GRF2 Is Crucial for Cone Photoreceptor Viability and Ribbon Synapse Formation in the Mouse Retina
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Immunohistochemistry
2.3. Electron Microscopy
2.4. BaseScope In Situ Hybridization (ISH)
2.5. Quantification of Cone Photoreceptor Nuclear Positioning
2.6. Cone Cell Number Quantification
2.7. Statistical Analysis
2.8. TUNEL
2.9. Electroretinogram Recordings
3. Results
3.1. Spatio-Temporal Pattern of GRF2 Expression in the Mouse Retina
3.2. GRF2 and CDC42 (but Not RAC1) Participate in Cone Nuclear Translocation
3.3. Opposite Effects of RAC1 and CDC42 Ablation on GRF2-Dependent MLC2 Phosphorylation in the Mouse Retina
3.4. Progressive Cone Photoreceptor Loss Caused by GRF2 Ablation Is Aggravated by Concomitant CDC42 (but Not RAC1) Ablation
3.5. Single or Combined Elimination of CDC42 and GRF2 Leads to VASP Hyperactivation
3.6. Functional Impairment of Cone Photoreceptor Cells in GRF2KO Retinas Is Aggravated in Double-Knockout GRF2KO/CDC42KO Mice
3.7. Specific Structural Alterations in the Synapses of GRF2KO Cone Photoreceptors
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Fernández-Medarde, A.; Santos, E. The RasGrf family of mammalian guanine nucleotide exchange factors. Biochim. Biophys. Acta-Rev. Cancer 2011, 1815, 170–188. [Google Scholar] [CrossRef]
- De Mora, J.F.; Esteban, L.M.; Burks, D.J.; Núñez, A.; Garcés, C.; García-Barrado, M.J.; Iglesias-Osma, M.C.; Moratinos, J.; Ward, J.M.; Santos, E. Ras-GRF1 signaling is required for normal β-cell development and glucose homeostasis. EMBO J. 2003, 22, 3039–3049. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Medarde, A.; Barhoum, R.; Riquelme, R.; Porteros, A.; Núñez, A.; de Luis, A.; de Las Rivas, J.; de la Villa, P.; Varela-Nieto, I.; Santos, E. RasGRF1 disruption causes retinal photoreception defects and associated transcriptomic alterations. J. Neurochem. 2009, 110, 641–652. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Medarde, A.; Porteros, A.; de las Rivas, J.; Núñez, A.; Fuster, J.J.; Santos, E. Laser microdissection and microarray analysis of the hippocampus of Ras-GRF1 knockout mice reveals gene expression changes affecting signal transduction pathways related to memory and learning. Neuroscience 2007, 146, 272–285. [Google Scholar] [CrossRef] [PubMed]
- Schumann, G.; Coin, L.J.; Lourdusamy, A.; Charoen, P.; Berger, K.H.; Stacey, D.; Desrivières, S.; Aliev, F.A.; Khan, A.A.; Amin, N.; et al. Genome-wide association and genetic functional studies identify autism susceptibility candidate 2 gene (AUTS2) in the regulation of alcohol consumption. Proc. Natl. Acad. Sci. USA 2011, 108, 7119–7124. [Google Scholar] [CrossRef]
- Gómez, C.; Jimeno, D.; Fernández-Medarde, A.; García-Navas, R.; Calzada, N.; Santos, E. Ras-GRF2 regulates nestin-positive stem cell density and onset of differentiation during adult neurogenesis in the mouse dentate gyrus. Mol. Cell. Neurosci. 2017, 85, 127–147. [Google Scholar] [CrossRef]
