Role of miRNAs in Rheumatoid Arthritis Therapy
Abstract
:1. Introduction
2. Role of miRNAs in RA Development
2.1. miRNAs in Cells of the Immune System in RA
2.1.1. T lymphocytes
2.1.2. Monocytes/Macrophages
2.1.3. B Lymphocytes
2.1.4. Neutrophils
2.2. miRNAs in Fibroblast-Like Synoviocytes in RA
2.3. miRNAs in Inflammation Underlying RA
2.4. miRNAs in Angiogenesis Underlying RA Pathology
3. Role of miRNAs in RA Diagnosis and Therapy
3.1. miRNAs as Biomarkers
3.2. Drug-Regulated miRNA
3.3. Exosome-Derived miRNA
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
miRNA | Expression in RA/CIA/AIA | Cell Type | Target Gene | Function of miRNA | Ref. |
---|---|---|---|---|---|
let-7g-5p | ↓ | Th17 cells | Fas | ↓ TNF-α, IL-6, TGF-β and IL-1β; ↓ ROR-γt and IL-17 mRNA; ↓ Th17 cell differentiation. | [31] |
miR-10b | ↑ | Th cells | GATA3; PTEN | ↑ Inflammation; ↑ immunopathology; ↑IFN-γ, IL-17A; ↑ Th17 and Th1 cell differentiation; ↓ Treg and Th1 cell differentiation. | [49] |
miR-15a | ↓ | FLS | SOX5 | ↓ Cell migration; ↓ cell invasion; ↓ IL-1β and TNFα. | [89] |
miR-16 | ↓ | FLS | SOX5 | ↓ Cell migration; ↓ cell invasion; ↓ IL-1β and TNFα. | [89] |
miR-16-5p | N/A | Osteoblast | VEGF | ↓ VEGF; ↓ angiogenesis | [118] |
miR-17-5p | ↓ | FLS | JAK1; STAT3 | ↓ IL-6 and IL-1β; ↓ inflammation; ↓ bone erosion. | [86] |
miR-20a | N/A | Naïve T cells | Nlrp3 | ↓ NLRP3, CASP-1 and IL-1β; ↑ Foxp3 mRNA; ↓ ROR-γt mRNA; restore Treg/Th17 cell balance. | [107] |
miR-20a | ↓ | FLS | TXNIP | ↓ NLRP3 | [103] |
miR-21 | N/A | Naïve CD4+ T cells | MaR1 | ↑ Foxp3 mRNA; ↓ ROR-γt mRNA; restore Treg/Th17 cell balance. | [34] |
miR-21 | ↑ | FLS | SNF5 | ↑ NF-κB activation; ↑ PTEN/PI3K/AKT pathway; ↑ inflammation; ↑ cell proliferation. | [112] |
miR-21 | ↓ | PBMC | N/A | ↓ ESR and CRP; ↓ DAS28 score; ↓ disease activity. | [109] |
miR-23a | ↓ | Chondrocytes | IKKα | ↓IL-17; ↓NF-κB activation. | [102] |
miR-26b-5p | ↓ | CD4+ T cells | Sgk1(?) | ↓ TNF-α, IL-1β and IL-6; ↓ ROR-γt and IL-17A mRNA; ↓ NF-κB signaling;↓ plasticity of Th17 cell differentiation. | [32] |
miR-26b | ↓ | FLS | GSK-3β | ↓ FLS proliferation; ↑ apoptosis; ↓ TNF-α, IL- 1β and IL-6; ↓ inflammation. | [103] |
miR-27a-3p | ↓ | CD14+ monocytes | N/A | ↓ CIMT | [54] |
miR-29b | ↑ | Circulating PBMs (CD14+ monocytes) | HMGB1 | Resistance of Fas-induced apoptosis | [53] |
miR-30c-5p | ↓ | CD16+ monocytes | N/A | ↓ Atheroma plaques formation | [54] |
miR-30a | ↓ | Macrophages | Nlrp3 | ↓ NLRP3; ↓ inflammation; ↓ bone damage. | [108] |
miR-34a | ↑ | DC | AXL | ↑ Pro-inflammatory; ↑ joint pathology; ↑ Th17 response. | [63] |
miR 34a | N/A | FLS | Cyclin I | ↓ Proliferation; ↓ apoptosis resistance; ↓ abnormal FLS growth; ↓ inflammation. | [98] |
miR-34a-5p | ↓ | FLS | LDHA | ↓ Glucose metabolism; ↓ apoptosis resistance. | [81] |
miR-124 | ↓ | N/A | N/A | ↓ Autoimmunity | [27] |
miR-124 | ↓ | Th17 cells | IL-6R | ↓ IL-6, IL-17A and IFN-γ; ↓ STAT3 phosphorylation; ↓ Th17 cell differentiation. | [33] |
miR-124a-3p | ↓ | CD16+ monocytes | N/A | ↓ Atheroma plaque formation | [54] |
miR-125a | ↓ | PBMC | N/A | ↓ ESR and CRP; ↓ DAS28 score; ↓ disease activity. | [109] |
miR-126 | ↓ | Neutrophils | N/A | ↓ VEGF-A; ↓ inflammation. | [73] |
miR-128-3p | ↓ | CD16+ monocytes | N/A | ↓ Atheroma plaque formation | [54] |
miR-128-3p | ↑ | FLS | HDAC4 | ↑ TNF-α, IL-6 and IL-17; ↑ AKT/mTOR pathway; ↑ cell proliferation, migration and invasion; ↑ inflammation; ↓ apoptosis. | [113] |
miR-129 | ↓ | FLS | MAPK1 | ↓ MAPK/ERK signaling; ↓ cell proliferation; ↓ synovitis. | [110] |
miR-141-3p | ↓ | FLS | FoxC1 | ↓ Inflammation; ↓ migration and invasion; ↓ proliferation. | [92] |
miR-144-3p | ↓ | CD4+ T cells | Hif1a | ↑ Foxp3 mRNA; ↓ ROR-γt mRNA; ↓ IL-1β, IL-6 and IL-17; restore Treg/Th17 cell balance. | [36] |
miR-145-5p | ↓ | FLS | N/A | ↓ Cell proliferation; ↑ apoptosis. | [111] |
miR-146a | N/A | Treg | Stat1 | Th1-induced immunopathology | [45] |
miR-146a | Varied among different cells/tissues | Monocytes | RelB | ↓ Bone erosion; ↓ osteoclast differentiation. | [55] |
miR-146a-5p | N/A | FLS | IRAK1; TRAF6 | ↓ CTGF; ↓ inflammation; ↓ angiogenesis; ↓ pannus formation; ↓ cartilage damage. | [85] |
miR-146a-5p | N/A | Fibroblasts; monocytes; endothelial cells | EMMPRIN | ↓ Angiogenesis; ↓ EMMPRIN, VEGF and MMPs. | [119] |
miR-147 | ↑ | FLS | ZNF148 | ↑ CCL mRNA; ↓ DEPTOR mRNA; ↑ TNF-α, IL-6, MMP3 and MMP13; ↑ synovial inflammation; ↑ joint destruction. | [114] |
miR-148a | ↑ | Repeatedly activated Th1 | Bim | ↓ Apoptosis | [44] |
miR-148a | ↓ | Neutrophils | TNF-α | ↓ TNF-α; ↓ inflammation. | [73] |
miR-150-5p | ↓ | FLS | VEGF; MMP14 | ↓ VEGF, MMP14; ↓ angiogenesis; ↓ FLS migration and invasion; ↓ synoviocyte hyperplasia. | [120] |
miR-155 | ↑ | Monocytes/Macrophages | SOCS-1; CEBP/b | ↓ M2-type differentiation; ↑ mTNF and iNOS; ↑ proinflammatory cytokines. | [69] |
miR-155-5p | ↑ | CD19+ B cells | N/A | ↑ B cell activation; ↑ B cell differentiation. | [72] |
miR-204 | ↓ | FLS | MAPK1 | ↓ MAPK/ERK signaling; ↓ cell proliferation; ↓ synovitis. | [110] |
miR-218 | ↑ in first 12 h and then ↓ | FLS | DDK1 | ↑ Osteogenesis | [94] |
miR-221-3p | ↑ | Macrophages | JAK | ↓ IL-10, CXCL13 and JAK3; ↑ IL-6 and IL-8; ↓ pSTAT3 activation. | [70] |
miR-223 | N/A | Macrophages | Nlrp3 | ↓ NLRP3; ↓ inflammation. | [106] |
miR-223 | ↓ | Neutrophils | VEGF | ↓ IL-8 and IL-1β; ↑ VEGF. | [73] |
miR-328-3p | ↓ | CD16+ monocytes | N/A | ↓ Atheroma plaque formation | [54] |
miR-363 | ↓ | PBMC | ITGAV | ↑ Th17 differentiation; ↑ TGF-β, IL-17 and IL-6. | [62] |
