The Signaling Mechanism of Remote Postconditioning of the Heart: Prospects of the Use of Remote Postconditioning for the Treatment of Acute Myocardial Infarction
Abstract
:1. Introduction
2. Experimental Data
2.1. The Involvement of the Nervous System in the Mechanism of Remote Postconditioning
2.2. The Involvement of Humoral Factors in the Mechanism of Remote Postconditioning
RPost Type | Effect | Animals | NS/HF | Reference |
---|---|---|---|---|
Trauma-induced RPost | IS ↓ | mice | NS | [17] |
Pain electrical stimulation | IS ↓ | mice | NS | [18] |
Femoral artery O/R | IS ↓ | rats | NS, TRPV1 | [19] |
Hindlimb I/R | IS ↓ | rats | NS, AG | [20] |
Renal artery O/R | IS ↓ | rats | HF, adenosine | [5] |
I/R of the heart | IS ↓ | rats, CE | HF, peptide | [23] |
Hindlimb I/R | IS ↓ | pigs | HF | [28] |
Trauma-induced RPost | IS ↓ | mice | HF, Bradykinin | [17] |
Hindlimb I/R | IS ↓ | rats | HF, OP | [20] |
3. The Signaling Mechanism of Remote Postconditioning
3.1. AMPK and mTOR
3.2. Akt, ERK, and PI3 Kinase
3.3. Protein Kinase C (PKC)
3.4. JAK
3.5. JNK and GSK-3β
3.6. PTEN
3.7. NO-Synthase
4. The Hypothetical End-Effector(s) of Remote Postconditioning
5. Remote Postconditioning and Experimental Metabolic Syndrome
6. The Optimal Protocol of Remote Postconditioning
7. Remote Postconditioning in Clinical Practice
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Menees, D.S.; Peterson, E.D.; Wang, Y.; Curtis, J.P.; Messenger, J.C.; Rumsfeld, J.S.; Gurm, H.S. Door-to-balloon time and mortality among patients undergoing primary PCI. N. Engl. J. Med. 2013, 369, 901–909. [Google Scholar] [CrossRef] [Green Version]
- Fabris, E.; Kilic, S.; Schellings, D.A.A.M.; Ten Berg, J.M.; Kennedy, M.W.; van Houwelingen, K.G.; Giannitsis, E.; Kolkman, E.; Ottervanger, J.P.; Hamm, C.; et al. Long-term mortality and prehospital tirofiban treatment in patients with ST elevation myocardial infarction. Heart 2017, 103, 1515–1520. [Google Scholar] [CrossRef]
- Olier, I.; Sirker, A.; Hildick-Smith, D.J.R.; Kinnaird, T.; Ludman, P.; de Belder, M.A.; Baumbach, A.; Byrne, J.; Rashid, M.; Curzen, N.; et al. British Cardiovascular Intervention Society and the National Institute for Cardiovascular Outcomes Research. Association of different antiplatelet therapies with mortality after primary percutaneous coronary intervention. Association of different antiplatelet therapies with mortality after primary percutaneous coronary intervention. Heart 2018, 104, 1683–1690. [Google Scholar] [CrossRef]
- Maslov, L.N.; Popov, S.V.; Mukhomedzyanov, A.V.; Naryzhnaya, N.V.; Voronkov, N.S.; Ryabov, V.V.; Boshchenko, A.A.; Khaliulin, I.; Prasad, N.R.; Fu, F.; et al. Reperfusion cardiac injury: Receptors and the signaling mechanisms. Curr. Cardiol. Rev. 2022, 18, 63–79. [Google Scholar] [CrossRef] [PubMed]
- Kerendi, F.; Kin, H.; Halkos, M.E.; Jiang, R.; Zatta, A.J.; Zhao, Z.Q.; Guyton, R.A.; Vinten-Johansen, J. Remote postconditioning. Brief renal ischemia and reperfusion applied before coronary artery reperfusion reduces myocardial infarct size via endogenous activation of adenosine receptors. Basic Res. Cardiol. 2005, 100, 404–412. [Google Scholar] [CrossRef]