- Jimeno, D.; Gómez, C.; Calzada, N.; de la Villa, P.; Lillo, C.; Santos, E. RASGRF2 controls nuclear migration in postnatal retinal cone photoreceptors. J. Cell Sci. 2016, 129, 729–742. [Google Scholar] [CrossRef] [PubMed]
- Jimeno, D.; Santos, E. A new functional role uncovered for RASGRF2 in control of nuclear migration in cone photoreceptors during postnatal retinal development. Small GTPases 2017, 8, 26–30. [Google Scholar] [CrossRef]
- Aghaizu, N.D.; Warre-Cornish, K.M.; Robinson, M.R.; Waldron, P.V.; Maswood, R.N.; Smith, A.J.; Ali, R.R.; Pearson, R.A. Repeated nuclear translocations underlie photoreceptor positioning and lamination of the outer nuclear layer in the mammalian retina. Cell Rep. 2021, 36, 109461. [Google Scholar] [CrossRef]
- Frade, J.M. Chapter 5 Interkinetic nuclear movement in the vertebrate neuroepithelium: Encounters with an old acquaintance. Prog. Brain Res. 2002, 136, 67–71. [Google Scholar] [CrossRef]
- Rich, K.A.; Zhan, Y.; Blanks, J.C. Migration and Synaptogenesis of Cone Photoreceptors in the Developing Mouse Retina Indexing terms: Neuron-specific enolase; differentiation; immunocytochemistry; synaptic vesicle protein. J. Comp. Neurol. 1997, 388, 47–63. [Google Scholar] [CrossRef]
- Collin, G.B.; Won, J.; Krebs, M.P.; Hicks, W.J.; Charette, J.R.; Naggert, J.K.; Nishina, P.M. Disruption in murine Eml1 perturbs retinal lamination during early development. Sci. Rep. 2020, 10, 5647. [Google Scholar] [CrossRef] [PubMed]
- Michalakis, S.; Geiger, H.; Haverkamp, S.; Hofmann, F.; Gerstner, A.; Biel, M. Impaired Opsin Targeting and Cone Photoreceptor Migration in the Retina of Mice Lacking the Cyclic Nucleotide-Gated Channel CNGA3. Investig. Ophthalmol. Vis. Sci. 2005, 46, 1516–1524. [Google Scholar] [CrossRef] [PubMed]
- Razafsky, D.; Zang, S.; Hodzic, D. UnLINCing the nuclear envelope: Towards an understanding of the physiological significance of nuclear positioning. Biochem. Soc. Trans. 2011, 39, 1790–1794. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Lei, K.; Zhou, M.; Craft, C.M.; Xu, G.; Xu, T.; Zhuang, Y.; Xu, R.; Han, M. KASH protein Syne-2/Nesprin-2 and SUN proteins SUN1/2 mediate nuclear migration during mammalian retinal development. Hum. Mol. Genet. 2011, 20, 1061–1073. [Google Scholar] [CrossRef] [PubMed]
- Fan, J.; Jia, L.; Li, Y.; Ebrahim, S.; May-Simera, H.; Wood, A.; Morell, R.J.; Liu, P.; Lei, J.; Kachar, B.; et al. Maturation arrest in early postnatal sensory receptors by deletion of the MIR-183/96/182 cluster in mouse. Proc. Natl. Acad. Sci. USA 2017, 114, E4271–E4280. [Google Scholar] [CrossRef]
- Gartner, S.; Henkind, P. Aging and degeneration of the human macula. 1. Outer nuclear layer and photoreceptors. Br. J. Ophthalmol. 1981, 65, 23–28. [Google Scholar] [CrossRef]
- Pow, D.V.; Sullivan, R.K.P. Nuclear kinesis, neurite sprouting and abnormal axonal projections of cone photoreceptors in the aged and AMD-afflicted human retina. Exp. Eye Res. 2007, 84, 850–857. [Google Scholar] [CrossRef]