miR-448 | ↑ | N/A | N/A | ↑ Autoimmunity | [27] |
miR-449a | N/A | CD4+ T cells | Notch1 | ↓ TNF-α, IL-17A, IL-6 and IFN-γ; ↑IL-10; ↓ autoantibodies (IgG, IgG1, IgG2a and IgG2b); restore Treg/Th17 cell balance; ↓ inflammation. | [28] |
miR-449a | ↓ | FLS | HMGB1 | ↓ IL-6; ↓ FLS invasion and migration; ↓ autophagy. | [90] |
miR-485-3p | N/A | FLS | PIAS3 | ↑ VEGF | [121] |
miR-494 | ↓ | Macrophages | TN-C | ↓ TN-C; ↓ TNF-α, IL-1β and IL-6; ↓ NF-κB. | [67] |
miR-515-5p | N/A | FLS | WISP1 | ↑ FLS proliferation; ↑ anti-apoptosis; ↑ promote cell cycle. | [96] |
miR-518a-5p | ↓ | Osteoblasts | CCL2 | ↓ Monocytes migration and infiltration in joints; ↓ articular swelling; ↓ cartilage erosion. | [51] |
miR-525-5p | ↓ | FLS; EPC | N/A | ↓ Ang1; ↓angiogenesis. | [117] |
miR-548a-3p | ↓ | Macrophages | TLR4 | ↓NF-κB; ↓ IL-6 and TNF-α. | [68] |
miR-551b | ↑ | N/A | N/A | ↑ Autoimmunity | [27] |
miR-708-5p | ↓ | Synovial fibroblasts MH7A | Wnt | ↑ Cell apoptosis; ↓ colony formation and migration; ↓ synovial inflammation; ↓ joint damage. | [91] |
miR-766-3p | N/A | FLS | MCR | ↓ NF-κB activation; ↓ inflammation. | [101] |
miR-4478 | ↑ | FLS | E2F1 | ↑ FLS proliferation; ↑ invasion; ↓ apoptosis. | [99] |
References
- Smolen, J.S.; Aletaha, D.; McInnes, I.B. Rheumatoid arthritis. Lancet 2016, 388, 2023–2038. [Google Scholar] [CrossRef]
- Zuo, J.; Tang, J.; Lu, M.; Zhou, Z.; Li, Y.; Tian, H.; Liu, E.; Gao, B.; Liu, T.; Shao, P. Glycolysis Rate-Limiting Enzymes: Novel Potential Regulators of Rheumatoid Arthritis Pathogenesis. Front. Immunol. 2021, 12, 779787. [Google Scholar] [CrossRef] [PubMed]
- Xiao, C.; Lv, C.; Sun, S.; Zhao, H.; Ling, H.; Li, M.; Qin, Y.; Zhang, J.; Wang, J.; Yang, X. TSP1 is the essential domain of SEMA5A involved in pannus formation in rheumatoid arthritis. Rheumatology 2021, 60, 5833–5842. [Google Scholar] [CrossRef] [PubMed]
- Jang, S.; Kwon, E.-J.; Lee, J.J. Rheumatoid Arthritis: Pathogenic Roles of Diverse Immune Cells. Int. J. Mol. Sci. 2022, 23, 905. [Google Scholar] [CrossRef] [PubMed]
- Weyand, C.M.; Goronzy, J.J. Immunometabolism in early and late stages of rheumatoid arthritis. Nat. Rev. Rheumatol. 2017, 13, 291–301. [Google Scholar] [CrossRef]
- Fearon, U.; Canavan, M.; Biniecka, M.; Veale, D.J. Hypoxia, mitochondrial dysfunction and synovial invasiveness in rheumatoid arthritis. Nat. Rev. Rheumatol. 2016, 12, 385–397. [Google Scholar] [CrossRef]
- McInnes, I.B.; Schett, G. The pathogenesis of rheumatoid arthritis. N. Engl. J. Med. 2011, 365, 2205–2219. [Google Scholar] [CrossRef] [Green Version]
- Bertoldo, E.; Adami, G.; Rossini, M.; Giollo, A.; Orsolini, G.; Viapiana, O.; Gatti, D.; Fassio, A. The Emerging Roles of Endocrine Hormones in Different Arthritic Disorders. Front. Endocrinol. 2021, 12, 620920. [Google Scholar] [CrossRef]
- Hammaker, D.; Firestein, G.S. Epigenetics of inflammatory arthritis. Curr. Opin. Rheumatol. 2018, 30, 188–196. [Google Scholar] [CrossRef]
- He, P.; Mo, X.-B.; Lei, S.-F.; Deng, F.-Y. Epigenetically regulated co-expression network of genes significant for rheumatoid arthritis. Epigenomics 2019, 11, 1601–1612. [Google Scholar] [CrossRef]
- Kabekkodu, S.P.; Shukla, V.; Varghese, V.K.; D’Souza, J.; Chakrabarty, S.; Satyamoorthy, K. Clustered miRNAs and their role in biological functions and diseases. Biol. Rev. Camb. Philos. Soc. 2018, 93, 1955–1986. [Google Scholar] [CrossRef]
- Bartel, D.P. MicroRNAs: Target recognition and regulatory functions. Cell 2009, 136, 215–233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deviatkin, A.A.; Vakulenko, Y.A.; Akhmadishina, L.V.; Tarasov, V.V.; Beloukhova, M.I.; Zamyatnin, A.A.; Lukashev, A.N. Emerging Concepts and Challenges in Rheumatoid Arthritis Gene Therapy. Biomedicines 2020, 8, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Chen, S.; Du, K.; Liang, C.; Wang, S.; Owusu Boadi, E.; Li, J.; Pang, X.; He, J.; Chang, Y.-X. Traditional herbal medicine: Therapeutic potential in rheumatoid arthritis. J. Ethnopharmacol. 2021, 279, 114368. [Google Scholar] [CrossRef] [PubMed]
- Jung, N.; Bueb, J.L.; Tolle, F.; Bréchard, S. Regulation of neutrophil pro-inflammatory functions sheds new light on the pathogenesis of rheumatoid arthritis. Biochem. Pharmacol. 2019, 165, 170–180. [Google Scholar] [CrossRef]
- Evangelatos, G.; Fragoulis, G.E.; Koulouri, V.; Lambrou, G.I. MicroRNAs in rheumatoid arthritis: From pathogenesis to clinical impact. Autoimmun. Rev. 2019, 18, 102391. [Google Scholar] [CrossRef]
- Singh, R.P.; Massachi, I.; Manickavel, S.; Singh, S.; Rao, N.P.; Hasan, S.; Mc Curdy, D.K.; Sharma, S.; Wong, D.; Hahn, B.H.; et al. The role of miRNA in inflammation and autoimmunity. Autoimmun. Rev. 2013, 12, 1160–1165. [Google Scholar] [CrossRef]
- Zhang, L.; Wu, H.; Zhao, M.; Chang, C.; Lu, Q. Clinical significance of miRNAs in autoimmunity. J. Autoimmun. 2020, 109, 102438. [Google Scholar] [CrossRef]
- Ormseth, M.J.; Solus, J.F.; Sheng, Q.; Ye, F.; Wu, Q.; Guo, Y.; Oeser, A.M.; Allen, R.M.; Vickers, K.C.; Stein, C.M. Development and Validation of a MicroRNA Panel to Differentiate Between Patients with Rheumatoid Arthritis or Systemic Lupus Erythematosus and Controls. J. Rheumatol. 2020, 47, 188–196. [Google Scholar] [CrossRef]
- Goncalves-Alves, E.; Saferding, V.; Schliehe, C.; Benson, R.; Kurowska-Stolarska, M.; Brunner, J.S.; Puchner, A.; Podesser, B.K.; Smolen, J.S.; Redlich, K.; et al. MicroRNA-155 Controls T Helper Cell Activation During Viral Infection. Front. Immunol. 2019, 10, 1367. [Google Scholar] [CrossRef] [Green Version]
