M.A. The myogenic regulatory factors, determinants of muscle development, cell identity and regeneration. Semin. Cell Dev. Biol. 2017, 72, 10–18. [Google Scholar] [CrossRef] [PubMed]
- Olson, E.N. Gene regulatory networks in the evolution and development of the heart. Science 2006, 313, 1922–1927. [Google Scholar] [CrossRef] [PubMed]
- Chu, C.; Qu, K.; Zhong, F.L.; Artandi, S.E.; Chang, H.Y. Genomic Maps of Long Noncoding RNA Occupancy Reveal Principles of RNA-Chromatin Interactions. Mol. Cell 2011, 44, 667–678. [Google Scholar] [CrossRef] [PubMed]
- Chu, C.; Quinn, J.; Chang, H.Y. Chromatin Isolation by RNA Purification (ChIRP). J. Vis. Exp. 2012, 61, 3912. [Google Scholar]
- Li, R.; Yu, C.; Li, Y.; Lam, T.W.; Yiu, S.M.; Kristiansen, K.; Wang, J. SOAP2: An improved ultrafast tool for short read alignment. Bioinformatics 2009, 25, 1966–1967. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, T.; Meyer, C.A.; Eeckhoute, J.; Johnson, D.S.; Bernstein, B.E.; Nusbaum, C.; Myers, R.M.; Brown, M.; Li, W.; et al. Model-based Analysis of ChIP-Seq (MACS). Genome Biol. 2008, 9, R137. [Google Scholar] [CrossRef]
- Dreos, R.; Ambrosini, G.; Cavin Perier, R.; Bucher, P. EPD and EPDnew, high-quality promoter resources in the next-generation sequencing era. Nucleic Acids Res. 2013, 41, D157–D164. [Google Scholar] [CrossRef]
- Meylan, P.; Dreos, R.; Ambrosini, G.; Groux, R.; Bucher, P. EPD in 2020: Enhanced data visualization and extension to ncRNA promoters. Nucleic Acids Res. 2020, 48, D65–D69. [Google Scholar] [CrossRef] [PubMed]
- Gao, T.; Qian, J. EnhancerAtlas 2.0: An updated resource with enhancer annotation in 586 tissue/cell types across nine species. Nucleic Acids Res. 2020, 48, D58–D64. Available online: http://www.enhanceratlas.org/indexv2.php (accessed on 30 March 2023). [CrossRef] [PubMed]
- Robinson, J.T.; Thorvaldsdóttir, H.; Winckler, W.; Guttman, M.; Lander, E.S.; Getz, G.; Mesirov, J.P. Integrative Genomics Viewer. Nat. Biotechnol. 2011, 29, 24–26. [Google Scholar] [CrossRef]
- Bailey, T.L.; Boden, M.; Buske, F.A.; Frith, M.; Grant, C.E.; Clementi, L.; Ren, J.; Li, W.W.; Noble, W.S. MEME SUITE: Tools for motif discovery and searching. Nucleic Acids Res. 2009, 37, W202–W208. Available online: http://www.ncbi.nlm.nih.gov/pubmed/19458158 (accessed on 5 April 2023). [CrossRef] [PubMed]
- Bailey, T.L.; Grant, C.E. SEA: Simple Enrichment Analysis of motifs. bioRxiv 2021. [Google Scholar] [CrossRef]
- Hume, M.A.; Barrera, L.A.; Gisselbrecht, S.S.; Bulyk, M.L. UniPROBE, update 2015: New tools and content for the online database of protein-binding microarray data on protein-DNA interactions. Nucleic Acids Res. 2015, 43, D117–D122. [Google Scholar] [CrossRef]
- Ye, J.; Zhang, Y.; Cui, H.; Liu, J.; Wu, Y.; Cheng, Y.; Xu, H.; Huang, X.; Li, S.; Zhou, A.; et al. WEGO: A web tool for plotting GO annotations. Nucleic Acids Res. 2006, 34, W293–W397. [Google Scholar] [CrossRef]
- Kanehisa, M.; Araki, M.; Goto, S.; Hattori, M.; Hirakawa, M.; Itoh, M.; Katayama, T.; Kawashima, S.; Okuda, S.; Tokimatsu, T.; et al. KEGG for linking genomes to life and the environment. Nucleic Acids Res. 2008, 36, D480–D484. [Google Scholar] [CrossRef]