- Razafsky, D.; Hodzic, D. A variant of Nesprin1 giant devoid of KASH domain underlies the molecular etiology of autosomal recessive cerebellar ataxia type I. Neurobiol. Dis. 2015, 78, 57–67. [Google Scholar] [CrossRef]
- Zhang, X.; Lei, K.; Yuan, X.; Wu, X.; Zhuang, Y.; Xu, T.; Xu, R.; Han, M. SUN1/2 and Syne/Nesprin-1/2 complexes connect centrosome to the nucleus during neurogenesis and neuronal migration in mice. Neuron 2009, 64, 173–187. [Google Scholar] [CrossRef]
- Bone, C.R.; Starr, D.A. Nuclear migration events throughout development. J. Cell Sci. 2016, 129, 1951–1961. [Google Scholar] [CrossRef]
- Cain, N.E.; Jahed, Z.; Schoenhofen, A.; Valdez, V.A.; Elkin, B.; Hao, H.; Harris, N.J.; Herrera, L.A.; Woolums, B.M.; Mofrad, M.R.K.; et al. Conserved SUN-KASH Interfaces Mediate LINC Complex-Dependent Nuclear Movement and Positioning. Curr. Biol. 2018, 28, 3086–3097.e4. [Google Scholar] [CrossRef]
- Xue, Y.; Razafsky, D.; Hodzic, D.; Kefalov, V.J. Mislocalization of cone nuclei impairs cone function in mice. FASEB J. 2020, 34, 10242–10249. [Google Scholar] [CrossRef] [PubMed]
- Razafsky, D.; Blecher, N.; Markov, A.; Stewart-Hutchinson, P.J.; Hodzic, D. LINC complexes mediate the positioning of cone photoreceptor nuclei in mouse retina. PLoS ONE 2012, 7, e47180. [Google Scholar] [CrossRef]
- Solecki, D.J.; Model, L.; Gaetz, J.; Kapoor, T.M.; Hatten, M.E. Par6alpha signaling controls glial-guided neuronal migration. Nat. Neurosci. 2004, 7, 1195–1203. [Google Scholar] [CrossRef] [PubMed]
- Ramahi, J.S.; Solecki, D.J. The PAR polarity complex and cerebellar granule neuron migration. Adv. Exp. Med. Biol. 2014, 800, 113–131. [Google Scholar] [CrossRef]
- Cadot, B.; Gache, V.; Vasyutina, E.; Falcone, S.; Birchmeier, C.; Gomes, E.R. Nuclear movement during myotube formation is microtubule and dynein dependent and is regulated by Cdc42, Par6 and Par3. EMBO Rep. 2012, 13, 741–749. [Google Scholar] [CrossRef] [PubMed]
- Calvo, F.; Sanz-Moreno, V.; Agudo-Ibáñez, L.; Wallberg, F.; Sahai, E.; Marshall, C.J.; Crespo, P. RasGRF suppresses Cdc42-mediated tumour cell movement, cytoskeletal dynamics and transformation. Nat. Cell Biol. 2011, 13, 819–826. [Google Scholar] [CrossRef]
- Baschieri, F.; Confalonieri, S.; Bertalot, G.; Di Fiore, P.P.; Dietmaier, W.; Leist, M.; Crespo, P.; MacAra, I.G.; Farhan, H. Spatial control of Cdc42 signalling by a GM130-RasGRF complex regulates polarity and tumorigenesis. Nat. Commun. 2014, 5, 4839. [Google Scholar] [CrossRef]
- Fan, W.T.; Koch, C.A.; De Hoog, C.L.; Fam, N.P.; Moran, M.F. The exchange factor Ras-GRF2 activates Ras-dependent and Rac-dependent mitogen-activated protein kinase pathways. Curr. Biol. 1998, 8, 935–939. [Google Scholar] [CrossRef]
- Kiyono, M.; Satoh, T.; Kaziro, Y. G protein beta gamma subunit-dependent Rac-guanine nucleotide exchange activity of Ras-GRF1/CDC25(Mm). Proc. Natl. Acad. Sci. USA 1999, 96, 4826–4831. [Google Scholar] [CrossRef]
