The Highs and Lows of FBXW7: New Insights into Substrate Affinity in Disease and Development
Abstract
:1. Introduction
2. FBXW7 Binds A Cdc4 Phospho-Degron (CPD)
3. High Affinity Degron Binding
4. Low Affinity Degron Binding
5. FBXW7 “Hotspot” Mutations
6. Selective Disruption of a Low-Affinity Binding Mode
7. Unexpected Differences between FBXW7 Hotspot Mutations
8. FBXW7 Substrate Degradation in Development
9. C. elegans Development: Comparison of High- and Low-Affinity CPDs
10. Concluding Remarks
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Ravid, T.; Hochstrasser, M. Diversity of degradation signals in the ubiquitin-proteasome system. Nat. Rev. Mol. Cell Biol. 2008, 9, 679–690. [Google Scholar] [CrossRef]
- Dikic, I.; Robertson, M. Ubiquitin ligases and beyond. BMC Biol. 2012, 10, 22. [Google Scholar] [CrossRef] [PubMed]
- Lydeard, J.R.; Schulman, B.A.; Harper, J.W. Building and remodelling Cullin-RING E3 ubiquitin ligases. EMBO Rep. 2013, 14, 1050–1061. [Google Scholar] [CrossRef] [PubMed]
- Skaar, J.R.; Pagan, J.K.; Pagano, M. Mechanisms and function of substrate recruitment by F-box proteins. Nat. Rev. Mol. Cell Biol. 2013, 14, 369–381. [Google Scholar] [CrossRef] [PubMed]
- Yumimoto, K.; Nakayama, K.I. Recent insight into the role of FBXW7 as a tumor suppressor. Semin. Cancer Biol. 2020, 67, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Spruck, C.H.; Strohmaier, H.; Sangfelt, O.; Muller, H.M.; Hubalek, M.; Muller-Holzner, E.; Marth, C.; Widschwendter, M.; Reed, S.I. hCDC4 gene mutations in endometrial cancer. Cancer Res. 2002, 62, 4535–4539. [Google Scholar]
- Welcker, M.; Orian, A.; Grim, J.E.; Eisenman, R.N.; Clurman, B.E. A nucleolar isoform of the Fbw7 ubiquitin ligase regulates c-Myc and cell size. Curr. Biol. 2004, 14, 1852–1857. [Google Scholar] [CrossRef]
- Orlicky, S.; Tang, X.; Willems, A.; Tyers, M.; Sicheri, F. Structural basis for phosphodependent substrate selection and orientation by the SCFCdc4 ubiquitin ligase. Cell 2003, 112, 243–256. [Google Scholar] [CrossRef]
- Nash, P.; Tang, X.; Orlicky, S.; Chen, Q.; Gertler, F.B.; Mendenhall, M.D.; Sicheri, F.; Pawson, T.; Tyers, M. Multisite phosphorylation of a CDK inhibitor sets a threshold for the onset of DNA replication. Nature 2001, 414, 514–521. [Google Scholar] [CrossRef]
- Hao, B.; Oehlmann, S.; Sowa, M.E.; Harper, J.W.; Pavletich, N.P. Structure of a Fbw7-Skp1-cyclin E complex: Multisite-phosphorylated substrate recognition by SCF ubiquitin ligases. Mol. Cell 2007, 26, 131–143. [Google Scholar] [CrossRef]
- Welcker, M.; Clurman, B.E. FBW7 ubiquitin ligase: A tumour suppressor at the crossroads of cell division, growth and differentiation. Nat. Rev. Cancer 2008, 8, 83–93. [Google Scholar] [CrossRef] [PubMed]
- Welcker, M.; Singer, J.; Loeb, K.R.; Grim, J.; Bloecher, A.; Gurien-West, M.; Clurman, B.E.; Roberts, J.M. Multisite phosphorylation by Cdk2 and GSK3 controls cyclin E degradation. Mol. Cell 2003, 12, 381–392. [Google Scholar] [CrossRef] [PubMed]
