Exploring New Mechanism of Depression from the Effects of Virus on Nerve Cells
Abstract
:1. Introduction
2. The Classical Hypotheses of the Pathogenesis of Depression
3. The Role of Neurons and Glial Cells in Depression
3.1. The Association between Neuronal Cells and Depression
3.2. The Association between Glial Cells and Depression
3.2.1. Astrocytes and Depression
3.2.2. Oligodendrocytes and Depression
3.2.3. Microglia and Depression
4. Analysis of the Mechanisms by Viruses That Affect Depression
4.1. SARS-CoV-2
4.1.1. Overview of SARS-CoV-2
4.1.2. Analysis of the Mechanism of SARS-CoV-2 Affecting Depression
4.2. Borna Disease Virus 1
4.2.1. Overview of Borna Disease Virus 1
4.2.2. Analysis of the Mechanism of Borna Disease Virus Affecting Depression
4.3. Human Immunodeficiency Virus
4.3.1. Overview of Human Immunodeficiency Virus
4.3.2. Analysis of the Mechanism of Human Immunodeficiency Virus Affecting Depression
4.4. Zika Virus
4.4.1. Overview of Zika Virus
4.4.2. Analysis of the Mechanism of Zika Virus Affecting Depression
4.5. Human Herpes Virus 6
4.5.1. Overview of Human Herpes Virus 6
4.5.2. Analysis of the Mechanism of Human Herpes Virus 6 Affecting Depression
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zang, S.H.; Zhou, L. Development of researches on mechanisms of acupuncture underling improvement of depression. Zhen Ci Yan Jiu 2021, 46, 804–808. [Google Scholar] [CrossRef] [PubMed]
- Yan, G.; Chen, Y. Depression: The fourth most common disorder in the world. New People’s Wkly. 2014, 30, 37–40. [Google Scholar]
- Chen, G.R. The etiology and pathogenesis of depression. China Mod. Distance Educ. Chin. Med. 2014, 12, 10–11. [Google Scholar]
- Zhu, W.; Si, F.; Deng, X.P.; Zhang, C.C.; Cao, J.Q. Advances in the study of joint cognitive bias in depression. Neurol. Disord. Ment. Health 2022, 22, 591–595. [Google Scholar]
- Lin, F.B.; Hou, D.R.; Tang, Q.P. Advances in the pharmacological treatment of depression and the prospect of the application of Echlorazepam. J. South. Med. Univ. 2017, 37, 567–569. [Google Scholar]
- Wang, J.; Qin, J.; Wang, P.; Sun, Y.; Zhang, Q. Molecular Mechanisms of Glial Cells Related Signaling Pathways Involved in the Neuroinflammatory Response of Depression. Mediat. Inflamm. 2020, 2020, 3497920. [Google Scholar] [CrossRef]
- Catena-Dell’Osso, M.; Rotella, F.; Dell’Osso, A.; Fagiolini, A.; Marazziti, D. Inflammation, serotonin and major depression. Curr. Drug Targets 2013, 14, 571–577. [Google Scholar] [CrossRef]
- Shelton, R.C.; Miller, A.H. Inflammation in depression: Is adiposity a cause? Dialogues Clin. Neurosci. 2011, 13, 41–53. [Google Scholar] [CrossRef]
- Mayberg, H.S.; Lozano, A.M.; Voon, V.; McNeely, H.E.; Seminowicz, D.; Hamani, C.; Schwalb, J.M.; Kennedy, S.H. Deep brain stimulation for treatment-resistant depression. Neuron 2005, 45, 651–660. [Google Scholar] [CrossRef] [Green Version]
- Jehn, C.F.; Kühnhardt, D.; Bartholomae, A.; Pfeiffer, S.; Schmid, P.; Possinger, K.; Flath, B.C.; Lüftner, D. Association of IL-6, hypothalamus-pituitary-adrenal axis function, and depression in patients with cancer. Integr. Cancer Ther. 2010, 9, 270–275. [Google Scholar] [CrossRef] [Green Version]
- Frost, P.; Bornstein, S.; Ehrhart-Bornstein, M.; O’Kirwan, F.; Hutson, C.; Heber, D.; Go, V.; Licinio, J.; Wong, M.L. The prototypic antidepressant drug, imipramine, but not Hypericum perforatum (St. John’s Wort), reduces HPA-axis function in the rat. Horm. Metab. Res. 2003, 35, 602–606. [Google Scholar] [CrossRef] [PubMed]
- Carlson, P.J.; Singh, J.B.; Zarate, C.A., Jr.; Drevets, W.C.; Manji, H.K. Neural circuitry and neuroplasticity in mood disorders: Insights for novel therapeutic targets. NeuroRx 2006, 3, 22–41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, G.; Liu, X. Neuroimmune Advance in Depressive Disorder. Adv. Exp. Med. Biol. 2019, 1180, 85–98. [Google Scholar] [CrossRef] [PubMed]
- Fields, R.D. Release of neurotransmitters from glia. Neuron Glia Biol. 2010, 6, 137–139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheiran Pereira, G.; Piton, E.; Moreira Dos Santos, B.; Ramanzini, L.G.; Muniz Camargo, L.F.; Menezes da Silva, R.; Bochi, G.V. Microglia and HPA axis in depression: An overview of participation and relationship. World J. Biol. Psychiatry 2022, 23, 165–182. [Google Scholar] [CrossRef] [PubMed]
- Singhal, G.; Baune, B.T. Microglia: An Interface between the Loss of Neuroplasticity and Depression. Front. Cell. Neurosci. 2017, 11, 270. [Google Scholar] [CrossRef] [Green Version]