- Deng, Q.; Luo, Y.; Chang, C.; Wu, H.; Ding, Y.; Xiao, R. The Emerging Epigenetic Role of CD8+T Cells in Autoimmune Diseases: A Systematic Review. Front. Immunol. 2019, 10, 856. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tavasolian, F.; Abdollahi, E.; Rezaei, R.; Momtazi-Borojeni, A.A.; Henrotin, Y.; Sahebkar, A. Altered Expression of MicroRNAs in Rheumatoid Arthritis. J. Cell Biochem. 2018, 119, 478–487. [Google Scholar] [CrossRef] [PubMed]
- Moro, A.; Gao, Z.; Wang, L.; Yu, A.; Hsiung, S.; Ban, Y.; Yan, A.; Sologon, C.M.; Chen, X.S.; Malek, T.R. Dynamic transcriptional activity and chromatin remodeling of regulatory T cells after varied duration of interleukin-2 receptor signaling. Nat. Immunol. 2022, 23, 802–813. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Xie, C.; Chen, Y.; Wang, J.; Chen, X.; Lu, Z.; June, R.R.; Zheng, S.G. Differential roles of TNFα-TNFR1 and TNFα-TNFR2 in the differentiation and function of CD4Foxp3 induced Treg cells in vitro and in vivo periphery in autoimmune diseases. Cell Death Dis. 2019, 10, 27. [Google Scholar] [CrossRef]
- Yang, J.; Wei, P.; Barbi, J.; Huang, Q.; Yang, E.; Bai, Y.; Nie, J.; Gao, Y.; Tao, J.; Lu, Y.; et al. The deubiquitinase USP44 promotes Treg function during inflammation by preventing FOXP3 degradation. EMBO Rep. 2020, 21, e50308. [Google Scholar] [CrossRef] [PubMed]
- Paradowska-Gorycka, A.; Wajda, A.; Romanowska-Próchnicka, K.; Walczuk, E.; Kuca-Warnawin, E.; Kmiolek, T.; Stypinska, B.; Rzeszotarska, E.; Majewski, D.; Jagodzinski, P.P.; et al. Th17/Treg-Related Transcriptional Factor Expression and Cytokine Profile in Patients With Rheumatoid Arthritis. Front. Immunol. 2020, 11, 572858. [Google Scholar] [CrossRef] [PubMed]
- Jin, F.; Hu, H.; Xu, M.; Zhan, S.; Wang, Y.; Zhang, H.; Chen, X. Serum microRNA Profiles Serve as Novel Biomarkers for Autoimmune Diseases. Front. Immunol. 2018, 9, 2381. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Huang, F.; Hou, Y.; Lin, X.; Liang, R.; Hu, X.; Zhao, J.; Wang, J.; Olsen, N.; Zheng, S.G. TGF-β-induced CD4+ FoxP3+ regulatory T cell-derived extracellular vesicles modulate Notch1 signaling through miR-449a and prevent collagen-induced arthritis in a murine model. Cell Mol. Immunol. 2021, 18, 2516–2529. [Google Scholar] [CrossRef]
- Yang, P.; Qian, F.-Y.; Zhang, M.-F.; Xu, A.L.; Wang, X.; Jiang, B.-P.; Zhou, L.-L. Th17 cell pathogenicity and plasticity in rheumatoid arthritis. J. Leukoc. Biol. 2019, 106, 1233–1240. [Google Scholar] [CrossRef]
- Stadhouders, R.; Lubberts, E.; Hendriks, R.W. A cellular and molecular view of T helper 17 cell plasticity in autoimmunity. J. Autoimmun. 2018, 87, 1–15. [Google Scholar] [CrossRef]
- Yang, P.; Zhang, M.; Wang, X.; Xu, A.L.; Shen, M.; Jiang, B.; Zhou, X.; Zhou, L. MicroRNA let-7g-5p alleviates murine collagen-induced arthritis by inhibiting Th17 cell differentiation. Biochem. Pharmacol. 2020, 174, 113822. [Google Scholar] [CrossRef]
- Zhang, M.-F.; Yang, P.; Shen, M.-Y.; Wang, X.; Gao, N.-X.; Zhou, X.-P.; Zhou, L.-L.; Lu, Y. MicroRNA-26b-5p alleviates murine collagen-induced arthritis by modulating Th17 cell plasticity. Cell. Immunol. 2021, 365, 104382. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Wang, J.; Li, J.; Li, T.; Chen, Y.; June, R.R.; Zheng, S.G. 1,25-Dihydroxyvitamin D3 Ameliorates Collagen-Induced Arthritis via Suppression of Th17 Cells Through miR-124 Mediated Inhibition of IL-6 Signaling. Front. Immunol. 2019, 10, 178. [Google Scholar] [CrossRef] [PubMed]
- Jin, S.; Chen, H.; Li, Y.; Zhong, H.; Sun, W.; Wang, J.; Zhang, T.; Ma, J.; Yan, S.; Zhang, J.; et al. Maresin 1 improves the Treg/Th17 imbalance in rheumatoid arthritis through miR-21. Ann. Rheum. Dis. 2018, 77, 1644–1652. [Google Scholar] [CrossRef] [PubMed]
- Sekar, D. Implications of microRNA 21 and its involvement in the treatment of different type of arthritis. Mol. Cell. Biochem. 2021, 476, 941–947. [Google Scholar] [CrossRef]
- Zhao, C.; Li, X.; Yang, Y.; Li, Z.; Li, M.; Tan, Q.; Liang, W.; Liu, Z. An analysis of Treg/Th17 cells imbalance associated microRNA networks regulated by moxibustion therapy on Zusanli (ST36) and Shenshu (BL23) in mice with collagen induced arthritis. Am. J. Transl. Res. 2019, 11, 4029–4045. [Google Scholar]
- Geng, J.; Yu, S.; Zhao, H.; Sun, X.; Li, X.; Wang, P.; Xiong, X.; Hong, L.; Xie, C.; Gao, J.; et al. The transcriptional coactivator TAZ regulates reciprocal differentiation of T17 cells and T cells. Nat. Immunol. 2017, 18, 800–812. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gagliani, N.; Amezcua Vesely, M.C.; Iseppon, A.; Brockmann, L.; Xu, H.; Palm, N.W.; de Zoete, M.R.; Licona-Limón, P.; Paiva, R.S.; Ching, T.; et al. Th17 cells transdifferentiate into regulatory T cells during resolution of inflammation. Nature 2015, 523, 221–225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chemin, K.; Gerstner, C.; Malmström, V. Effector Functions of CD4+ T Cells at the Site of Local Autoimmune Inflammation-Lessons From Rheumatoid Arthritis. Front. Immunol. 2019, 10, 353. [Google Scholar] [CrossRef] [Green Version]
- Gerli, R.; Lunardi, C.; Vinante, F.; Bistoni, O.; Pizzolo, G.; Pitzalis, C. Role of CD30+ T cells in rheumatoid arthritis: A counter-regulatory paradigm for Th1-driven diseases. Trends Immunol. 2001, 22, 72–77. [Google Scholar] [CrossRef]
- Aldridge, J.; Ekwall, A.-K.H.; Mark, L.; Bergström, B.; Andersson, K.; Gjertsson, I.; Lundell, A.-C.; Rudin, A. T helper cells in synovial fluid of patients with rheumatoid arthritis primarily have a Th1 and a CXCR3+Th2 phenotype. Arthritis Res. Ther. 2020, 22, 245. [Google Scholar] [CrossRef]