- Calhoun, V.C.; Stathopoulos, A.; Levine, M. Promoter-proximal tethering elements regulate enhancer-promoter specificity in the Drosophila antennapedia complex. Proc. Natl. Acad. Sci. USA 2002, 99, 9243–9247. [Google Scholar] [CrossRef]
- Yella, V.R.; Bansal, M. DNA structural features of eukaryotic TATA-containing and TATA-less promoters. FEBS Open Bio. 2017, 16, 324–334. [Google Scholar] [CrossRef]
- He, Y.; Gorkin, D.U.; Dickel, D.E.; Nery, J.R.; Castanon, R.G.; Lee, A.Y.; Shen, Y.; Visel, A.; Pennacchio, L.A.; Ren, B.; et al. Improved regulatory element prediction based on tissue-specific local epigenomic signatures. Proc. Natl. Acad. Sci. USA 2017, 114, E1633–E1640. [Google Scholar] [CrossRef] [PubMed]
- Gorkin, D.U.; Barozzi, I.; Zhao, Y.; Zhang, Y.; Huang, H.; Lee, A.Y.; Li, B.; Chiou, J.; Wildberg, A.; Ding, B.; et al. An atlas of dynamic chromatin landscapes in mouse fetal development. Nature 2020, 583, 744–775. [Google Scholar] [CrossRef] [PubMed]
Sample ID | Fragment Length (bp) | Sequencing Strategy | Clean Reads Number | Clean Data Size (bp) | Clean Rate (%) |
---|---|---|---|---|---|
Ppp1r1b-lncRNA_ChIRP | 100–500 | SE50 | 36,534,935 | 1.83E+09 | 99.13 |
Control | 100–500 | SE50 | 38,429,369 | 1.92E+09 | 98.04 |
Sample ID | Species | Clean Reads | Mapped Reads | Mapped Rate (%) | Uniquely Mapped Reads | Uniquely Mapped Rate (%) |
---|---|---|---|---|---|---|
Ppp1r1b-lncRNA-ChIRP | mm10 | 36,534,935 | 34,783,233 | 95.21 | 31,674,010 | 86.7 |
Control | mm10 | 38,429,369 | 37,264,694 | 96.97 | 32,579,793 | 84.78 |
Sample ID | Peak Number | Total Length | Average Length | Total Tag Depth | Average Tag Depth | Genome Rate (%) |
---|---|---|---|---|---|---|
Ppp1r1b-lncRNA-ChIRP | 261,455 | 146,128,139 | 558 | 3,848,968.705 | 14 | 5.35 |
KEGG Pathway | p Value | adjp-Value | Example Genes |
---|---|---|---|
Cardiomyopathy | 9.74E-10 | 5.29E-08 | Myh6, Tnnt2, Tnni3, Tcap, DMD |
MAPK Signaling Pathway | 7.83E-09 | 2.55E-07 | MAPK12, MAPK10, MAPK1, BMP4, Ppp2cb |
MicroRNAs in cancer | 6.26E-08 | 1.46E-06 | Ezr, Tnr, Sos1, Lrp1, Abl1 |
Thyroid hormone signaling pathway | 6.26E-08 | 1.46E-06 | Adam23, Prkca, Med12l, Otog, Bmp4 |
CAMP signaling pathway | 1.24E-07 | 2.70E-06 | Atp6v1h, Rdh10, Ndufs1, Ndufa10, Prim2 |
Calcium signaling pathway | 1.24E-07 | 2.70E-06 | Cacna1c, Tnnc2, Cacna1d, Plcb1, Pde1c |
Insulin resistance | 1.83E-07 | 3.73E-06 | Prcke, nfkb1, Prkag2, Slc27a1, Ppara |
Regulating pluripotency of stem cells | 3.19E-07 | 5.47E-06 | Meis1, Jak2, Lhx2, cdh1, Pou5f1 |
Adrenergic signaling of cardiomyocytes | 1.12E-05 | 1.21E-04 | Cacng3,Lam4, Tnn, Ctnna, Lamc1 |
mTOR signaling pathway | 2.36E-05 | 2.34E-04 | Grb10, Rheb, Mtor, Deptor, Akt1,3 |
Muscle contraction | 8.21E-05 | 6.08E-04 | Atp1a4, cacng2, Casq2, Ryr2, Cox7a21 |
Wnt signaling pathway | 8.54E-05 | 6.18E-04 | Lef1, Wnt3, Tcf7, Nfatc1, fzd6,3,9 |
Inositol phosphate metabolism | 8.54E-05 | 6.18E-04 | Pten, Mtmr2, Plcb1, Itpk1, Pip4k2b |