- Casaril, A.M.; Dantzer, R.; Bas-Orth, C. Neuronal Mitochondrial Dysfunction and Bioenergetic Failure in Inflammation-Associated Depression. Front. Neurosci. 2021, 15, 725547. [Google Scholar] [CrossRef]
- Hunter, R.L.; Dragicevic, N.; Seifert, K.; Choi, D.Y.; Liu, M.; Kim, H.C.; Cass, W.A.; Sullivan, P.G.; Bing, G. Inflammation induces mitochondrial dysfunction and dopaminergic neurodegeneration in the nigrostriatal system. J. Neurochem. 2007, 100, 1375–1386. [Google Scholar] [CrossRef]
- Felger, J.C.; Treadway, M.T. Inflammation Effects on Motivation and Motor Activity: Role of Dopamine. Neuropsychopharmacology 2017, 42, 216–241. [Google Scholar] [CrossRef] [Green Version]
- Felger, J.C.; Mun, J.; Kimmel, H.L.; Nye, J.A.; Drake, D.F.; Hernandez, C.R.; Freeman, A.A.; Rye, D.B.; Goodman, M.M.; Howell, L.L.; et al. Chronic interferon-α decreases dopamine 2 receptor binding and striatal dopamine release in association with anhedonia-like behavior in nonhuman primates. Neuropsychopharmacology 2013, 38, 2179–2187. [Google Scholar] [CrossRef]
- Tan, L.; Ge, H.; Tang, J.; Fu, C.; Duanmu, W.; Chen, Y.; Hu, R.; Sui, J.; Liu, X.; Feng, H. Amantadine preserves dopamine level and attenuates depression-like behavior induced by traumatic brain injury in rats. Behav. Brain Res. 2015, 279, 274–282. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Liu, L.; Han, Y.S.; Yi, J.; Guo, C.; Zhao, H.Q.; Ling, J.; Wang, Y.H. The molecular mechanism underlying mitophagy-mediated hippocampal neuron apoptosis in diabetes-related depression. J. Cell. Mol. Med. 2021, 25, 7342–7353. [Google Scholar] [CrossRef] [PubMed]
- Tavčar, P.; Potokar, M.; Kolenc, M.; Korva, M.; Avšič-Županc, T.; Zorec, R.; Jorgačevski, J. Neurotropic Viruses, Astrocytes, and COVID-19. Front. Cell. Neurosci. 2021, 15, 662578. [Google Scholar] [CrossRef] [PubMed]
- Steardo, L., Jr.; Steardo, L.; Scuderi, C. Astrocytes and the Psychiatric Sequelae of COVID-19: What We Learned from the Pandemic. Neurochem. Res. 2022, 48, 1015–1025. [Google Scholar] [CrossRef]
- Kettenmann, H.; Kirchhoff, F.; Verkhratsky, A. Microglia: New roles for the synaptic stripper. Neuron 2013, 77, 10–18. [Google Scholar] [CrossRef] [Green Version]
- Peng, L.; Verkhratsky, A.; Gu, L.; Li, B. Targeting astrocytes in major depression. Expert. Rev. Neurother. 2015, 15, 1299–1306. [Google Scholar] [CrossRef]
- Hurley, L.L.; Tizabi, Y. Neuroinflammation, neurodegeneration, and depression. Neurotox. Res. 2013, 23, 131–144. [Google Scholar] [CrossRef]
- Zhao, Y.F.; Verkhratsky, A.; Tang, Y.; Illes, P. Astrocytes and major depression: The purinergic avenue. Neuropharmacology 2022, 220, 109252. [Google Scholar] [CrossRef]
- O’Leary, L.A.; Belliveau, C.; Davoli, M.A.; Ma, J.C.; Tanti, A.; Turecki, G.; Mechawar, N. Widespread Decrease of Cerebral Vimentin-Immunoreactive Astrocytes in Depressed Suicides. Front. Psychiatry 2021, 12, 640963. [Google Scholar] [CrossRef]
- Li, F.; Jiang, S.Y.; Tian, T.; Li, W.J.; Xue, Y.; Du, R.H.; Hu, G.; Lu, M. Kir6.1/K-ATP channel in astrocytes is an essential negative modulator of astrocytic pyroptosis in mouse model of depression. Theranostics 2022, 12, 6611–6625. [Google Scholar] [CrossRef]
- Cui, Y.; Yang, Y.; Ni, Z.; Dong, Y.; Cai, G.; Foncelle, A.; Ma, S.; Sang, K.; Tang, S.; Li, Y.; et al. Astroglial Kir4.1 in the lateral habenula drives neuronal bursts in depression. Nature 2018, 554, 323–327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Butt, A.M.; Papanikolaou, M.; Rivera, A. Physiology of Oligodendroglia. Adv. Exp. Med. Biol. 2019, 1175, 117–128. [Google Scholar] [CrossRef]
- Bavato, F.; Cathomas, F.; Klaus, F.; Gütter, K.; Barro, C.; Maceski, A.; Seifritz, E.; Kuhle, J.; Kaiser, S.; Quednow, B.B. Altered neuroaxonal integrity in schizophrenia and major depressive disorder assessed with neurofilament light chain in serum. J. Psychiatr. Res. 2021, 140, 141–148. [Google Scholar] [CrossRef] [PubMed]
- Zhou, B.; Zhu, Z.; Ransom, B.R.; Tong, X. Oligodendrocyte lineage cells and depression. Mol. Psychiatry 2021, 26, 103–117. [Google Scholar] [CrossRef] [PubMed]
- Wasseff, S.K.; Scherer, S.S. Cx32 and Cx47 mediate oligodendrocyte:astrocyte and oligodendrocyte:oligodendrocyte gap junction coupling. Neurobiol. Dis. 2011, 42, 506–513. [Google Scholar] [CrossRef] [Green Version]