- Niesner, U.; Albrecht, I.; Janke, M.; Doebis, C.; Loddenkemper, C.; Lexberg, M.H.; Eulenburg, K.; Kreher, S.; Koeck, J.; Baumgrass, R.; et al. Autoregulation of Th1-mediated inflammation by twist1. J. Exp. Med. 2008, 205, 1889–1901. [Google Scholar] [CrossRef] [PubMed]
- Hradilkova, K.; Maschmeyer, P.; Westendorf, K.; Schliemann, H.; Husak, O.; von Stuckrad, A.S.L.; Kallinich, T.; Minden, K.; Durek, P.; Grün, J.R.; et al. Regulation of Fatty Acid Oxidation by Twist 1 in the Metabolic Adaptation of T Helper Lymphocytes to Chronic Inflammation. Arthritis Rheumatol. 2019, 71, 1756–1765. [Google Scholar] [CrossRef]
- Haftmann, C.; Stittrich, A.-B.; Zimmermann, J.; Fang, Z.; Hradilkova, K.; Bardua, M.; Westendorf, K.; Heinz, G.A.; Riedel, R.; Siede, J.; et al. miR-148a is upregulated by Twist1 and T-bet and promotes Th1-cell survival by regulating the proapoptotic gene Bim. Eur. J. Immunol. 2015, 45, 1192–1205. [Google Scholar] [CrossRef] [PubMed]
- Lu, L.-F.; Boldin, M.P.; Chaudhry, A.; Lin, L.-L.; Taganov, K.D.; Hanada, T.; Yoshimura, A.; Baltimore, D.; Rudensky, A.Y. Function of miR-146a in controlling Treg cell-mediated regulation of Th1 responses. Cell 2010, 142, 914–929. [Google Scholar] [CrossRef] [Green Version]
- Schulze-Koops, H.; Kalden, J.R. The balance of Th1/Th2 cytokines in rheumatoid arthritis. Best Pract. Res. Clin. Rheumatol. 2001, 15, 677–691. [Google Scholar] [CrossRef] [PubMed]
- Kamali, A.N.; Noorbakhsh, S.M.; Hamedifar, H.; Jadidi-Niaragh, F.; Yazdani, R.; Bautista, J.M.; Azizi, G. A role for Th1-like Th17 cells in the pathogenesis of inflammatory and autoimmune disorders. Mol. Immunol. 2019, 105, 107–115. [Google Scholar] [CrossRef]
- Yamada, H.; Nakashima, Y.; Okazaki, K.; Mawatari, T.; Fukushi, J.I.; Kaibara, N.; Hori, A.; Iwamoto, Y.; Yoshikai, Y. Th1 but not Th17 cells predominate in the joints of patients with rheumatoid arthritis. Ann. Rheum. Dis. 2008, 67, 1299–1304. [Google Scholar] [CrossRef]
- Tu, J.; Han, D.; Fang, Y.; Jiang, H.; Tan, X.; Xu, Z.; Wang, X.; Hong, W.; Li, T.; Wei, W. MicroRNA-10b promotes arthritis development by disrupting CD4+ T cell subtypes. Mol. Ther. Nucleic. Acids. 2022, 27, 733–750. [Google Scholar] [CrossRef]
- Niu, X.; Schulert, G.S. Functional Regulation of Macrophage Phenotypes by MicroRNAs in Inflammatory Arthritis. Front. Immunol. 2019, 10, 2217. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.-Y.; Fuh, L.-J.; Huang, C.-C.; Hsu, C.-J.; Su, C.-M.; Liu, S.-C.; Lin, Y.-M.; Tang, C.-H. Enhancement of CCL2 expression and monocyte migration by CCN1 in osteoblasts through inhibiting miR-518a-5p: Implication of rheumatoid arthritis therapy. Sci. Rep. 2017, 7, 421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rana, A.K.; Li, Y.; Dang, Q.; Yang, F. Monocytes in rheumatoid arthritis: Circulating precursors of macrophages and osteoclasts and, their heterogeneity and plasticity role in RA pathogenesis. Int. Immunopharmacol. 2018, 65, 348–359. [Google Scholar] [CrossRef]
- Ren, B.; Liu, J.; Wu, K.; Zhang, J.; Lv, Y.; Wang, S.; Liu, L.; Liu, D. TNF-α-elicited miR-29b potentiates resistance to apoptosis in peripheral blood monocytes from patients with rheumatoid arthritis. Apoptosis 2019, 24, 892–904. [Google Scholar] [CrossRef]
- Ruiz-Limon, P.; Ortega-Castro, R.; Barbarroja, N.; Perez-Sanchez, C.; Jamin, C.; Patiño-Trives, A.M.; Luque-Tevar, M.; Ibáñez-Costa, A.; Perez-Sanchez, L.; de la Rosa, I.A.; et al. Molecular Characterization of Monocyte Subsets Reveals Specific and Distinctive Molecular Signatures Associated With Cardiovascular Disease in Rheumatoid Arthritis. Front. Immunol. 2019, 10, 1111. [Google Scholar] [CrossRef] [Green Version]
- Ammari, M.; Presumey, J.; Ponsolles, C.; Roussignol, G.; Roubert, C.; Escriou, V.; Toupet, K.; Mausset-Bonnefont, A.-L.; Cren, M.; Robin, M.; et al. Delivery of miR-146a to Ly6C Monocytes Inhibits Pathogenic Bone Erosion in Inflammatory Arthritis. Theranostics 2018, 8, 5972–5985. [Google Scholar] [CrossRef] [PubMed]
- Marzaioli, V.; Canavan, M.; Floudas, A.; Wade, S.C.; Low, C.; Veale, D.J.; Fearon, U. Monocyte-Derived Dendritic Cell Differentiation in Inflammatory Arthritis Is Regulated by the JAK/STAT Axis via NADPH Oxidase Regulation. Front. Immunol. 2020, 11, 1406. [Google Scholar] [CrossRef]
- Coutant, F.; Miossec, P. Altered dendritic cell functions in autoimmune diseases: Distinct and overlapping profiles. Nat. Rev. Rheumatol. 2016, 12, 703–715. [Google Scholar] [CrossRef] [PubMed]
- Coutant, F. Shaping of Monocyte-Derived Dendritic Cell Development and Function by Environmental Factors in Rheumatoid Arthritis. Int. J. Mol. Sci. 2021, 22, 13670. [Google Scholar] [CrossRef]
- Segura, E.; Touzot, M.; Bohineust, A.; Cappuccio, A.; Chiocchia, G.; Hosmalin, A.; Dalod, M.; Soumelis, V.; Amigorena, S. Human inflammatory dendritic cells induce Th17 cell differentiation. Immunity 2013, 38, 336–348. [Google Scholar] [CrossRef] [Green Version]
- Radstake, T.R.D.J.; van Lent, P.L.E.M.; Pesman, G.J.; Blom, A.B.; Sweep, F.G.J.; Rönnelid, J.; Adema, G.J.; Barrera, P.; van den Berg, W.B. High production of proinflammatory and Th1 cytokines by dendritic cells from patients with rheumatoid arthritis, and down regulation upon FcgammaR triggering. Ann. Rheum. Dis. 2004, 63, 696–702. [Google Scholar] [CrossRef]
- Thomas, R.; MacDonald, K.P.; Pettit, A.R.; Cavanagh, L.L.; Padmanabha, J.; Zehntner, S. Dendritic cells and the pathogenesis of rheumatoid arthritis. J. Leukoc. Biol. 1999, 66, 286–292. [Google Scholar] [CrossRef]
