Scanning Ion-Conductance Microscopy for Studying Mechanical Properties of Neuronal Cells during Local Delivery of Glutamate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cell Preparation
2.2. Scanning Ion-Conductance Microscopy
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Müller, T.; Meyer, H.E.; Egensperger, R.; Marcus, K. The Amyloid Precursor Protein Intracellular Domain (AICD) as Modulator of Gene Expression, Apoptosis, and Cytoskeletal Dynamics—Relevance for Alzheimer’s Disease. Prog. Neurobiol. 2008, 85, 393–406. [Google Scholar] [CrossRef] [PubMed]
- Lal, R.; Lin, H.; Quist, A.P. Amyloid Beta Ion Channel: 3D Structure and Relevance to Amyloid Channel Paradigm. Biochim. Biophys. Acta (BBA)-Biomembr. 2007, 1768, 1966–1975. [Google Scholar] [CrossRef]
- Ghani, M.; Reitz, C.; George-Hyslop, P.S.; Rogaeva, E. Genetic Complexity of Early-Onset Alzheimer’s Disease. In NeurodegeneratIve Diseases: Clinical Aspects, Molecular Genetics and Biomarkers; Springer: Cham, Switzerland, 2018; pp. 29–50. [Google Scholar]
- Lau, A.; Tymianski, M. Glutamate Receptors, Neurotoxicity and Neurodegeneration. Pflug. Arch. Eur. J. Physiol. 2010, 460, 525–542. [Google Scholar] [CrossRef]
- Nicholls, D.G.; Budd, S.L. Mitochondria and Neuronal Glutamate Excitotoxicity. Biochim. Biophys. Acta 1998, 1366, 97–112. [Google Scholar]
- Halpain, S.; Hipolito, A.; Saffer, L. Regulation of F-Actin Stability in Dendritic Spines by Glutamate Receptors and Calcineurin. J. Neurosci. 1998, 18, 9835–9844. [Google Scholar]
- Konietzny, A.; Bär, J.; Mikhaylova, M. Dendritic Actin Cytoskeleton: Structure, Functions, and Regulations. Front. Cell. Neurosci. 2017, 11, 147. [Google Scholar] [CrossRef]
- Dai, J.; Sheetz, M.P. Mechanical Properties of Neuronal Growth Cone Membranes Studied by Tether Formation with Laser Optical Tweezers. Biophys. J. 1995, 68, 988–996. [Google Scholar] [CrossRef]
- Spedden, E.; Staii, C. Neuron Biomechanics Probed by Atomic Force Microscopy. Int. J. Mol. Sci. 2013, 14, 16124–16140. [Google Scholar] [CrossRef]
- Spedden, E.; White, J.D.; Naumova, E.N.; Kaplan, D.L.; Staii, C. Elasticity Maps of Living Neurons Measured by Combined Fluorescence and Atomic Force Microscopy. Biophys. J. 2012, 103, 868–877. [Google Scholar] [CrossRef]
- Efremov, Y.M.; Grebenik, E.A.; Sharipov, R.R.; Krasilnikova, I.A.; Kotova, S.L.; Akovantseva, A.A.; Bakaeva, Z.V.; Pinelis, V.G.; Surin, A.M.; Timashev, P.S. Viscoelasticity and Volume of Cortical Neurons under Glutamate Excitotoxicity and Osmotic Challenges. Biophys. J. 2020, 119, 1712–1723. [Google Scholar] [CrossRef]
- Ushiki, T.; Nakajima, M.; Choi, M.H.; Cho, S.J.; Iwata, F. Scanning Ion Conductance Microscopy for Imaging Biological Samples in Liquid: A Comparative Study with Atomic Force Microscopy and Scanning Electron Microscopy. Micron 2012, 43, 1390–1398. [Google Scholar] [CrossRef] [PubMed]