- Amaral, A.I.; Meisingset, T.W.; Kotter, M.R.; Sonnewald, U. Metabolic aspects of neuron-oligodendrocyte-astrocyte interactions. Front. Endocrinol. 2013, 4, 54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, X.; Rao, Y.; Mao, R.; Cui, L.; Fang, Y. Common cellular and molecular mechanisms and interactions between microglial activation and aberrant neuroplasticity in depression. Neuropharmacology 2020, 181, 108336. [Google Scholar] [CrossRef]
- Wang, H.; He, Y.; Sun, Z.; Ren, S.; Liu, M.; Wang, G.; Yang, J. Microglia in depression: An overview of microglia in the pathogenesis and treatment of depression. J. Neuroinflammation 2022, 19, 132. [Google Scholar] [CrossRef]
- Deng, S.L.; Chen, J.G.; Wang, F. Microglia: A Central Player in Depression. Curr. Med. Sci. 2020, 40, 391–400. [Google Scholar] [CrossRef]
- Hashioka, S.; Miyaoka, T.; Wake, R.; Furuya, M.; Horiguchi, J. Glia: An important target for anti-inflammatory and antidepressant activity. Curr. Drug Targets 2013, 14, 1322–1328. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, L.; Lei, Y.; Liu, X.; Zhou, X.; Liu, Y.; Wang, M.; Yang, L.; Zhang, L.; Fan, S.; et al. Meta-analysis of infectious agents and depression. Sci. Rep. 2014, 4, 4530. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benatti, C.; Blom, J.M.; Rigillo, G.; Alboni, S.; Zizzi, F.; Torta, R.; Brunello, N.; Tascedda, F. Disease-Induced Neuroinflammation and Depression. CNS Neurol. Disord. Drug Targets 2016, 15, 414–433. [Google Scholar] [CrossRef] [PubMed]
- Abritalin, E.Y. About the causes and therapy of depressive disorders in COVID-19. Zh Nevrol Psikhiatr Im SS Korsakova 2021, 121, 87–92. [Google Scholar] [CrossRef]
- Wang, C.L.; Wang, L.; Hao, R.; Qiao, H.X.; Zhao, Y.; Chuai, X. Research progress of SARS-CoV-2. Chin. J. Hum.-Vet. Dis. 2020, 36, 780–785. [Google Scholar]
- Ahlawat, S.; Asha; Sharma, K.K. Immunological co-ordination between gut and lungs in SARS-CoV-2 infection. Virus Res. 2020, 286, 198103. [Google Scholar] [CrossRef] [PubMed]
- Ren, A.L.; Digby, R.J.; Needham, E.J. Neurological update: COVID-19. J. Neurol. 2021, 268, 4379–4387. [Google Scholar] [CrossRef]
- Dubey, H.; Sharma, R.K.; Krishnan, S.; Knickmeyer, R. SARS-CoV-2 (COVID-19) as a possible risk factor for neurodevelopmental disorders. Front. Neurosci. 2022, 16, 1021721. [Google Scholar] [CrossRef]
- Yanover, C.; Mizrahi, B.; Kalkstein, N.; Marcus, K.; Akiva, P.; Barer, Y.; Shalev, V.; Chodick, G. What Factors Increase the Risk of Complications in SARS-CoV-2-Infected Patients? A Cohort Study in a Nationwide Israeli Health Organization. JMIR Public Health Surveill. 2020, 6, e20872. [Google Scholar] [CrossRef]
- Onyango, I.G.; Khan, S.M.; Bennett, J.P., Jr. Mitochondria in the pathophysiology of Alzheimer’s and Parkinson’s diseases. Front. Biosci. 2017, 22, 854–872. [Google Scholar] [CrossRef] [Green Version]
- Bader, V.; Winklhofer, K.F. Mitochondria at the interface between neurodegeneration and neuroinflammation. Semin. Cell Dev. Biol. 2020, 99, 163–171. [Google Scholar] [CrossRef]
- Chen, J.; Vitetta, L. Mitochondria could be a potential key mediator linking the intestinal microbiota to depression. J. Cell. Biochem. 2020, 121, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Fore, H.H.; Dongyu, Q.; Beasley, D.M.; Ghebreyesus, T.A. Child malnutrition and COVID-19: The time to act is now. Lancet 2020, 396, 517–518. [Google Scholar] [CrossRef]
- Bedock, D.; Bel Lassen, P.; Mathian, A.; Moreau, P.; Couffignal, J.; Ciangura, C.; Poitou-Bernert, C.; Jeannin, A.C.; Mosbah, H.; Fadlallah, J.; et al. Prevalence and severity of malnutrition in hospitalized COVID-19 patients. Clin. Nutr. ESPEN 2020, 40, 214–219. [Google Scholar] [CrossRef]
- Gauthier, C.; Hassler, C.; Mattar, L.; Launay, J.M.; Callebert, J.; Steiger, H.; Melchior, J.C.; Falissard, B.; Berthoz, S.; Mourier-Soleillant, V.; et al. Symptoms of depression and anxiety in anorexia nervosa: Links with plasma tryptophan and serotonin metabolism. Psychoneuroendocrinology 2014, 39, 170–178. [Google Scholar] [CrossRef]
- O’Mahony, S.M.; Clarke, G.; Borre, Y.E.; Dinan, T.G.; Cryan, J.F. Serotonin, tryptophan metabolism and the brain-gut-microbiome axis. Behav. Brain Res. 2015, 277, 32–48. [Google Scholar] [CrossRef]
- Lin, X.; Nie, H.; Tang, R.; Wang, P.; Jin, X.; Jiang, Q.; Han, F.; Chen, N.; Li, Y. Network analysis between neuron dysfunction and neuroimmune response based on neural single-cell transcriptome of COVID-19 patients. Comput. Biol. Med. 2022, 150, 106055. [Google Scholar] [CrossRef]