- Pan, F.; Xiang, H.; Yan, J.; Hong, L.; Zhang, L.; Liu, Y.; Feng, X.; Cai, C. Dendritic Cells from Rheumatoid Arthritis Patient Peripheral Blood Induce Th17 Cell Differentiation via miR-363/Integrin αv/TGF-β Axis. Scand. J. Immunol. 2017, 85, 441–449. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bagchi, A.; Ghosh, P.; Ghosh, A.; Chatterjee, M. Role of oxidative stress in induction of trans-differentiation of neutrophils in patients with rheumatoid arthritis. Free Radic Res. 2022, 56, 290–302. [Google Scholar] [CrossRef]
- Kazantseva, M.G.; Highton, J.; Stamp, L.K.; Hessian, P.A. Dendritic cells provide a potential link between smoking and inflammation in rheumatoid arthritis. Arthritis Res. Ther. 2012, 14, R208. [Google Scholar] [CrossRef] [Green Version]
- Jiao, P.; Wang, X.-P.; Luoreng, Z.-M.; Yang, J.; Jia, L.; Ma, Y.; Wei, D.-W. miR-223: An Effective Regulator of Immune Cell Differentiation and Inflammation. Int. J. Biol. Sci. 2021, 17, 2308–2322. [Google Scholar] [CrossRef] [PubMed]
- Renaudineau, Y.; Berindan-Neagoe, I.; Stanciu, L.A. Editorial: Role of Macrophage MicroRNAs in Inflammatory Diseases and Cancer. Front. Immunol. 2021, 12, 764525. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Fu, J.; Chen, S.; Li, X.; Liang, H.; Hou, Y.; Dou, H. FC-99 reduces macrophage tenascin-C expression by upregulating miRNA-494 in arthritis. Int. Immunopharmacol. 2020, 79, 106105. [Google Scholar] [CrossRef]
- Wang, Y.; Zheng, F.; Gao, G.; Yan, S.; Zhang, L.; Wang, L.; Cai, X.; Wang, X.; Xu, D.; Wang, J. MiR-548a-3p regulates inflammatory response via TLR4/NF-κB signaling pathway in rheumatoid arthritis. J. Cell Biochem. 2018, 120, 1133–1140. [Google Scholar] [CrossRef]
- Paoletti, A.; Rohmer, J.; Ly, B.; Pascaud, J.; Rivière, E.; Seror, R.; Le Goff, B.; Nocturne, G.; Mariette, X. Monocyte/Macrophage Abnormalities Specific to Rheumatoid Arthritis Are Linked to miR-155 and Are Differentially Modulated by Different TNF Inhibitors. J. Immunol. 2019, 203, 1766–1775. [Google Scholar] [CrossRef] [Green Version]
- Quero, L.; Tiaden, A.N.; Hanser, E.; Roux, J.; Laski, A.; Hall, J.; Kyburz, D. miR-221-3p Drives the Shift of M2-Macrophages to a Pro-Inflammatory Function by Suppressing JAK3/STAT3 Activation. Front. Immunol. 2019, 10, 3087. [Google Scholar] [CrossRef] [Green Version]
- Pala, O.; Diaz, A.; Blomberg, B.B.; Frasca, D. B Lymphocytes in Rheumatoid Arthritis and the Effects of Anti-TNF-α Agents on B Lymphocytes: A Review of the Literature. Clin. Ther. 2018, 40, 1034–1045. [Google Scholar] [CrossRef] [PubMed]
- Heinicke, F.; Zhong, X.; Flåm, S.T.; Breidenbach, J.; Leithaug, M.; Mæhlen, M.T.; Lillegraven, S.; Aga, A.-B.; Norli, E.S.; Mjaavatten, M.D.; et al. MicroRNA Expression Differences in Blood-Derived CD19+ B Cells of Methotrexate Treated Rheumatoid Arthritis Patients. Front. Immunol. 2021, 12, 663736. [Google Scholar] [CrossRef] [PubMed]
- De la Rosa, I.A.; Perez-Sanchez, C.; Ruiz-Limon, P.; Patiño-Trives, A.; Torres-Granados, C.; Jimenez-Gomez, Y.; Del Carmen Abalos-Aguilera, M.; Cecchi, I.; Ortega, R.; Caracuel, M.A.; et al. Impaired microRNA processing in neutrophils from rheumatoid arthritis patients confers their pathogenic profile. Modulation by biological therapies. Haematologica 2020, 105, 2250–2261. [Google Scholar] [CrossRef] [Green Version]
- Liao, T.-L.; Chen, Y.-M.; Tang, K.-T.; Chen, P.-K.; Liu, H.-J.; Chen, D.-Y. MicroRNA-223 inhibits neutrophil extracellular traps formation through regulating calcium influx and small extracellular vesicles transmission. Sci. Rep. 2021, 11, 15676. [Google Scholar] [CrossRef]
- Ravindran, M.; Khan, M.A.; Palaniyar, N. Neutrophil Extracellular Trap Formation: Physiology, Pathology, and Pharmacology. Biomolecules 2019, 9, 365. [Google Scholar] [CrossRef] [Green Version]
- Li, F.; Tang, Y.; Song, B.; Yu, M.; Li, Q.; Zhang, C.; Hou, J.; Yang, R. Nomenclature clarification: Synovial fibroblasts and synovial mesenchymal stem cells. Stem Cell Res. Ther. 2019, 10, 260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Firestein, G.S.; McInnes, I.B. Immunopathogenesis of Rheumatoid Arthritis. Immunity 2017, 46, 183–196. [Google Scholar] [CrossRef] [Green Version]
- Nemtsova, M.V.; Zaletaev, D.V.; Bure, I.V.; Mikhaylenko, D.S.; Kuznetsova, E.B.; Alekseeva, E.A.; Beloukhova, M.I.; Deviatkin, A.A.; Lukashev, A.N.; Zamyatnin, A.A. Epigenetic Changes in the Pathogenesis of Rheumatoid Arthritis. Front. Genet. 2019, 10, 570. [Google Scholar] [CrossRef] [Green Version]
- Lv, Y.; Yang, Q. The role of abnormal proliferation of RASFs in the pathogenesis of rheumatoid arthritis. Guangdong Med. 2016, 37, 2683–2685. [Google Scholar] [CrossRef]
- Yi, O.; Lin, Y.; Hu, M.; Hu, S.; Su, Z.; Liao, J.; Liu, B.; Liu, L.; Cai, X. Lactate metabolism in rheumatoid arthritis: Pathogenic mechanisms and therapeutic intervention with natural compounds. Phytomedicine 2022, 100, 154048. [Google Scholar] [CrossRef]
- Zhang, M.; Lu, N.; Guo, X.-Y.; Li, H.-J.; Guo, Y.; Lu, L. Influences of the lncRNA TUG1-miRNA-34a-5p network on fibroblast-like synoviocytes (FLSs) dysfunction in rheumatoid arthritis through targeting the lactate dehydrogenase A (LDHA). J. Clin. Lab. Anal. 2021, 35, e23969. [Google Scholar] [CrossRef] [PubMed]
- Bustamante, M.F.; Garcia-Carbonell, R.; Whisenant, K.D.; Guma, M. Fibroblast-like synoviocyte metabolism in the pathogenesis of rheumatoid arthritis. Arthritis Res. Ther. 2017, 19, 110. [Google Scholar] [CrossRef] [PubMed]