- Basalay, M.; Barsukevich, V.; Mastitskaya, S.; Mrochek, A.; Pernow, J.; Sjöquist, P.O.; Ackland, G.L.; Gourine, A.V.; Gourine, A. Remote ischaemic pre- and delayed postconditioning—Similar degree of cardioprotection but distinct mechanisms. Exp. Physiol. 2012, 97, 908–917. [Google Scholar] [CrossRef] [PubMed]
- Mukhomedzyanov, A.V.; Naryzhnaya, N.V.; Maslov, L.N. The role of protein kinase C and PI3-kinase in the mechanism of the cardioprotective effect of remote ischemic postconditioning. Bull. Sib. Med. 2021, 20, 6–10. [Google Scholar] [CrossRef]
- Ren, H.M.; Xie, R.Q.; Cui, W.; Liu, F.; Hu, H.J.; Lu, J.C. Effects of rabbit limbs ischemia/ reperfusion on myocardial necrosis and apoptosis. Zhongguo Ying Yong Sheng Li Xue Za Zhi 2012, 28, 323–327. (In Chinese) [Google Scholar] [PubMed]
- Tang, Y.H.; Xu, J.J.; Li, J.X.; Cheng, X.S. Remote postconditioning induced by brief pulmonary ischemia and reperfusion attenuates myocardial reperfusion injury in rabbits. Chin. Med. J. 2011, 124, 1683–1688. [Google Scholar] [PubMed]
- Liu, S.; Wu, X.F.; Zhang, W.Z.; Sun, Y.X.; Cai, S.L. Remote postconditioning by brief renal ischemia and reperfusion reduces acute myocardial ischemia and reperfusion induced myocardial apoptosis in rabbits. Zhonghua Xin Xue Guan Bing Za Zhi 2007, 35, 757–760. [Google Scholar]
- Xu, S.; Xia, X.; Liu, Y.; Chen, F.; Gu, R.; Bian, X.; Xu, X.; Jia, C.; Lu, S.; Gu, Y.; et al. Remote cyclic compression ameliorates myocardial infarction injury in rats via AMPK-dependent pathway. Microvasc. Res. 2022, 141, 104313. [Google Scholar] [CrossRef] [PubMed]
- Nacar, A.B.; Topcu, S.; Kurt, M.; Tanboga, I.H.; Karakaş, M.F.; Buyukkaya, E.; Aksakal, E.; Sen, N.; Akcay, A.B.; Bilen, E. Effect of remote ischemic postconditioning on left ventricular mechanics. Echocardiography 2015, 32, 448–453. [Google Scholar] [CrossRef] [PubMed]
- Han, Z.; Cao, J.; Song, D.; Tian, L.; Chen, K.; Wang, Y.; Gao, L.; Yin, Z.; Fan, Y.; Wang, C. Autophagy is involved in the cardioprotection effect of remote limb ischemic postconditioning on myocardial ischemia/reperfusion injury in normal mice, but not diabetic mice. PLoS ONE 2014, 9, e86838. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wang, J.; Tu, T.; Iyan, Z.; Mungun, D.; Yang, Z.; Guo, Y. Remote ischemic postconditioning protects against myocardial ischemia-reperfusion injury by inhibition of the RAGE-HMGB1 pathway. Biomed. Res. Int. 2018, 2018, 4565630. [Google Scholar] [CrossRef] [Green Version]
- Wang, N.; Wang, G.S.; Yu, H.Y.; Mi, L.; Guo, L.J.; Gao, W. Myocardial protection of remote ischemic postconditioning during primary percutaneous coronary intervention in patients with acute ST-segment elevation myocardial infarction. Beijing Da Xue Xue Bao 2014, 46, 838–843. [Google Scholar]