- Montalvan, V.; Lee, J.; Bueso, T.; De Toledo, J.; Rivas, K. Neurological manifestations of COVID-19 and other coronavirus infections: A systematic review. Clin. Neurol. Neurosurg. 2020, 194, 105921. [Google Scholar] [CrossRef] [PubMed]
- Vargas, G.; Medeiros Geraldo, L.H.; Gedeão Salomão, N.; Viana Paes, M.; Regina Souza Lima, F.; Carvalho Alcantara Gomes, F. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and glial cells: Insights and perspectives. Brain Behav. Immun. Health 2020, 7, 100127. [Google Scholar] [CrossRef]
- Illes, P.; Rubini, P.; Yin, H.; Tang, Y. Impaired ATP Release from Brain Astrocytes May be a Cause of Major Depression. Neurosci. Bull. 2020, 36, 1281–1284. [Google Scholar] [CrossRef] [PubMed]
- Jeong, G.U.; Lyu, J.; Kim, K.D.; Chung, Y.C.; Yoon, G.Y.; Lee, S.; Hwang, I.; Shin, W.H.; Ko, J.; Lee, J.Y.; et al. SARS-CoV-2 Infection of Microglia Elicits Proinflammatory Activation and Apoptotic Cell Death. Microbiol. Spectr. 2022, 10, e0109122. [Google Scholar] [CrossRef]
- Smith, J.A.; Das, A.; Ray, S.K.; Banik, N.L. Role of pro-inflammatory cytokines released from microglia in neurodegenerative diseases. Brain Res. Bull. 2012, 87, 10–20. [Google Scholar] [CrossRef] [PubMed]
- Ting, E.Y.; Yang, A.C.; Tsai, S.J. Role of Interleukin-6 in Depressive Disorder. Int. J. Mol. Sci. 2020, 21, 2194. [Google Scholar] [CrossRef] [Green Version]
- Colantonio, M.A.; Nwafor, D.C.; Jaiswal, S.; Shrestha, A.K.; Elkhooly, M.; Rollins, S.; Wen, S.; Sriwastava, S. Myelin oligodendrocyte glycoprotein antibody-associated optic neuritis and myelitis in COVID-19: A case report and a review of the literature. Egypt. J. Neurol. Psychiatry Neurosurg. 2022, 58, 62. [Google Scholar] [CrossRef]
- Sehgal, V.; Bansal, P.; Arora, S.; Kapila, S.; Bedi, G.S. Myelin Oligodendrocyte Glycoprotein Antibody Disease After COVID-19 Vaccination—Causal or Incidental? Cureus 2022, 14, e27024. [Google Scholar] [CrossRef] [PubMed]
- Asseyer, S.; Henke, E.; Trebst, C.; Hümmert, M.W.; Wildemann, B.; Jarius, S.; Ringelstein, M.; Aktas, O.; Pawlitzki, M.; Korsen, M.; et al. Pain, depression, and quality of life in adults with MOG-antibody-associated disease. Eur. J. Neurol. 2021, 28, 1645–1658. [Google Scholar] [CrossRef]
- Schlottau, K.; Forth, L.; Angstwurm, K.; Höper, D.; Zecher, D.; Liesche, F.; Hoffmann, B.; Kegel, V.; Seehofer, D.; Platen, S.; et al. Fatal Encephalitic Borna Disease Virus 1 in Solid-Organ Transplant Recipients. N. Engl. J. Med. 2018, 379, 1377–1379. [Google Scholar] [CrossRef]
- Ludwig, H.; Bode, L. Borna disease virus: New aspects on infection, disease, diagnosis and epidemiology. Rev. Sci. Tech. 2000, 19, 259–288. [Google Scholar] [CrossRef]
- Bode, L.; Guo, Y.; Xie, P. Molecular epidemiology of human Borna disease virus 1 infection revisited. Emerg. Microbes Infect. 2022, 11, 1335–1338. [Google Scholar] [CrossRef] [PubMed]
- Ludwig, H.; Bode, L.; Gosztonyi, G. Borna disease: A persistent virus infection of the central nervous system. Prog. Med. Virol. 1988, 35, 107–151. [Google Scholar]
- Ludwig, H.; Furuya, K.; Bode, L.; Klein, N.; Dürrwald, R.; Lee, D.S. Biology and neurobiology of Borna disease viruses (BDV), defined by antibodies, neutralizability and their pathogenic potential. Arch. Virol. Suppl. 1993, 7, 111–133. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, X.; Zhan, Q.; Wang, Z.; Xu, M.; Zhu, D.; He, F.; Liu, X.; Huang, R.; Li, D.; et al. Evidence for natural Borna disease virus infection in healthy domestic animals in three areas of western China. Arch. Virol. 2014, 159, 1941–1949. [Google Scholar] [CrossRef] [PubMed]
- Han, J.; Wang, L.U.; Bian, H.; Zhou, X.; Ruan, C. Effects of paroxetine on spatial memory function and protein kinase C expression in a rat model of depression. Exp. Ther. Med. 2015, 10, 1489–1492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Volmer, R.; Monnet, C.; Gonzalez-Dunia, D. Borna disease virus blocks potentiation of presynaptic activity through inhibition of protein kinase C signaling. PLoS Pathog. 2006, 2, e19. [Google Scholar] [CrossRef]
- Kamitani, W.; Ono, E.; Yoshino, S.; Kobayashi, T.; Taharaguchi, S.; Lee, B.J.; Yamashita, M.; Kobayashi, T.; Okamoto, M.; Taniyama, H.; et al. Glial expression of Borna disease virus phosphoprotein induces behavioral and neurological abnormalities in transgenic mice. Proc. Natl. Acad. Sci. USA 2003, 100, 8969–8974. [Google Scholar] [CrossRef]
- Berth, S.H.; Leopold, P.L.; Morfini, G.N. Virus-induced neuronal dysfunction and degeneration. Front. Biosci. 2009, 14, 5239–5259. [Google Scholar] [CrossRef] [Green Version]