- Sánchez, D.; Johnson, N.; Li, C.; Novak, P.; Rheinlaender, J.; Zhang, Y.; Anand, U.; Anand, P.; Gorelik, J.; Frolenkov, G.I.; et al. Noncontact Measurement of the Local Mechanical Properties of Living Cells Using Pressure Applied via a Pipette. Biophys. J. 2008, 95, 3017–3027. [Google Scholar] [CrossRef] [PubMed]
- Clarke, R.W.; Novak, P.; Zhukov, A.; Tyler, E.J.; Cano-Jaimez, M.; Drews, A.; Richards, O.; Volynski, K.; Bishop, C.; Klenerman, D. Low Stress Ion Conductance Microscopy of Sub-Cellular Stiffness. Soft Matter 2016, 12, 7953–7958. [Google Scholar] [CrossRef] [PubMed]
- Clarke, R.W.; Zhukov, A.; Richards, O.; Johnson, N.; Ostanin, V.; Klenerman, D. Pipette-Surface Interaction: Current Enhancement and Intrinsic Force. J. Am. Chem. Soc. 2013, 135, 322–329. [Google Scholar] [CrossRef] [PubMed]
- Rheinlaender, J.; Schäffer, T.E. Mapping the Mechanical Stiffness of Live Cells with the Scanning Ion Conductance Microscope. Soft Matter 2013, 9, 3230–3236. [Google Scholar] [CrossRef]
- Machulkin, A.E.; Uspenskaya, A.A.; Zyk, N.Y.; Nimenko, E.A.; Ber, A.P.; Petrov, S.A.; Shafikov, R.R.; Skvortsov, D.A.; Smirnova, G.B.; Borisova, Y.A.; et al. PSMA-Targeted Small-Molecule Docetaxel Conjugate: Synthesis and Preclinical Evaluation. Eur. J. Med. Chem. 2022, 227, 113936. [Google Scholar] [CrossRef] [PubMed]
- Liashkovich, I.; Stefanello, S.T.; Vidyadharan, R.; Haufe, G.; Erofeev, A.; Gorelkin, P.V.; Kolmogorov, V.; Mizdal, C.R.; Dulebo, A.; Bulk, E.; et al. Pitstop-2 and Its Novel Derivative RVD-127 Disrupt Global Cell Dynamics and Nuclear Pores Integrity by Direct Interaction with Small GTPases. Bioeng. Transl. Med. 2023, 8, e10425. [Google Scholar] [CrossRef]
- Bruckbauer, A.; James, P.; Zhou, D.; Yoon, J.W.; Excell, D.; Korchev, Y.; Jones, R.; Klenerman, D. Nanopipette Delivery of Individual Molecules to Cellular Compartments for Single-Molecule Fluorescence Tracking. Biophys. J. 2007, 93, 3120–3131. [Google Scholar] [CrossRef]
- Babakinejad, B.; Jönsson, P.; López Córdoba, A.; Actis, P.; Novak, P.; Takahashi, Y.; Shevchuk, A.; Anand, U.; Anand, P.; Drews, A.; et al. Local Delivery of Molecules from a Nanopipette for Quantitative Receptor Mapping on Live Cells. Anal. Chem. 2013, 85, 9333–9342. [Google Scholar] [CrossRef]
- Ivanov, A.P.; Actis, P.; Jönsson, P.; Klenerman, D.; Korchev, Y.; Edel, J.B. On-Demand Delivery of Single DNA Molecules Using Nanopipets. ACS Nano 2015, 9, 3587–3594. [Google Scholar] [CrossRef]
- Kolmogorov, V.; Erofeev, A.; Woodcock, E.; Efremov, Y.; Iakovlev, A.; Savin, N.; Alova, A.; Lavrushkina, S.; Kireev, I.; Prelovskaya, A.; et al. Mapping Mechanical Properties of Living Cells at Nanoscale Using Intrinsic Nanopipette-Sample Force Interaction. Nanoscale 2021, 13, 6558–6568. [Google Scholar] [CrossRef]