- Ding, M.; Cheng, Y.; Xu, Z.; Lu, Y.; Li, J.; Lu, L.; Zong, M.; Fan, L. Hypoxia Inhibits Osteogenesis and Promotes Adipogenesis of Fibroblast-like Synoviocytes via Upregulation of Leptin in Patients with Rheumatoid Arthritis. J. Immunol. Res. 2022, 2022, 1431399. [Google Scholar] [CrossRef]
- Wu, G.; Liu, C.; Cao, B.; Cao, Z.; Zhai, H.; Liu, B.; Jin, S.; Yang, X.; Lv, C.; Wang, J. Connective tissue growth factor-targeting DNA aptamer suppresses pannus formation as diagnostics and therapeutics for rheumatoid arthritis. Front. Immunol. 2022, 13, 934061. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Ma, J.; Zhao, H.; Xiao, C.; Zhong, H.; Ling, H.; Xie, Z.; Tian, Q.; Chen, H.; Zhang, T.; et al. Resolvin D1 suppresses pannus formation via decreasing connective tissue growth factor caused by upregulation of miRNA-146a-5p in rheumatoid arthritis. Arthritis Res. Ther. 2020, 22, 61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Najm, A.; Masson, F.-M.; Preuss, P.; Georges, S.; Ory, B.; Quillard, T.; Sood, S.; Goodyear, C.S.; Veale, D.J.; Fearon, U.; et al. MicroRNA-17-5p Reduces Inflammation and Bone Erosions in Mice With Collagen-Induced Arthritis and Directly Targets the JAK/STAT Pathway in Rheumatoid Arthritis Fibroblast-like Synoviocytes. Arthritis Rheumatol. 2020, 72, 2030–2039. [Google Scholar] [CrossRef] [PubMed]
- Bartok, B.; Firestein, G.S. Fibroblast-like synoviocytes: Key effector cells in rheumatoid arthritis. Immunol. Rev. 2010, 233, 233–255. [Google Scholar] [CrossRef]
- Korb, A.; Pavenstädt, H.; Pap, T. Cell death in rheumatoid arthritis. Apoptosis 2009, 14, 447–454. [Google Scholar] [CrossRef]
- Wei, H.; Wu, Q.; Shi, Y.; Luo, A.; Lin, S.; Feng, X.; Jiang, J.; Zhang, M.; Wang, F.; Tan, W. MicroRNA-15a/16/SOX5 axis promotes migration, invasion and inflammatory response in rheumatoid arthritis fibroblast-like synoviocytes. Aging 2020, 12, 14376–14390. [Google Scholar] [CrossRef]
- Cai, Y.; Jiang, C.; Zhu, J.; Xu, K.; Ren, X.; Xu, L.; Hu, P.; Wang, B.; Yuan, Q.; Guo, Y.; et al. miR-449a inhibits cell proliferation, migration, and inflammation by regulating high-mobility group box protein 1 and forms a mutual inhibition loop with Yin Yang 1 in rheumatoid arthritis fibroblast-like synoviocytes. Arthritis Res. Ther. 2019, 21, 134. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Fan, W.; Ma, L.; Geng, X. miR-708-5p promotes fibroblast-like synoviocytes’ cell apoptosis and ameliorates rheumatoid arthritis by the inhibition of Wnt3a/β-catenin pathway. Drug. Des. Devel. Ther. 2018, 12, 3439–3447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Wang, Y.; Zhang, H.; Chang, J.; Lu, M.; Gao, W.; Liu, W.; Li, Y.; Yin, L.; Wang, X.; et al. Identification of a novel microRNA-141-3p/Forkhead box C1/β-catenin axis associated with rheumatoid arthritis synovial fibroblast function in vivo and in vitro. Theranostics 2020, 10, 5412–5434. [Google Scholar] [CrossRef] [PubMed]
- De Bari, C.; Dell’Accio, F.; Tylzanowski, P.; Luyten, F.P. Multipotent mesenchymal stem cells from adult human synovial membrane. Arthritis Rheum. 2001, 44, 1928–1942. [Google Scholar] [CrossRef] [PubMed]
- Iwamoto, N.; Fukui, S.; Takatani, A.; Shimizu, T.; Umeda, M.; Nishino, A.; Igawa, T.; Koga, T.; Kawashiri, S.-Y.; Ichinose, K.; et al. Osteogenic differentiation of fibroblast-like synovial cells in rheumatoid arthritis is induced by microRNA-218 through a ROBO/Slit pathway. Arthritis Res. Ther. 2018, 20, 189. [Google Scholar] [CrossRef] [Green Version]
- Nygaard, G.; Firestein, G.S. Restoring synovial homeostasis in rheumatoid arthritis by targeting fibroblast-like synoviocytes. Nat. Rev. Rheumatol. 2020, 16, 316–333. [Google Scholar] [CrossRef]
- Cai, D.; Hong, S.; Yang, J.; San, P. The Effects of microRNA-515-5p on the Toll-Like Receptor 4 (TLR4)/JNK Signaling Pathway and WNT1-Inducible-Signaling Pathway Protein 1 (WISP-1) Expression in Rheumatoid Arthritis Fibroblast-Like Synovial (RAFLS) Cells Following Treatment with Receptor Activator of Nuclear Factor-kappa-B Ligand (RANKL). Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 2020, 26, e920611. [Google Scholar] [CrossRef]
- Nagano, T.; Hashimoto, T.; Nakashima, A.; Hisanaga, S.-I.; Kikkawa, U.; Kamada, S. Cyclin I is involved in the regulation of cell cycle progression. Cell Cycle. 2013, 12, 2617–2624. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, H.; Zhou, X.; Wang, X.; Cheng, W.; Hu, X.; Wang, Y.; Luo, B.; Huang, W.; Gu, J. miR-34a in extracellular vesicles from bone marrow mesenchymal stem cells reduces rheumatoid arthritis inflammation via the cyclin I/ATM/ATR/p53 axis. J. Cell Mol. Med. 2021, 25, 1896–1910. [Google Scholar] [CrossRef]
- Zhou, X.; Xie, D.; Huang, J.; Lu, A.; Wang, R.; Jin, Y.; Zhang, R.; Chang, C.; Xu, L.; Xu, L.; et al. Therapeutic Effects of (5R)-5-Hydroxytriptolide on Fibroblast-Like Synoviocytes in Rheumatoid Arthritis lncRNA WAKMAR2/miR-4478/E2F1/p53 Axis. Front. Immunol. 2021, 12, 605616. [Google Scholar] [CrossRef]
- Capece, D.; Verzella, D.; Flati, I.; Arboretto, P.; Cornice, J.; Franzoso, G. NF-κB: Blending metabolism, immunity, and inflammation. Trends Immunol. 2022, 43, 757–775. [Google Scholar] [CrossRef]
- Hayakawa, K.; Kawasaki, M.; Hirai, T.; Yoshida, Y.; Tsushima, H.; Fujishiro, M.; Ikeda, K.; Morimoto, S.; Takamori, K.; Sekigawa, I. MicroRNA-766-3p Contributes to Anti-Inflammatory Responses through the Indirect Inhibition of NF-κB Signaling. Int. J. Mol. Sci. 2019, 20, 809. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, J.; Zhai, C.; Hu, J.; Li, Z.; Fei, H.; Wang, Z.; Fan, W. MiR-23a inhibited IL-17-mediated proinflammatory mediators expression via targeting IKKα in articular chondrocytes. Int. Immunopharmacol. 2017, 43, 32–38. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, S.S.A.; Kandil, L.S.; Ragab, G.M.; El-Sayyad, S.M. Micro RNAs 26b, 20a inversely correlate with GSK-3 β/NF-κB/NLRP-3 pathway to highlight the additive promising effects of atorvastatin and quercetin in experimental induced arthritis. Int. Immunopharmacol. 2021, 99, 108042. [Google Scholar] [CrossRef] [PubMed]