- Frame, S.; Cohen, P.; Biondi, R.M. A common phosphate binding site explains the unique substrate specificity of GSK3 and its inactivation by phosphorylation. Mol. Cell 2001, 7, 1321–1327. [Google Scholar] [CrossRef] [PubMed]
- Welcker, M.; Wang, B.; Rusnac, D.V.; Hussaini, Y.; Swanger, J.; Zheng, N.; Clurman, B.E. Two diphosphorylated degrons control c-Myc degradation by the Fbw7 tumor suppressor. Sci. Adv. 2022, 8, eabl7872. [Google Scholar] [CrossRef]
- Ye, X.; Nalepa, G.; Welcker, M.; Kessler, B.M.; Spooner, E.; Qin, J.; Elledge, S.J.; Clurman, B.E.; Harper, J.W. Recognition of phosphodegron motifs in human cyclin E by the SCF(Fbw7) ubiquitin ligase. J. Biol. Chem. 2004, 279, 50110–50119. [Google Scholar] [CrossRef] [PubMed]
- Kominami, K.; Ochotorena, I.; Toda, T. Two F-box/WD-repeat proteins Pop1 and Pop2 form hetero- and homo-complexes together with cullin-1 in the fission yeast SCF (Skp1-Cullin-1-F-box) ubiquitin ligase. Genes Cells 1998, 3, 721–735. [Google Scholar] [CrossRef] [PubMed]
- Welcker, M.; Clurman, B.E. Fbw7/hCDC4 dimerization regulates its substrate interactions. Cell Div. 2007, 2, 7. [Google Scholar] [CrossRef] [PubMed]
- Welcker, M.; Larimore, E.A.; Swanger, J.; Bengoechea-Alonso, M.T.; Grim, J.E.; Ericsson, J.; Zheng, N.; Clurman, B.E. Fbw7 dimerization determines the specificity and robustness of substrate degradation. Genes Dev. 2013, 27, 2531–2536. [Google Scholar] [CrossRef]
- O’Neil, J.; Grim, J.; Strack, P.; Rao, S.; Tibbitts, D.; Winter, C.; Hardwick, J.; Welcker, M.; Meijerink, J.P.; Pieters, R.; et al. FBW7 mutations in leukemic cells mediate NOTCH pathway activation and resistance to gamma-secretase inhibitors. J. Exp. Med. 2007, 204, 1813–1824. [Google Scholar] [CrossRef]
- Korphaisarn, K.; Morris, V.K.; Overman, M.J.; Fogelman, D.R.; Kee, B.K.; Raghav, K.P.S.; Manuel, S.; Shureiqi, I.; Wolff, R.A.; Eng, C.; et al. FBXW7 missense mutation: A novel negative prognostic factor in metastatic colorectal adenocarcinoma. Oncotarget 2017, 8, 39268–39279. [Google Scholar] [CrossRef]
- Aydin, I.T.; Melamed, R.D.; Adams, S.J.; Castillo-Martin, M.; Demir, A.; Bryk, D.; Brunner, G.; Cordon-Cardo, C.; Osman, I.; Rabadan, R.; et al. FBXW7 mutations in melanoma and a new therapeutic paradigm. J. Natl. Cancer Inst. 2014, 106, dju107. [Google Scholar] [CrossRef] [PubMed]
- Yeh, C.H.; Bellon, M.; Nicot, C. FBXW7: A critical tumor suppressor of human cancers. Mol. Cancer 2018, 17, 115. [Google Scholar] [CrossRef] [PubMed]
- Van Vlierberghe, P.; Ferrando, A. The molecular basis of T cell acute lymphoblastic leukemia. J. Clin. Investig. 2012, 122, 3398–3406. [Google Scholar] [CrossRef] [PubMed]
- Yuan, L.; Lu, L.; Yang, Y.; Sun, H.; Chen, X.; Huang, Y.; Wang, X.; Zou, L.; Bao, L. Genetic mutational profiling analysis of T cell acute lymphoblastic leukemia reveal mutant FBXW7 as a prognostic indicator for inferior survival. Ann. Hematol. 2015, 94, 1817–1828. [Google Scholar] [CrossRef] [PubMed]