Notch signaling pathway | 0.000121564 | 8.62E-04 | Notch3, Jag1, EP300, Hess, Kat2a |
Regulation of actin cytoskeleton | 0.000134814 | 9.16E-04 | Vwc2l, Lamb3, Cpne4, Adam23, Actn1 |
Peak Chr | Peak Start | Peak End | PG + Peak ID | Peak Score | Promoter Start | Promoter End | Gene Symbol | TATA | IM | CCAAT | GC | Strand | Overlap vs. Promoter | Overlap vs. Promoter (%) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
chr14 | 63,244,293 | 63,245,511 | 77,537 | 74.66 | 63,245,227 | 63,245,287 | Gata4 | X | X | X | Neg | 60 | 100 | |
chr13 | 83,523,709 | 83,524,546 | 108,425 | 10.09 | 83,524,504 | 83,524,564 | Mef2c | X | X | X | Pos | 60 | 100 | |
chr17 | 46,555,824 | 46,556,722 | 108,938 | 32.96 | 46,556,158 | 46,556,218 | Srf | X | X | X | Neg | 60 | 100 | |
chr15 | 79,345,918 | 79,346,730 | 107,952 | 21.98 | 79,346,563 | 79,346,623 | Maff | X | X | Pos | 60 | 100 | ||
chr10 | 81427146 | 81,427,779 | 108,158 | 14.82 | 81,427,146 | 81,427,206 | Nfic | X | X | Neg | 60 | 100 | ||
chr1 | 135,257,953 | 135,258,882 | 12,555 | 36.78 | 135,258,446 | 135,258,506 | Elf3 | X | X | X | Neg | 60 | 100 | |
chr1 | 4,493,533 | 4,493,908 | 108,119 | 15.73 | 4,493,597 | 4,493,657 | Sox17 | X | X | X | X | Neg | 60 | 100 |
chr10 | 67,536,485 | 67,538,050 | 25,893 | 55.61 | 67,537,820 | 67,537,880 | Egr2 | X | Pos | 60 | 100 | |||
chr17 | 34,031,775 | 34,032,425 | 107,642 | 71.94 | 34,032,319 | 34,032,379 | Rxrb | X | Pos | 60 | 100 | |||
chr14 | 79,479,972 | 79,481,156 | 108,477 | 10.58 | 79,481,129 | 79,481,189 | Elf1 | X | Pos | 27 | 45 | |||
chr12 | 56,534,915 | 56,535,714 | 107,998 | 20.16 | 56,535,187 | 56,535,247 | Nkx2-1 | X | Neg | 60 | 100 | |||
chr7 | 19,629,319 | 19,629,812 | 211,713 | 38.52 | 19,629,412 | 19,629,472 | Relb | X | X | Neg | 60 | 100 | ||
chr15 | 102,625,143 | 102,625,696 | 94,380 | 99.04 | 102,625,475 | 102,625,535 | Atf7 | X | Neg | 60 | 100 | |||
chr1 | 51,986,786 | 51,987,935 | 4273 | 28.28 | 51,987,077 | 51,987,137 | Stat4 | X | X | X | Pos | 60 | 100 | |
chr3 | 131,108,912 | 131,111,373 | 161,236 | 23.35 | 131,110,273 | 131,110,333 | Lef1 | X | Pos | 60 | 100 | |||
chr2 | 28,621,840 | 28,622,035 | 132,357 | 24.47 | 28,621,934 | 28,621,994 | Gfi1b | X | Neg | 60 | 100 | |||
chr3 | 30,138,874 | 30,140,715 | 151,247 | 36.8 | 30,140,412 | 30,140,472 | Mecom | X | Neg | 60 | 100 | |||
chr16 | 10,992,402 | 10,993,184 | 108,188 | 13.97 | 10,993,068 | 10,993,128 | Litaf | X | X | X | Neg | 60 | 100 | |
chr7 | 4,915,143 | 4,915,650 | 108,366 | 10.16 | 4,915,172 | 4,915,232 | Zfp628 | X | Pos | 60 | 100 | |||
chr5 | 134,306,110 | 134,306,838 | 193,226 | 34.41 | 134,306,598 | 134,306,658 | Gtf2i | X | Neg | 60 | 100 | |||
chr13 | 100,651,310 | 100,651,684 | 108,247 | 12.71 | 100,651,575 | 100,651,635 | Taf9 | X | X | Pos | 60 | 100 | ||
chr10 | 75,921,059 | 75,921,711 | 26,848 | 31.22 | 75,921,567 | 75,921,627 | Smarcb1 | X | Neg | 60 | 100 | |||
chrX | 12,761,915 | 12,762,355 | 251,942 | 39.97 | 12,762,005 | 12,762,065 | Med14 | X | Neg | 60 | 100 | |||
chr7 | 139,943,548 | 139,943,869 | 107,961 | 21.67 | 139,943,772 | 139,943,832 | Utf1 | X | Pos | 60 | 100 | |||