- Guo, C.; Fu, R.; Wang, S.; Huang, Y.; Li, X.; Zhou, M.; Zhao, J.; Yang, N. NLRP3 inflammasome activation contributes to the pathogenesis of rheumatoid arthritis. Clin. Exp. Immunol. 2018, 194, 231–243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kelley, N.; Jeltema, D.; Duan, Y.; He, Y. The NLRP3 Inflammasome: An Overview of Mechanisms of Activation and Regulation. Int. J. Mol. Sci. 2019, 20, 3328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, Y.; Lu, D.; Ma, W.; Liu, J.; Ning, Q.; Tang, F.; Li, L. miR-223 in exosomes from bone marrow mesenchymal stem cells ameliorates rheumatoid arthritis via downregulation of NLRP3 expression in macrophages. Mol. Immunol. 2022, 143, 68–76. [Google Scholar] [CrossRef]
- Jin, S.; Sun, S.; Ling, H.; Ma, J.; Zhang, X.; Xie, Z.; Zhan, N.; Zheng, W.; Li, M.; Qin, Y.; et al. Protectin DX restores Treg/T17 cell balance in rheumatoid arthritis by inhibiting NLRP3 inflammasome via miR-20a. Cell Death Dis. 2021, 12, 280. [Google Scholar] [CrossRef]
- Yang, Q.; Zhao, W.; Chen, Y.; Chen, Y.; Shi, J.; Qin, R.; Wang, H.; Wang, R.; Yuan, H.; Sun, W. RelA/MicroRNA-30a/NLRP3 signal axis is involved in rheumatoid arthritis via regulating NLRP3 inflammasome in macrophages. Cell Death Dis. 2021, 12, 1060. [Google Scholar] [CrossRef]
- Yang, J.; Wang, S.; Liu, L.; Wang, J.; Shao, Y. Long non-coding RNA NEAT1 and its targets (microRNA-21 and microRNA-125a) in rheumatoid arthritis: Altered expression and potential to monitor disease activity and treatment outcome. J. Clin. Lab. Anal. 2021, 35, e24076. [Google Scholar] [CrossRef]
- Chen, J.; Luo, X.; Liu, M.; Peng, L.; Zhao, Z.; He, C.; He, Y. Silencing long non-coding RNA NEAT1 attenuates rheumatoid arthritis via the MAPK/ERK signalling pathway by downregulating microRNA-129 and microRNA-204. RNA Biol. 2021, 18, 657–668. [Google Scholar] [CrossRef]
- Tang, J.; Yi, S.; Liu, Y. Long non-coding RNA PVT1 can regulate the proliferation and inflammatory responses of rheumatoid arthritis fibroblast-like synoviocytes by targeting microRNA-145-5p. Hum. Cell. 2020, 33, 1081–1090. [Google Scholar] [CrossRef]
- Wu, S.; Wang, J.; Li, J.; Li, F. microRNA-21 Aggravates Lipopolysaccharide-Induced Inflammation in MH7A Cells Through Targeting SNF5. Inflammation 2020, 43, 441–454. [Google Scholar] [CrossRef] [PubMed]
- Peng, T.; Ji, D.; Jiang, Y. Long non-coding RNA GAS5 suppresses rheumatoid arthritis progression via miR-128-3p/HDAC4 axis. Mol. Cell. Biochem. 2021, 476, 2491–2501. [Google Scholar] [CrossRef] [PubMed]
- Jiang, C.; Wu, X.; Li, X.; Li, M.; Zhang, W.; Tao, P.; Xu, J.; Ren, X.; Mo, L.; Guo, Y.; et al. Loss of microRNA-147 function alleviates synovial inflammation through ZNF148 in rheumatoid and experimental arthritis. Eur. J. Immunol. 2021, 51, 2062–2073. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, A.; Mukherjee, B.; Dixit, M. MicroRNA Key to Angiogenesis Regulation: MiRNA Biology and Therapy. Curr. Cancer Drug Targets 2018, 18, 266–277. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, H.; Deng, R. Angiogenesis as a potential treatment strategy for rheumatoid arthritis. Eur. J. Pharmacol. 2021, 910, 174500. [Google Scholar] [CrossRef]
- Chang, T.-K.; Zhong, Y.-H.; Liu, S.-C.; Huang, C.-C.; Tsai, C.-H.; Lee, H.-P.; Wang, S.-W.; Hsu, C.-J.; Tang, C.-H. Apelin Promotes Endothelial Progenitor Cell Angiogenesis in Rheumatoid Arthritis Disease the miR-525-5p/Angiopoietin-1 Pathway. Front. Immunol. 2021, 12, 737990. [Google Scholar] [CrossRef]
- Huang, C.-C.; Tseng, T.-T.; Liu, S.-C.; Lin, Y.-Y.; Law, Y.-Y.; Hu, S.-L.; Wang, S.-W.; Tsai, C.-H.; Tang, C.-H. S1P Increases VEGF Production in Osteoblasts and Facilitates Endothelial Progenitor Cell Angiogenesis by Inhibiting miR-16-5p Expression via the c-Src/FAK Signaling Pathway in Rheumatoid Arthritis. Cells 2021, 10, 2168. [Google Scholar] [CrossRef]
- Zisman, D.; Safieh, M.; Simanovich, E.; Feld, J.; Kinarty, A.; Zisman, L.; Gazitt, T.; Haddad, A.; Elias, M.; Rosner, I.; et al. Tocilizumab (TCZ) Decreases Angiogenesis in Rheumatoid Arthritis Through Its Regulatory Effect on miR-146a-5p and EMMPRIN/CD147. Front. Immunol. 2021, 12, 739592. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, H.; Xia, Y.; Yan, F.; Lu, Y. Therapeutic Potential of Mesenchymal Cell-Derived miRNA-150-5p-Expressing Exosomes in Rheumatoid Arthritis Mediated by the Modulation of MMP14 and VEGF. J. Immunol. 2018, 201, 2472–2482. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Zhang, Y.; Ma, Y.; Luo, L.; Chu, M.; Zhang, Z. Therapeutic Potential of Exosomal circRNA Derived from Synovial Mesenchymal Cells via Targeting circEDIL3/miR-485-3p/PIAS3/STAT3/VEGF Functional Module in Rheumatoid Arthritis. Int. J. Nanomed. 2021, 16, 7977–7994. [Google Scholar] [CrossRef] [PubMed]
- Cunningham, C.C.; Wade, S.; Floudas, A.; Orr, C.; McGarry, T.; Wade, S.; Cregan, S.; Fearon, U.; Veale, D.J. Serum miRNA Signature in Rheumatoid Arthritis and “At-Risk Individuals”. Front. Immunol. 2021, 12, 633201. [Google Scholar] [CrossRef] [PubMed]