- Antoku, S.; Zhu, R.; Kutscheidt, S.; Fackler, O.T.; Gundersen, G.G. Reinforcing the LINC complex connection to actin filaments: The role of FHOD1 in TAN line formation and nuclear movement. Cell Cycle 2015, 14, 2200–2205. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Medarde, A.; Esteban, L.M.; Núñez, A.; Porteros, Á.; Tessarollo, L.; Santos, E. Targeted disruption of Ras-Grf2 shows its dispensability for mouse growth and development. Mol. Cell. Biol. 2002, 22, 2498–2504. [Google Scholar] [CrossRef] [PubMed]
- Glogauer, M.; Marchal, C.C.; Zhu, F.; Worku, A.; Clausen, B.E.; Foerster, I.; Marks, P.; Downey, G.P.; Dinauer, M.; Kwiatkowski, D.J. Rac1 deletion in mouse neutrophils has selective effects on neutrophil functions. J. Immunol. 2003, 170, 5652–5657. [Google Scholar] [CrossRef]
- Chen, L.; Liao, G.; Yang, L.; Campbell, K.; Nakafuku, M.; Kuan, C.Y.; Zheng, Y. Cdc42 deficiency causes Sonic hedgehog-independent holoprosencephaly. Proc. Natl. Acad. Sci. USA 2006, 103, 16520–16525. [Google Scholar] [CrossRef] [PubMed]
- Le, Y.Z.; Ash, J.D.; Al-Ubaidi, M.R.; Chen, Y.; Ma, J.X.; Anderson, R.E. Targeted expression of Cre recombinase to cone photoreceptors in transgenic mice. Mol. Vis. 2004, 10, 1011–1018. [Google Scholar]
- Preibisch, S.; Saalfeld, S.; Tomancak, P. Globally optimal stitching of tiled 3D microscopic image acquisitions. Bioinformatics 2009, 25, 1463–1465. [Google Scholar] [CrossRef]
- Mayor-Torroglosa, S.; De La Villa, P.; Rodríguez, M.E.; Lafuente López-Herrera, M.P.; Avilés-Trigueros, M.; García-Avilés, A.; Miralles De Imperial, J.; Villegas-Pérez, M.P.; Vidal-Sanz, M. Ischemia results 3 months later in altered ERG, degeneration of inner layers, and deafferented tectum: Neuroprotection with brimonidine. Investig. Ophthalmol. Vis. Sci. 2005, 46, 3825–3835. [Google Scholar] [CrossRef]
- Arozarena, I.; Matallanas, D.; Crespo, P. Maintenance of CDC42 GDP-bound state by Rho-GDI inhibits MAP kinase activation by the exchange factor Ras-GRF. evidence for Ras-GRF function being inhibited by Cdc42-GDP but unaffected by CDC42-GTP. J. Biol. Chem. 2001, 276, 21878–21884. [Google Scholar] [CrossRef]
- Arozarena, I.; Aaronson, D.S.; Matallanas, D.; Sanz, V.; Ajenjo, N.; Tenbaum, S.P.; Teramoto, H.; Ighishi, T.; Zabala, J.C.; Silvio Gutkind, J.; et al. The Rho family GTPase Cdc42 regulates the activation of Ras/MAP kinase by the exchange factor Ras-GRF. J. Biol. Chem. 2000, 275, 26441–26448. [Google Scholar] [CrossRef]
- Trifunović, D.; Dengler, K.; Michalakis, S.; Zrenner, E.; Wissinger, B.; Paquet-Durand, F. cGMP-dependent cone photoreceptor degeneration in the cpfl1 mouse retina. J. Comp. Neurol. 2010, 518, 3604–3617. [Google Scholar] [CrossRef] [PubMed]
- Faix, J.; Rottner, K. Ena/VASP proteins in cell edge protrusion, migration and adhesion. J. Cell Sci. 2022, 135, jcs259226. [Google Scholar] [CrossRef]
- Johnson, L.V.; Hageman, G.S.; Blanks, J.C. Interphotoreceptor matrix domains ensheath vertebrate cone photoreceptor cells. Investig. Ophthalmol. Vis. Sci. 1986, 27, 129–135. [Google Scholar]
- Martin, H.; Rostas, J.; Patel, Y.; Aitken, A. Subcellular localisation of 14-3-3 isoforms in rat brain using specific antibodies. J. Neurochem. 1994, 63, 2259–2265. [Google Scholar] [CrossRef]