chr3 | 52,104,975 | 52,105,552 | 153,279 | 30.45 | 52,104,980 | 52,105,040 | Maml3 | X | X | Neg | 60 | 100 |
RANK | ID | ALT_ID | CONSENSUS | SCORE_THR | PVALUE | EVALUE | QVALUE |
---|---|---|---|---|---|---|---|
79 | UP00237_1 | Otp_3496.1 | VVYWRTTAATTAAYDNG | 4.2 | 0.00E+00 | 7.69E-306 | 0.00E+00 |
87 | UP00164_1 | Hoxa7_2668.2 | SGMNTTAATTAATDNNC | 7.5 | 2.01E-273 | 7.76E-271 | 1.70E-273 |
128 | UP00175_1 | Lhx9_3492.1 | CBYATTAATTAATHMCY | 6.1 | 6.04E-180 | 2.33E-177 | 3.47E-180 |
69 | UP00144_1 | Hoxb4_2627.1 | CNNRTTAATTAATWAHY | 8.3 | 2.81e-343 | 1.08e-340 | 1.08e-340 |
7 | UP00169_1 | Lmx1b_3433.2 | VDWWWTTAATTAATWHB | 6.6 | 3.33e-1146 | 1.28e-1143 | 1.28e-1143 |
40 | UP00078_1 | Arid3a_primary | SNNHTTAATTAAAMNHN | 7.8 | 3.38e-506 | 1.30e-503 | 1.30e-503 |
55 | UP00141_1 | Vsx1_1728.1 | CSARTTAATTAAYNAHT | 7.8 | 3.96e-399 | 1.53e-396 | 1.53e-396 |
78 | UP00209_2 | Cart1_1275.1 | BVMNTTAATTAAYYNNN | 6.7 | 1.83e-310 | 7.05E-308 | 1.72e-310 |
18 | UP00129_1 | Pou3f1_3819.1 | DVNTAATTAATTAABTN | 6.7 | 6.07e-920 | 2.34e-917 | 2.34e-917 |
70 | UP00142_1 | Uncx4.1_2281.2 | VNTAATTAATTAABGSG | 7.3 | 6.51e-337 | 2.51e-334 | 2.51e-334 |
51 | UP00172_1 | Prop1_3949.1 | VGVRTTAATTAAKWNNC | 7.3 | 6.71e-422 | 2.59e-419 | 2.59e-419 |
47 | UP00196_1 | Hoxa4_3426.1 | DDTTATTAATTAACKBG | 6.2 | 7.06e-449 | 2.72e-446 | 2.72e-446 |
81 | UP00182_1 | Hoxa6_1040.1 | AMGKTAATTACCHHAD | 9.1 | 7.54E-304 | 2.91E-301 | 6.86E-304 |
82 | UP00189_1 | Hoxa5_3415.1 | AMGKTAATTAVCWHAD | 7.5 | 2.19E-300 | 8.45E-298 | 1.97E-300 |
85 | UP00248_1 | Pax7_3783.1 | MSHNYTAATTARBHVDN | 10 | 3.56E-284 | 1.37E-281 | 3.08E-284 |
92 | UP00174_1 | Hoxa2_3079.1 | AVGGTAATTASCHMAN | 7.4 | 9.71E-260 | 3.75E-257 | 7.77E-260 |
94 | UP00214_1 | Hoxb5_3122.2 | ANGKTAATTASCHMAT | 9.1 | 2.45E-257 | 9.45E-255 | 1.92E-257 |
97 | UP00167_1 | En1_3123.2 | RNNAACTAATTARKDC | 5.8 | 3.29E-249 | 1.27E-246 | 2.50E-249 |
88 | UP00065_1 | Zfp161_primary | KGGCGCGCGCRCHYRD | 14 | 1.94E-272 | 7.51E-270 | 1.63E-272 |
193 | UP00001_1 | E2F2_primary | NHWARGGCGCGCSAH | 21 | 1.65E-74 | 6.38E-72 | 6.31E-75 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hwang, J.H.; Kang, X.; Wolf, C.; Touma, M. Mapping Chromatin Occupancy of Ppp1r1b-lncRNA Genome-Wide Using Chromatin Isolation by RNA Purification (ChIRP)-seq. Cells 2023, 12, 2805. https://doi.org/10.3390/cells12242805
Hwang JH, Kang X, Wolf C, Touma M. Mapping Chromatin Occupancy of Ppp1r1b-lncRNA Genome-Wide Using Chromatin Isolation by RNA Purification (ChIRP)-seq. Cells. 2023; 12(24):2805. https://doi.org/10.3390/cells12242805
Chicago/Turabian StyleHwang, John Hojoon, Xuedong Kang, Charlotte Wolf, and Marlin Touma. 2023. "Mapping Chromatin Occupancy of Ppp1r1b-lncRNA Genome-Wide Using Chromatin Isolation by RNA Purification (ChIRP)-seq" Cells 12, no. 24: 2805. https://doi.org/10.3390/cells12242805
APA StyleHwang, J. H., Kang, X., Wolf, C., & Touma, M. (2023). Mapping Chromatin Occupancy of Ppp1r1b-lncRNA Genome-Wide Using Chromatin Isolation by RNA Purification (ChIRP)-seq. Cells, 12(24), 2805. https://doi.org/10.3390/cells12242805