- Yue, J.; Lau, T.C.K.; Griffith, J.F.; Xu, J.; Xiao, F.; Shi, L.; Wang, D.; Wong, P.C.H.; Li, E.K.; Tam, L.P.; et al. Circulating miR-99b-5p as a novel predictor of erosion progression on high-resolution peripheral quantitative computed tomography in early rheumatoid arthritis: A prospective cohort study. Int. J. Rheum. Dis. 2019, 22, 1724–1733. [Google Scholar] [CrossRef] [PubMed]
- Foers, A.D.; Garnham, A.L.; Chatfield, S.; Smyth, G.K.; Cheng, L.; Hill, A.F.; Wicks, I.P.; Pang, K.C. Extracellular Vesicles in Synovial Fluid from Rheumatoid Arthritis Patients Contain miRNAs with Capacity to Modulate Inflammation. Int. J. Mol. Sci. 2021, 22, 4910. [Google Scholar] [CrossRef]
- Dudics, S.; Venkatesha, S.H.; Moudgil, K.D. The Micro-RNA Expression Profiles of Autoimmune Arthritis Reveal Novel Biomarkers of the Disease and Therapeutic Response. Int. J. Mol. Sci. 2018, 19, 2293. [Google Scholar] [CrossRef] [Green Version]
- Iwamoto, N.; Furukawa, K.; Endo, Y.; Shimizu, T.; Sumiyoshi, R.; Umeda, M.; Koga, T.; Kawashiri, S.-Y.; Igawa, T.; Ichinose, K.; et al. Methotrexate Alters the Expression of microRNA in Fibroblast-like Synovial Cells in Rheumatoid Arthritis. Int. J. Mol. Sci. 2021, 22, 11561. [Google Scholar] [CrossRef] [PubMed]
- Sujitha, S.; Dinesh, P.; Rasool, M. Berberine encapsulated PEG-coated liposomes attenuate Wnt1/β-catenin signaling in rheumatoid arthritis via miR-23a activation. Eur. J. Pharm. Biopharm. 2020, 149, 170–191. [Google Scholar] [CrossRef]
- Sujitha, S.; Rasool, M. Berberine coated mannosylated liposomes curtail RANKL stimulated osteoclastogenesis through the modulation of GSK3β pathway via upregulating miR-23a. Int. Immunopharmacol. 2019, 74, 105703. [Google Scholar] [CrossRef]
- Jiang, H.; Fan, C.; Lu, Y.; Cui, X.; Liu, J. Astragaloside regulates lncRNA LOC100912373 and the miR-17-5p/PDK1 axis to inhibit the proliferation of fibroblast-like synoviocytes in rats with rheumatoid arthritis. Int. J. Mol. Med. 2021, 48, 130. [Google Scholar] [CrossRef]
- Ma, J.; Meng, Q.; Zhan, J.; Wang, H.; Fan, W.; Wang, Y.; Zhang, S.; Bian, H.; Zheng, F. Paeoniflorin Suppresses Rheumatoid Arthritis Development via Modulating the Circ-FAM120A/miR-671-5p/MDM4 Axis. Inflammation 2021, 44, 2309–2322. [Google Scholar] [CrossRef]
- Wen, J.-T.; Liu, J.; Wan, L.; Xin, L.; Guo, J.-C.; Sun, Y.-Q.; Wang, X.; Wang, J. Triptolide inhibits cell growth and inflammatory response of fibroblast-like synoviocytes by modulating hsa-circ-0003353/microRNA-31-5p/CDK1 axis in rheumatoid arthritis. Int. Immunopharmacol. 2022, 106, 108616. [Google Scholar] [CrossRef] [PubMed]
- Cao, L.; Jiang, H.; Yang, J.; Mao, J.; Wei, G.; Meng, X.; Zang, H. LncRNA MIR31HG is induced by tocilizumab and ameliorates rheumatoid arthritis fibroblast-like synoviocyte-mediated inflammation via miR-214-PTEN-AKT signaling pathway. Aging 2021, 13, 24071–24085. [Google Scholar] [CrossRef] [PubMed]
- Saquib, M.; Agnihotri, P.; Monu; Biswas, S. Exogenous miRNA: A Perspective Role as Therapeutic in Rheumatoid Arthritis. Curr. Rheumatol. Rep. 2021, 23, 43. [Google Scholar] [CrossRef] [PubMed]
- Fu, H.; Hu, D.; Zhang, L.; Tang, P. Role of extracellular vesicles in rheumatoid arthritis. Mol. Immunol. 2018, 93, 125–132. [Google Scholar] [CrossRef] [PubMed]
- Kalluri, R.; LeBleu, V.S. The biology, function, and biomedical applications of exosomes. Science 2020, 367, eaau6977. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.-F.; Zhang, Q.; Mo, X.-B.; Lin, J.; Wu, Y.-L.; Lu, X.; He, P.; Wu, J.; Guo, Y.-F.; Wang, M.-J.; et al. Identification of novel rheumatoid arthritis-associated MiRNA-204-5p from plasma exosomes. Exp. Mol. Med. 2022, 54, 334–345. [Google Scholar] [CrossRef]
- Daraghmeh, D.N.; King, C.; Wiese, M.D. A review of liquid biopsy as a tool to assess epigenetic, cfDNA and miRNA variability as methotrexate response predictors in patients with rheumatoid arthritis. Pharmacol. Res. 2021, 173, 105887. [Google Scholar] [CrossRef]
- Kok, F.O.; Wang, H.; Riedlova, P.; Goodyear, C.S.; Carmody, R.J. Defining the structure of the NF-ĸB pathway in human immune cells using quantitative proteomic data. Cell Signal. 2021, 88, 110154. [Google Scholar] [CrossRef]
- Wu, Z.-M.; Luo, J.; Shi, X.-D.; Zhang, S.-X.; Zhu, X.-B.; Guo, J. Icariin alleviates rheumatoid arthritis via regulating miR-223-3p/NLRP3 signalling axis. Autoimmunity 2020, 53, 450–458. [Google Scholar] [CrossRef]
- Liu, H.; Li, R.; Liu, T.; Yang, L.; Yin, G.; Xie, Q. Immunomodulatory Effects of Mesenchymal Stem Cells and Mesenchymal Stem Cell-Derived Extracellular Vesicles in Rheumatoid Arthritis. Front. Immunol. 2020, 11, 1912. [Google Scholar] [CrossRef]
- Huldani, H.; Abdalkareem Jasim, S.; Olegovich Bokov, D.; Abdelbasset, W.K.; Nader Shalaby, M.; Thangavelu, L.; Margiana, R.; Qasim, M.T. Application of extracellular vesicles derived from mesenchymal stem cells as potential therapeutic tools in autoimmune and rheumatic diseases. Int. Immunopharmacol. 2022, 106, 108634. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Yang, M.; Xie, H.; Hong, F.; Yang, S. Role of miRNAs in Rheumatoid Arthritis Therapy. Cells 2023, 12, 1749. https://doi.org/10.3390/cells12131749
Zhang Y, Yang M, Xie H, Hong F, Yang S. Role of miRNAs in Rheumatoid Arthritis Therapy. Cells. 2023; 12(13):1749. https://doi.org/10.3390/cells12131749
Chicago/Turabian StyleZhang, Yiping, Meiwen Yang, Hongyan Xie, Fenfang Hong, and Shulong Yang. 2023. "Role of miRNAs in Rheumatoid Arthritis Therapy" Cells 12, no. 13: 1749. https://doi.org/10.3390/cells12131749
APA StyleZhang, Y., Yang, M., Xie, H., Hong, F., & Yang, S. (2023). Role of miRNAs in Rheumatoid Arthritis Therapy. Cells, 12(13), 1749. https://doi.org/10.3390/cells12131749