- Augustinaite, S.; Kuhn, B.; Helm, P.J.; Heggelund, P. NMDA Spike/Plateau Potentials in Dendrites of Thalamocortical Neurons. J. Neurosci. 2014, 34, 10892–10905. [Google Scholar] [CrossRef]
- Kontomaris, S.V.; Malamou, A. Hertz Model or Oliver & Pharr Analysis? Tutorial Regarding AFM Nanoindentation Experiments on Biological Samples. Mater. Res. Express 2020, 7, 033001. [Google Scholar] [CrossRef]
- Lekka, M.; Laidler, P.; Gil, D.; Lekki, J.; Stachura, Z.; Hrynkiewicz, A.Z. Elasticity of Normal and Cancerous Human Bladder Cells Studied by Scanning Force Microscopy. Eur. Biophys. J. 1999, 28, 312–316. [Google Scholar] [CrossRef]
- Gaub, B.M.; Kasuba, K.C.; Mace, E.; Strittmatter, T.; Laskowski, P.R.; Geissler, S.A.; Hierlemann, A.; Fussenegger, M.; Roska, B.; Müller, D.J. Neurons Differentiate Magnitude and Location of Mechanical Stimuli. Proc. Natl. Acad. Sci. USA 2020, 117, 848–856. [Google Scholar]
- Dutta, P.; Bharti, P.; Kumar, J.; Maiti, S. Role of Actin Cytoskeleton in the Organization and Function of Ionotropic Glutamate Receptors. Curr. Res. Struct. Biol. 2021, 3, 277–289. [Google Scholar] [CrossRef]
- Bellot, A.; Guivernau, B.; Tajes, M.; Bosch-Morató, M.; Valls-Comamala, V.; Muñoz, F.J. The Structure and Function of Actin Cytoskeleton in Mature Glutamatergic Dendritic Spines. Brain Res. 2014, 1573, 1–16. [Google Scholar] [CrossRef]
- Wilson, M.T.; Kisaalita, W.S.; Keith, C.H. Glutamate-Induced Changes in the Pattern of Hippocampal Dendrite Outgrowth: A Role for Calcium-Dependent Pathways and the Microtubule Cytoskeleton. J. Neurobiol. 2000, 43, 159–172. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kolmogorov, V.; Erofeev, A.; Vaneev, A.; Gorbacheva, L.; Kolesov, D.; Klyachko, N.; Korchev, Y.; Gorelkin, P. Scanning Ion-Conductance Microscopy for Studying Mechanical Properties of Neuronal Cells during Local Delivery of Glutamate. Cells 2023, 12, 2428. https://doi.org/10.3390/cells12202428
Kolmogorov V, Erofeev A, Vaneev A, Gorbacheva L, Kolesov D, Klyachko N, Korchev Y, Gorelkin P. Scanning Ion-Conductance Microscopy for Studying Mechanical Properties of Neuronal Cells during Local Delivery of Glutamate. Cells. 2023; 12(20):2428. https://doi.org/10.3390/cells12202428
Chicago/Turabian StyleKolmogorov, Vasilii, Alexander Erofeev, Alexander Vaneev, Lyubov Gorbacheva, Dmitry Kolesov, Natalia Klyachko, Yuri Korchev, and Petr Gorelkin. 2023. "Scanning Ion-Conductance Microscopy for Studying Mechanical Properties of Neuronal Cells during Local Delivery of Glutamate" Cells 12, no. 20: 2428. https://doi.org/10.3390/cells12202428
APA StyleKolmogorov, V., Erofeev, A., Vaneev, A., Gorbacheva, L., Kolesov, D., Klyachko, N., Korchev, Y., & Gorelkin, P. (2023). Scanning Ion-Conductance Microscopy for Studying Mechanical Properties of Neuronal Cells during Local Delivery of Glutamate. Cells, 12(20), 2428. https://doi.org/10.3390/cells12202428