- Bode, L.; Dürrwald, R.; Rantam, F.A.; Ferszt, R.; Ludwig, H. First isolates of infectious human Borna disease virus from patients with mood disorders. Mol. Psychiatry 1996, 1, 200–212. [Google Scholar]
- Nakamura, Y.; Takahashi, H.; Shoya, Y.; Nakaya, T.; Watanabe, M.; Tomonaga, K.; Iwahashi, K.; Ameno, K.; Momiyama, N.; Taniyama, H.; et al. Isolation of Borna disease virus from human brain tissue. J. Virol. 2000, 74, 4601–4611. [Google Scholar] [CrossRef]
- Bautista, J.R.; Schwartz, G.J.; De La Torre, J.C.; Moran, T.H.; Carbone, K.M. Early and persistent abnormalities in rats with neonatally acquired Borna disease virus infection. Brain Res. Bull. 1994, 34, 31–40. [Google Scholar] [CrossRef] [PubMed]
- Tizard, I.; Ball, J.; Stoica, G.; Payne, S. The pathogenesis of bornaviral diseases in mammals. Anim. Health Res. Rev. 2016, 17, 92–109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gosztonyi, G. Natural and experimental Borna disease virus infections–neuropathology and pathogenetic considerations. APMIS Suppl. 2008, 116, 53–57. [Google Scholar] [CrossRef]
- Dietrich, D.E.; Bode, L. Human Borna disease virus-infection and its therapy in affective disorders. APMIS Suppl. 2008, 116, 61–65. [Google Scholar] [CrossRef]
- Dietrich, D.E.; Bode, L.; Spannhuth, C.W.; Hecker, H.; Ludwig, H.; Emrich, H.M. Antiviral treatment perspective against Borna disease virus 1 infection in major depression: A double-blind placebo-controlled randomized clinical trial. BMC Pharmacol. Toxicol. 2020, 21, 12. [Google Scholar] [CrossRef]
- Williams, B.L.; Hornig, M.; Yaddanapudi, K.; Lipkin, W.I. Hippocampal poly(ADP-Ribose) polymerase 1 and caspase 3 activation in neonatal bornavirus infection. J. Virol. 2008, 82, 1748–1758. [Google Scholar] [CrossRef] [Green Version]
- Li, D.; Lei, Y.; Deng, J.; Zhou, C.; Zhang, Y.; Li, W.; Huang, H.; Cheng, S.; Zhang, H.; Zhang, L.; et al. Human but Not Laboratory Borna Disease Virus Inhibits Proliferation and Induces Apoptosis in Human Oligodendrocytes In Vitro. PLoS ONE 2013, 8, e66623. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Bode, L.; Zhang, L.; He, P.; Huang, R.; Sun, L.; Chen, S.; Zhang, H.; Guo, Y.; Zhou, J.; et al. GC-MS-Based Metabonomic Profiling Displayed Differing Effects of Borna Disease Virus Natural Strain Hu-H1 and Laboratory Strain V Infection in Rat Cortical Neurons. Int. J. Mol. Sci. 2015, 16, 19347–19368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, X.; Yang, Y.; Zhao, M.; Bode, L.; Zhang, L.; Pan, J.; Lv, L.; Zhan, Y.; Liu, S.; Zhang, L.; et al. Proteomics reveal energy metabolism and mitogen-activated protein kinase signal transduction perturbation in human Borna disease virus Hu-H1-infected oligodendroglial cells. Neuroscience 2014, 268, 284–296. [Google Scholar] [CrossRef] [PubMed]
- Huang, R.; Gao, H.; Zhang, L.; Jia, J.; Liu, X.; Zheng, P.; Ma, L.; Li, W.; Deng, J.; Wang, X.; et al. Borna disease virus infection perturbs energy metabolites and amino acids in cultured human oligodendroglia cells. PLoS ONE 2012, 7, e44665. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nishimura, T.; Ishima, T.; Iyo, M.; Hashimoto, K. Potentiation of nerve growth factor-induced neurite outgrowth by fluvoxamine: Role of sigma-1 receptors, IP3 receptors and cellular signaling pathways. PLoS ONE 2008, 3, e2558. [Google Scholar] [CrossRef]
- Prater, A.M. Point of orgin: The discovery and spread of HIV. Posit. Aware. 2011, 23, 22–24. [Google Scholar] [PubMed]
- Maartens, G.; Celum, C.; Lewin, S.R. HIV infection: Epidemiology, pathogenesis, treatment, and prevention. Lancet 2014, 384, 258–271. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Lin, H.S.; Liu, M.Y.; Li, Y. Immune reconstitution of acquired immune deficiency syndrome. Chin. J. Integr. Med. 2010, 16, 557–564. [Google Scholar] [CrossRef]
- Shaw, G.M.; Hunter, E. HIV transmission. Cold Spring Harb. Perspect. Med. 2012, 2, a006965. [Google Scholar] [CrossRef]
- Berth, S.H.; Mesnard-Hoaglin, N.; Wang, B.; Kim, H.; Song, Y.; Sapar, M.; Morfini, G.; Brady, S.T. HIV Glycoprotein Gp120 Impairs Fast Axonal Transport by Activating Tak1 Signaling Pathways. ASN Neuro. 2016, 8, 1759091416679073. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.K.; Na, K.S.; Myint, A.M.; Leonard, B.E. The role of pro-inflammatory cytokines in neuroinflammation, neurogenesis and the neuroendocrine system in major depression. Prog. Neuropsychopharmacol. Biol. Psychiatry 2016, 64, 277–284. [Google Scholar] [CrossRef]