- Inamdar, S.M.; Lankford, C.K.; Laird, J.G.; Novbatova, G.; Tatro, N.; Whitmore, S.S.; Scheetz, T.E.; Baker, S.A. Analysis of 14-3-3 isoforms expressed in photoreceptors. Exp. Eye Res. 2018, 170, 108–116. [Google Scholar] [CrossRef]
- Matthews, G.; Fuchs, P. The diverse roles of ribbon synapses in sensory neurotransmission. Nat. Rev. Neurosci. 2010, 11, 812–822. [Google Scholar] [CrossRef]
- Davison, A.; Gierke, K.; Brandstätter, J.H.; Babai, N. Functional and Structural Development of Mouse Cone Photoreceptor Ribbon Synapses. Investig. Ophthalmol. Vis. Sci. 2022, 63, 21. [Google Scholar] [CrossRef]
- Zhang, J.; Tuo, J.; Cao, X.; Shen, D.; Li, W.; Chan, C.C. Early degeneration of photoreceptor synapse in Ccl2/Cx3cr1-deficient mice on Crb1(rd8) background. Synapse 2013, 67, 515–531. [Google Scholar] [CrossRef] [PubMed]
- Ryl, M.; Urbasik, A.; Gierke, K.; Babai, N.; Joachimsthaler, A.; Feigenspan, A.; Frischknecht, R.; Stallwitz, N.; Fejtová, A.; Kremers, J.; et al. Genetic disruption of bassoon in two mutant mouse lines causes divergent retinal phenotypes. FASEB J. 2021, 35, e21520. [Google Scholar] [CrossRef]
- Angrand, P.O.; Segura, I.; Völkel, P.; Ghidelli, S.; Terry, R.; Brajenovic, M.; Vintersten, K.; Klein, R.; Superti-Furga, G.; Drewes, G.; et al. Transgenic mouse proteomics identifies new 14-3-3-associated proteins involved in cytoskeletal rearrangements and cell signaling. Mol. Cell. Proteom. 2006, 5, 2211–2227. [Google Scholar] [CrossRef] [PubMed]
- Greferath, U.; Huynh, M.; Jobling, A.I.; Vessey, K.A.; Venables, G.; Surrao, D.; O’Neill, H.C.; Limnios, I.J.; Fletcher, E.L. Dorsal-Ventral Differences in Retinal Structure in the Pigmented Royal College of Surgeons Model of Retinal Degeneration. Front. Cell. Neurosci. 2021, 14, 553708. [Google Scholar] [CrossRef]
- Brunet, A.A.; Harvey, A.R.; Carvalho, L.S. Primary and Secondary Cone Cell Death Mechanisms in Inherited Retinal Diseases and Potential Treatment Options. Int. J. Mol. Sci. 2022, 23, 726. [Google Scholar] [CrossRef] [PubMed]
- Fu, J.; Nagashima, M.; Guo, C.; Raymond, P.A.; Wei, X. Novel Animal Model of Crumbs-Dependent Progressive Retinal Degeneration That Targets Specific Cone Subtypes. Investig. Ophthalmol. Vis. Sci. 2018, 59, 505–518. [Google Scholar] [CrossRef]
- Roche, S.L.; Wyse-Jackson, A.C.; Byrne, A.M.; Ruiz-Lopez, A.M.; Cotter, T.G. Alterations to retinal architecture prior to photoreceptor loss in a mouse model of retinitis pigmentosa. Int. J. Dev. Biol. 2016, 60, 127–139. [Google Scholar] [CrossRef]
- Li, S.; Tian, X.; Hartley, D.M.; Feig, L.A. Distinct roles for Ras-guanine nucleotide-releasing factor 1 (Ras-GRF1) and Ras-GRF2 in the induction of long-term potentiation and long-term depression. J. Neurosci. 2006, 26, 1721–1729. [Google Scholar] [CrossRef] [PubMed]
- Schröder, M.S.; Stellmacher, A.; Romorini, S.; Marini, C.; Montenegro-Venegas, C.; Altrock, W.D.; Gundelfinger, E.D.; Fejtova, A. Regulation of presynaptic anchoring of the scaffold protein Bassoon by phosphorylation-dependent interaction with 14-3-3 adaptor proteins. PLoS ONE 2013, 8, e58814. [Google Scholar] [CrossRef] [PubMed]