- Yeh, C.H.; Bellon, M.; Pancewicz-Wojtkiewicz, J.; Nicot, C. Oncogenic mutations in the FBXW7 gene of adult T-cell leukemia patients. Proc. Natl. Acad. Sci. USA 2016, 113, 6731–6736. [Google Scholar] [CrossRef] [PubMed]
- Yeh, C.H.; Bellon, M.; Wang, F.; Zhang, H.; Fu, L.; Nicot, C. Loss of FBXW7-mediated degradation of BRAF elicits resistance to BET inhibitors in adult T cell leukemia cells. Mol. Cancer 2020, 19, 139. [Google Scholar] [CrossRef] [PubMed]
- Saei, A.; Palafox, M.; Benoukraf, T.; Kumari, N.; Jaynes, P.W.; Iyengar, P.V.; Munoz-Couselo, E.; Nuciforo, P.; Cortes, J.; Notzel, C.; et al. Loss of USP28-mediated BRAF degradation drives resistance to RAF cancer therapies. J. Exp. Med. 2018, 215, 1913–1928. [Google Scholar] [CrossRef] [PubMed]
- Hernandez, M.A.; Patel, B.; Hey, F.; Giblett, S.; Davis, H.; Pritchard, C. Regulation of BRAF protein stability by a negative feedback loop involving the MEK-ERK pathway but not the FBXW7 tumour suppressor. Cell. Signal. 2016, 28, 561–571. [Google Scholar] [CrossRef]
- de la Cova, C.; Greenwald, I. SEL-10/Fbw7-dependent negative feedback regulation of LIN-45/Braf signaling in C. elegans via a conserved phosphodegron. Genes Dev. 2012, 26, 2524–2535. [Google Scholar] [CrossRef]
- Hubbard, E.J.; Wu, G.; Kitajewski, J.; Greenwald, I. Sel-10, a negative regulator of lin-12 activity in Caenorhabditis elegans, encodes a member of the CDC4 family of proteins. Genes Dev. 1997, 11, 3182–3193. [Google Scholar] [CrossRef]
- Moberg, K.H.; Bell, D.W.; Wahrer, D.C.; Haber, D.A.; Hariharan, I.K. Archipelago regulates Cyclin E levels in Drosophila and is mutated in human cancer cell lines. Nature 2001, 413, 311–316. [Google Scholar] [CrossRef] [PubMed]
- Moberg, K.H.; Mukherjee, A.; Veraksa, A.; Artavanis-Tsakonas, S.; Hariharan, I.K. The Drosophila F box protein archipelago regulates dMyc protein levels in vivo. Curr. Biol. 2004, 14, 965–974. [Google Scholar] [CrossRef] [PubMed]
- Almeida, A.D.; Wise, H.M.; Hindley, C.J.; Slevin, M.K.; Hartley, R.S.; Philpott, A. The F-box protein Cdc4/Fbxw7 is a novel regulator of neural crest development in Xenopus laevis. Neural Dev. 2010, 5, 1. [Google Scholar] [CrossRef] [PubMed]
- Mortimer, N.T.; Moberg, K.H. The archipelago ubiquitin ligase subunit acts in target tissue to restrict tracheal terminal cell branching and hypoxic-induced gene expression. PLoS Genet. 2013, 9, e1003314. [Google Scholar] [CrossRef] [PubMed]
- Matsuoka, S.; Oike, Y.; Onoyama, I.; Iwama, A.; Arai, F.; Takubo, K.; Mashimo, Y.; Oguro, H.; Nitta, E.; Ito, K.; et al. Fbxw7 acts as a critical fail-safe against premature loss of hematopoietic stem cells and development of T-ALL. Genes Dev. 2008, 22, 986–991. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Chen, F.; Dong, H.; Xie, M.; Zhang, H.; Chen, Y.; Liu, H.; Bai, X.; Li, X.; Chen, Z. Loss of Fbxw7 in Sertoli cells impairs testis development and causes infertility in micedagger. Biol. Reprod. 2020, 102, 963–974. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Zhang, Y.; Garg, A.; Sui, P.; Sun, X. E3 ubiquitin ligase FBXW7 balances airway cell fates. Dev. Biol. 2022, 483, 89–97. [Google Scholar] [CrossRef]