- Fields, J.; Dumaop, W.; Langford, T.D.; Rockenstein, E.; Masliah, E. Role of neurotrophic factor alterations in the neurodegenerative process in HIV associated neurocognitive disorders. J. Neuroimmune Pharmacol. 2014, 9, 102–116. [Google Scholar] [CrossRef] [Green Version]
- Nicholson, W.C.; Kempf, M.C.; Moneyham, L.; Vance, D.E. The potential role of vagus-nerve stimulation in the treatment of HIV-associated depression: A review of literature. Neuropsychiatr. Dis. Treat. 2017, 13, 1677–1689. [Google Scholar] [CrossRef] [Green Version]
- Li, G.H.; Henderson, L.; Nath, A. Astrocytes as an HIV Reservoir: Mechanism of HIV Infection. Curr. HIV Res. 2016, 14, 373–381. [Google Scholar] [CrossRef]
- Chen, T.; Zheng, M.; Li, Y.; Liu, S.; He, L. The role of CCR5 in the protective effect of Esculin on lipopolysaccharide-induced depressive symptom in mice. J. Affect. Disord. 2020, 277, 755–764. [Google Scholar] [CrossRef]
- Kandel, S.R.; Luo, X.; He, J.J. Nef inhibits HIV transcription and gene expression in astrocytes and HIV transmission from astrocytes to CD4+ T cells. J. Neurovirol. 2022, 28, 552–565. [Google Scholar] [CrossRef]
- Wilson, K.M.; He, J.J. HIV Nef Expression Down-modulated GFAP Expression and Altered Glutamate Uptake and Release and Proliferation in Astrocytes. Aging Dis. 2023, 14, 152–169. [Google Scholar] [CrossRef]
- Ginsberg, S.D.; Alldred, M.J.; Gunnam, S.M.; Schiroli, C.; Lee, S.H.; Morgello, S.; Fischer, T. Expression profiling suggests microglial impairment in human immunodeficiency virus neuropathogenesis. Ann. Neurol. 2018, 83, 406–417. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, D.; Beaulieu, J.M. Inhibition of glycogen synthase kinase 3 by lithium, a mechanism in search of specificity. Front. Mol. Neurosci. 2022, 15, 1028963. [Google Scholar] [CrossRef] [PubMed]
- Dolma, K.; Iacobucci, G.J.; Hong Zheng, K.; Shandilya, J.; Toska, E.; White, J.A., 2nd; Spina, E.; Gunawardena, S. Presenilin influences glycogen synthase kinase-3 β (GSK-3β) for kinesin-1 and dynein function during axonal transport. Hum. Mol. Genet. 2014, 23, 1121–1133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaalund, S.S.; Johansen, A.; Fabricius, K.; Pakkenberg, B. Untreated Patients Dying with AIDS Have Loss of Neocortical Neurons and Glia Cells. Front. Neurosci. 2020, 13, 1398. [Google Scholar] [CrossRef] [Green Version]
- Jensen, B.K.; Roth, L.M.; Grinspan, J.B.; Jordan-Sciutto, K.L. White matter loss and oligodendrocyte dysfunction in HIV: A consequence of the infection, the antiretroviral therapy or both? Brain Res. 2019, 1724, 146397. [Google Scholar] [CrossRef]
- Musso, D.; Gubler, D.J. Zika Virus. Clin. Microbiol. Rev. 2016, 29, 487–524. [Google Scholar] [CrossRef] [Green Version]
- da Silva, S.; Oliveira Silva Martins, D.; Jardim, A.C.G. A Review of the Ongoing Research on Zika Virus Treatment. Viruses 2018, 10, 255. [Google Scholar] [CrossRef] [Green Version]
- Duca, L.M.; Beckham, J.D.; Tyler, K.L.; Pastula, D.M. Zika Virus Disease and Associated Neurologic Complications. Curr. Infect. Dis. Rep. 2017, 19, 4. [Google Scholar] [CrossRef]
- Husstedt, I.W.; Maschke, M.; Eggers, C.; Neuen-Jacob, E.; Arendt, G. Zika-Virus-Infektion und das Nervensystem [Zika virus infection and the nervous system]. Nervenarzt 2018, 89, 136–143. [Google Scholar] [CrossRef]
- Lossia, O.V.; Conway, M.J.; Tree, M.O.; Williams, R.J.; Goldthorpe, S.C.; Srinageshwar, B.; Dunbar, G.L.; Rossignol, J. Zika virus induces astrocyte differentiation in neural stem cells. J. Neurovirol. 2018, 24, 52–61. [Google Scholar] [CrossRef]
- Li, W.; Xu, Y.; Liu, Z.; Shi, M.; Zhang, Y.; Deng, Y.; Zhong, X.; Chen, L.; He, J.; Zeng, J.; et al. TRPV4 inhibitor HC067047 produces antidepressant-like effect in LPS-induced depression mouse model. Neuropharmacology 2021, 201, 108834. [Google Scholar] [CrossRef] [PubMed]
- Jiang, T.; Hu, S.; Dai, S.; Yi, Y.; Wang, T.; Li, X.; Luo, M.; Li, K.; Chen, L.; Wang, H.; et al. Programming changes of hippocampal miR-134-5p/SOX2 signal mediate the susceptibility to depression in prenatal dexamethasone-exposed female offspring. Cell Biol. Toxicol. 2022, 38, 69–86. [Google Scholar] [CrossRef] [PubMed]