- Babai, N.; Gierke, K.; Müller, T.; Regus-Leidig, H.; Brandstätter, J.H.; Feigenspan, A. Signal transmission at invaginating cone photoreceptor synaptic contacts following deletion of the presynaptic cytomatrix protein Bassoon in mouse retina. Acta Physiol. 2019, 226, e13241. [Google Scholar] [CrossRef]
- Carriere, A.; Ray, H.; Blenis, J.; Roux, P.P. The RSK factors of activating the Ras/MAPK signaling cascade. Front. Biosci. 2008, 13, 4258–4275. [Google Scholar] [CrossRef]
- Hadj-Saïd, W.; Froger, N.; Ivkovic, I.; Jiménez-López, M.; Dubus, É.; Dégardin-Chicaud, J.; Simonutti, M.; Quénol, C.; Neveux, N.; Villegas-Pérez, M.P.; et al. Quantitative and Topographical Analysis of the Losses of Cone Photoreceptors and Retinal Ganglion Cells Under Taurine Depletion. Investig. Ophthalmol. Vis. Sci. 2016, 57, 4692–4703. [Google Scholar] [CrossRef]
- Hsu, Y.; Garrison, J.E.; Seo, S.; Sheffield, V.C. The absence of BBSome function decreases synaptogenesis and causes ectopic synapse formation in the retina. Sci. Rep. 2020, 10, 8321. [Google Scholar] [CrossRef]
Antibody | Source | Cat# | Working Dilution |
---|---|---|---|
GLAST | Lifespan Biosciences (Lynnwood, WA, USA) | LS-C94136 | 1:500 |
Lectin from Arachis hypogaea-FITC | Sigma-Aldrich (St. Louis, MI, USA) | L7381 | 1:200 |
Red/Green Opsin | Chemicon (now Sigma-Aldrich, St. Louis, MI, USA) | AB5405 | 1:2000 |
ꞵ-catenin | BD Transduction Laboratories (Franklin Lakes, NJ, USA) | 610154 | 1:500 |
p-MLC2 | Cell Signaling (Danvers, MA, USA) | 36755 | 1:200 |
p-VASP | Nanotools (Teningen, Germany) | 0047-100/VASP-16C2 | 1:200 |
CRE | Millipore (Burlington, MA, USA) | MAB3120 | 1:1000 |
14-3-3γ | Upstate (Upstate, NY, USA) | 05-639 | 1:1000 |
Neuron specific enolase (NSE) | Polysciences (Warrington, PA, USA) | 16625 | 1:4000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jimeno, D.; Lillo, C.; de la Villa, P.; Calzada, N.; Santos, E.; Fernández-Medarde, A. GRF2 Is Crucial for Cone Photoreceptor Viability and Ribbon Synapse Formation in the Mouse Retina. Cells 2023, 12, 2574. https://doi.org/10.3390/cells12212574
Jimeno D, Lillo C, de la Villa P, Calzada N, Santos E, Fernández-Medarde A. GRF2 Is Crucial for Cone Photoreceptor Viability and Ribbon Synapse Formation in the Mouse Retina. Cells. 2023; 12(21):2574. https://doi.org/10.3390/cells12212574
Chicago/Turabian StyleJimeno, David, Concepción Lillo, Pedro de la Villa, Nuria Calzada, Eugenio Santos, and Alberto Fernández-Medarde. 2023. "GRF2 Is Crucial for Cone Photoreceptor Viability and Ribbon Synapse Formation in the Mouse Retina" Cells 12, no. 21: 2574. https://doi.org/10.3390/cells12212574
APA StyleJimeno, D., Lillo, C., de la Villa, P., Calzada, N., Santos, E., & Fernández-Medarde, A. (2023). GRF2 Is Crucial for Cone Photoreceptor Viability and Ribbon Synapse Formation in the Mouse Retina. Cells, 12(21), 2574. https://doi.org/10.3390/cells12212574