- Harper, J.W. A phosphorylation-driven ubiquitination switch for cell-cycle control. Trends Cell Biol. 2002, 12, 104–107. [Google Scholar] [CrossRef]
- Sundaram, M.; Greenwald, I. Suppressors of a lin-12 hypomorph define genes that interact with both lin-12 and glp-1 in Caenorhabditis elegans. Genetics 1993, 135, 765–783. [Google Scholar] [CrossRef]
- Peel, N.; Dougherty, M.; Goeres, J.; Liu, Y.; O’Connell, K.F. The C. elegans F-box proteins LIN-23 and SEL-10 antagonize centrosome duplication by regulating ZYG-1 levels. J. Cell Sci. 2012, 125, 3535–3544. [Google Scholar] [CrossRef]
- Salzberg, Y.; Pechuk, V.; Gat, A.; Setty, H.; Sela, S.; Oren-Suissa, M. Synaptic Protein Degradation Controls Sexually Dimorphic Circuits through Regulation of DCC/UNC-40. Curr. Biol. 2020, 30, 4128–4141 e4125. [Google Scholar] [CrossRef] [PubMed]
- Kisielnicka, E.; Minasaki, R.; Eckmann, C.R. MAPK signaling couples SCF-mediated degradation of translational regulators to oocyte meiotic progression. Proc. Natl. Acad. Sci. USA 2018, 115, E2772–E2781. [Google Scholar] [CrossRef]
- de la Cova, C.C.; Townley, R.; Greenwald, I. Negative feedback by conserved kinases patterns the degradation of Caenorhabditis elegans Raf in vulval fate patterning. Development 2020, 147, dev195941. [Google Scholar] [CrossRef] [PubMed]
- de la Cova, C.; Townley, R.; Regot, S.; Greenwald, I. A Real-Time Biosensor for ERK Activity Reveals Signaling Dynamics during C. elegans Cell Fate Specification. Dev. Cell 2017, 42, 542–553.e544. [Google Scholar] [CrossRef] [PubMed]
- Saito, R.M.; Perreault, A.; Peach, B.; Satterlee, J.S.; van den Heuvel, S. The CDC-14 phosphatase controls developmental cell-cycle arrest in C. elegans. Nat. Cell Biol. 2004, 6, 777–783. [Google Scholar] [CrossRef]
- Adikes, R.C.; Kohrman, A.Q.; Martinez, M.A.Q.; Palmisano, N.J.; Smith, J.J.; Medwig-Kinney, T.N.; Min, M.; Sallee, M.D.; Ahmed, O.B.; Kim, N.; et al. Visualizing the metazoan proliferation-quiescence decision in vivo. eLife 2020, 9, e63265. [Google Scholar] [CrossRef] [PubMed]
- Spike, C.A.; Huelgas-Morales, G.; Tsukamoto, T.; Greenstein, D. Multiple Mechanisms Inactivate the LIN-41 RNA-Binding Protein to Ensure a Robust Oocyte-to-Embryo Transition in Caenorhabditis elegans. Genetics 2018, 210, 1011–1037. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de la Cova, C.C. The Highs and Lows of FBXW7: New Insights into Substrate Affinity in Disease and Development. Cells 2023, 12, 2141. https://doi.org/10.3390/cells12172141
de la Cova CC. The Highs and Lows of FBXW7: New Insights into Substrate Affinity in Disease and Development. Cells. 2023; 12(17):2141. https://doi.org/10.3390/cells12172141
Chicago/Turabian Stylede la Cova, Claire C. 2023. "The Highs and Lows of FBXW7: New Insights into Substrate Affinity in Disease and Development" Cells 12, no. 17: 2141. https://doi.org/10.3390/cells12172141