- Stefanik, M.; Formanova, P.; Bily, T.; Vancova, M.; Eyer, L.; Palus, M.; Salat, J.; Braconi, C.T.; Zanotto, P.M.A.; Gould, E.A.; et al. Characterisation of Zika virus infection in primary human astrocytes. BMC Neurosci. 2018, 19, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, C.; Wang, Q.; Jiang, Y.; Ye, Q.; Xu, D.; Gao, F.; Xu, J.W.; Wang, R.; Zhu, X.; Shi, L.; et al. Disruption of glial cell development by Zika virus contributes to severe microcephalic newborn mice. Cell Discov. 2018, 4, 43. [Google Scholar] [CrossRef] [Green Version]
- Schultz, V.; Barrie, J.A.; Donald, C.L.; Crawford, C.L.; Mullin, M.; Anderson, T.J.; Solomon, T.; Barnett, S.C.; Linington, C.; Kohl, A.; et al. Oligodendrocytes are susceptible to Zika virus infection in a mouse model of perinatal exposure: Implications for CNS complications. Glia 2021, 69, 2023–2036. [Google Scholar] [CrossRef]
- Roy, S.; Arif Ansari, M.; Choudhary, K.; Singh, S. NLRP3 inflammasome in depression: A review. Int. Immunopharmacol. 2023, 117, 109916. [Google Scholar] [CrossRef]
- Wang, J.; Liu, J.; Zhou, R.; Ding, X.; Zhang, Q.; Zhang, C.; Li, L. Zika virus infected primary microglia impairs NPCs proliferation and differentiation. Biochem. Biophys. Res. Commun. 2018, 497, 619–625. [Google Scholar] [CrossRef]
- De Sousa, R.A.L.; Peixoto, M.F.D.; Leite, H.R.; Oliveira, L.R.S.; Freitas, D.A.; Silva-Júnior, F.A.D.; Oliveira, H.S.; Rocha-Vieira, E.; Cassilhas, R.C.; Oliveira, D.B. Neurological consequences of exercise during prenatal Zika virus exposure to mice pups. Int. J. Neurosci. 2022, 132, 1091–1101. [Google Scholar] [CrossRef]
- Liang, M.; Zhong, H.; Rong, J.; Li, Y.; Zhu, C.; Zhou, L.; Zhou, R. Postnatal Lipopolysaccharide Exposure Impairs Adult Neurogenesis and Causes Depression-like Behaviors Through Astrocytes Activation Triggering GABAA Receptor Downregulation. Neuroscience 2019, 422, 21–31. [Google Scholar] [CrossRef]
- Ongrádi, J.; Kövesdi, V.; Medveczky, G.P. Az emberi 6-os herpeszvírus [Human herpesvirus 6]. Orvosi Hetil. 2010, 151, 523–532. [Google Scholar] [CrossRef]
- Tang, H.; Sadaoka, T.; Mori, Y. Human herpes virus-6 and human herpes virus-7(HHV-6,HHV-7). Uirusu 2010, 60, 22135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allnutt, M.A.; Johnson, K.; Bennett, D.A.; Connor, S.M.; Troncoso, J.C.; Pletnikova, O.; Albert, M.S.; Resnick, S.M.; Scholz, S.W.; De Jager, P.L.; et al. Human Herpesvirus 6 Detection in Alzheimer’s Disease Cases and Controls across Multiple Cohorts. Neuron 2020, 105, 1027–1035.e2. [Google Scholar] [CrossRef] [PubMed]
- Šudomová, M.; Berchová-Bímová, K.; Mazurakova, A.; Šamec, D.; Kubatka, P.; Hassan, S.T.S. Flavonoids Target Human Herpesviruses That Infect the Nervous System: Mechanisms of Action and Therapeutic Insights. Viruses 2022, 14, 592. [Google Scholar] [CrossRef] [PubMed]
- Osaki, T.; Morikawa, T.; Kajita, H.; Kobayashi, N.; Kondo, K.; Maeda, K. Caregiver burden and fatigue in caregivers of people with dementia: Measuring human herpesvirus (HHV)-6 and -7 DNA levels in saliva. Arch. Gerontol. Geriatr. 2016, 66, 42–48. [Google Scholar] [CrossRef]
- Shao, Q.; Lin, Z.; Wu, X.; Tang, J.; Lu, S.; Feng, D.; Cheng, C.; Qing, L.; Yao, K.; Chen, Y. Transcriptome sequencing of neurologic diseases associated genes in HHV-6A infected human astrocyte. Oncotarget 2016, 7, 48070–48080. [Google Scholar] [CrossRef] [Green Version]
- Prusty, B.K.; Gulve, N.; Govind, S.; Krueger, G.R.F.; Feichtinger, J.; Larcombe, L.; Aspinall, R.; Ablashi, D.V.; Toro, C.T. Active HHV-6 Infection of Cerebellar Purkinje Cells in Mood Disorders. Front. Microbiol. 2018, 9, 1955. [Google Scholar] [CrossRef] [Green Version]
- Shelton, R.C.; Liang, S.; Liang, P.; Chakrabarti, A.; Manier, D.H.; Sulser, F. Differential expression of pentraxin 3 in fibroblasts from patients with major depression. Neuropsychopharmacology 2004, 29, 126–132. [Google Scholar] [CrossRef] [Green Version]
- Filgueira, L.; Larionov, A.; Lannes, N. The Influence of Virus Infection on Microglia and Accelerated Brain Aging. Cells 2021, 10, 1836. [Google Scholar] [CrossRef]
- Han, S.; Chen, Y.; Zheng, R.; Li, S.; Jiang, Y.; Wang, C.; Fang, K.; Yang, Z.; Liu, L.; Zhou, B.; et al. The stage-specifically accelerated brain aging in never-treated first-episode patients with depression. Hum. Brain Mapp. 2021, 42, 3656–3666. [Google Scholar] [CrossRef]
- Sato, R.; Okanari, K.; Maeda, T.; Kaneko, K.; Takahashi, T.; Kenji, I. Postinfectious Acute Disseminated Encephalomyelitis Associated with Antimyelin Oligodendrocyte Glycoprotein Antibody. Child Neurol. Open 2020, 7, 2329048X20942442. [Google Scholar] [CrossRef]
- Irwin, M.R.; Levin, M.J.; Carrillo, C.; Olmstead, R.; Lucko, A.; Lang, N.; Caulfield, M.J.; Weinberg, A.; Chan, I.S.; Clair, J.; et al. Major depressive disorder and immunity to varicella-zoster virus in the elderly. Brain Behav. Immun. 2011, 25, 759–766. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, N.; Oka, N.; Takahashi, M.; Shimada, K.; Ishii, A.; Tatebayashi, Y.; Shigeta, M.; Yanagisawa, H.; Kondo, K. Human Herpesvirus 6B Greatly Increases Risk of Depression by Activating Hypothalamic-Pituitary-Adrenal Axis during Latent Phase of Infection. iScience 2020, 23, 101187. [Google Scholar] [CrossRef] [PubMed]
- Li Puma, D.D.; Marcocci, M.E.; Lazzarino, G.; De Chiara, G.; Tavazzi, B.; Palamara, A.T.; Piacentini, R.; Grassi, C. Ca2+ -dependent release of ATP from astrocytes affects herpes simplex virus type 1 infection of neurons. Glia 2021, 69, 201–215. [Google Scholar] [CrossRef]
- Simanek, A.M.; Cheng, C.; Yolken, R.; Uddin, M.; Galea, S.; Aiello, A.E. Herpesviruses, inflammatory markers and incident depression in a longitudinal study of Detroit residents. Psychoneuroendocrinology 2014, 50, 139–148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Q.; Jie, W.; Liu, J.H.; Yang, J.M.; Gao, T.M. An astroglial basis of major depressive disorder? An overview. Glia 2017, 65, 1227–1250. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Zou, D.; Li, Y.; Gu, S.; Dong, J.; Ma, X.; Xu, S.; Wang, F.; Huang, J.H. Monoamine Neurotransmitters Control Basic Emotions and Affect Major Depressive Disorders. Pharmaceuticals 2022, 15, 1203. [Google Scholar] [CrossRef]
- Martin, J.L.; Magistretti, P.J.; Allaman, I. Regulation of neurotrophic factors and energy metabolism by antidepressants in astrocytes. Curr. Drug Targets 2013, 14, 1308–1321. [Google Scholar] [CrossRef]
- Di Benedetto, B.; Rupprecht, R.; Czéh, B. Talking to the synapse: How antidepressants can target glial cells to reshape brain circuits. Curr. Drug Targets 2013, 14, 1329–1335. [Google Scholar] [CrossRef]
Cell Type | Mechanism | Impact | References |
---|---|---|---|
Astrocytes | Release of ATP | Mediates neuroinflammation, neural (glial) transmission, and synaptic plasticity to further regulate depression mechanisms | [28] |
Deregulation-regulated purinergic signaling | Develops and aggravates depression | [28] | |
Quantity reduction and degradation | Neurotransmission imbalance and abnormal synaptic connections | [28] | |
Express multiple neurotransmitter receptors and interact with neurons at the synapses | Imbalanced neurotransmission and abnormal synaptic connections, aggravating depression | [28] | |
The density of IR–vimentin and GFAP–IR astrocytes in brain tissue is altered | Falling into a vicious cycle of increased disease and astrocyte damage | [29] | |
Regulation of Kir6.1-K-ATP channels | Falling into a vicious cycle of increased disease and astrocyte damage. Contribute to depression | [30] | |
Mediate neuroinflammation and metabolic dysfunction | Contribute to depression | [31] | |
Oligodendrocytes | Form a myelin sheath that encapsulates the CNS axons | Contribute to depression | [34] |
Mediate some forms of neuroplasticity and provide nutritional and metabolic support to the axons | Contribute to depression | [34] | |
Interact with astrocytes and neurons | Contribute to depression | [36] | |
Microglia | Some microglia will activate to become pro-inflammatory (M1) phenotypes | Reduce neuroinflammation and promote the progression of depression | [37] |
Microglia activate to release soluble factors | Affect neuronal activity and trafficking of neurotransmitter receptors, regulating depression | [37] | |
Regulation of inflammation and synaptic and neural plasticity | Impact the course of depression | [38] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, X.; Wang, S.; Wu, W.; Chang, H.; Shan, P.; Yang, L.; Zhang, W.; Wang, X. Exploring New Mechanism of Depression from the Effects of Virus on Nerve Cells. Cells 2023, 12, 1767. https://doi.org/10.3390/cells12131767
Yu X, Wang S, Wu W, Chang H, Shan P, Yang L, Zhang W, Wang X. Exploring New Mechanism of Depression from the Effects of Virus on Nerve Cells. Cells. 2023; 12(13):1767. https://doi.org/10.3390/cells12131767
Chicago/Turabian StyleYu, Xinxin, Shihao Wang, Wenzheng Wu, Hongyuan Chang, Pufan Shan, Lin Yang, Wenjie Zhang, and Xiaoyu Wang. 2023. "Exploring New Mechanism of Depression from the Effects of Virus on Nerve Cells" Cells 12, no. 13: 1767. https://doi.org/10.3390/cells12131767