- Wang, Q.; Cheng, Y.; Xue, F.S.; Yuan, Y.J.; Xiong, J.; Li, R.P.; Liao, X.; Liu, J.H. Postconditioning with vagal stimulation attenuates local and systemic inflammatory responses to myocardial ischemia reperfusion injury in rats. Inflamm. Res. 2012, 61, 1273–1282. [Google Scholar] [CrossRef]
- Song, Y.; Shan, J.G.; Xue, Z.; Wang, S.Y.; Xu, H.; Liu, Y.; Guo, Y.S.; Ren, X. Remote postconditioning induced by trauma protects the mouse heart against ischemia reperfusion injury. Involvement of the neural pathway and molecular mechanisms. Cardiovasc. Drugs Ther. 2016, 30, 271–280. [Google Scholar] [CrossRef]
- Ren, X.; Roessler, A.E.; Lynch, T.L.; Haar, L.; Mallick, F.; Lui, Y.; Tranter, M.; Ren, M.H.; Xie, W.R.; Fan, G.C.; et al. Cardioprotection via the skin: Nociceptor-induced conditioning against cardiac MI in the NIC of time. Am. J. Physiol. Heart Circ. Physiol. 2019, 316, H543–H553. [Google Scholar] [CrossRef]
- Gao, Y.; Song, J.; Chen, H.; Cao, C.; Lee, C. TRPV1 activation is involved in the cardioprotection of remote limb ischemic postconditioning in ischemia-reperfusion injury rats. Biochem. Biophys. Res. Commun. 2015, 463, 1034–1039. [Google Scholar] [CrossRef]
- Naryzhnaya, N.V.; Logvinov, S.V.; Kurbatov, B.K.; Mukhomedzyanov, A.V.; Sirotina, M.A.; Chepelev, S.N.; Vismont, F.I.; Maslov, L.N. The efficiency of remote ischemic postconditioning of the myocardium in rats with induced metabolic syndrome depends on the leptin level. Proc. Natl. Acad. Sci. Belarus Med. Ser. 2022, 19, 38–47. [Google Scholar] [CrossRef]
- Li, H.X.; Cui, X.L.; Xue, F.S.; Yang, G.Z.; Liu, Y.Y.; Liu, Q.; Liao, X. Inhibition of glycogen synthase kinase-3β is involved in cardioprotection by α7nAChR agonist and limb remote ischemic postconditionings. Biosci. Rep. 2018, 38, BSR20181315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klabunde, R.E. Dipyridamole inhibition of adenosine metabolism in human blood. Eur. J. Pharmacol. 1983, 93, 21–26. [Google Scholar] [CrossRef]
- Breivik, L.; Helgeland, E.; Aarnes, E.K.; Mrdalj, J.; Jonassen, A.K. Remote postconditioning by humoral factors in effluent from ischemic preconditioned rat hearts is mediated via PI3K/Akt-dependent cell-survival signaling at reperfusion. Basic Res. Cardiol. 2011, 106, 135–145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maslov, L.N.; Lishmanov, Y.B. Permeability of the blood-brain barrier for opioid peptides. Exp. Clin. Pharmacol. 2017, 80, 39–44. (In Russia) [Google Scholar]
- Xie, B.; Gao, X.; Huang, Y.; Zhang, Y.; Zhu, S. Remote Ischemic Postconditioning Inhibits Hippocampal Neuronal Apoptosis and Mitophagy after Cardiopulmonary Resuscitation in Rats. Shock 2021, 55, 74–82. [Google Scholar] [CrossRef]
- Huang, Y.; Gao, X.; Zhou, X.; Zhang, Y.; Tan, Z.; Zhu, S. Remote Ischemic Postconditioning Inhibited Mitophagy to Achieve Neuroprotective Effects in the Rat Model of Cardiac Arrest. Neurochem. Res. 2021, 46, 573–583. [Google Scholar] [CrossRef]
- Yu, H.H.; Ma, X.T.; Ma, X.; Chen, M.; Chu, Y.H.; Wu, L.J.; Wang, W.; Qin, C.; Tian, D.S. Remote Limb Ischemic Postconditioning Protects Against Ischemic Stroke by Promoting Regulatory T Cells Thriving. J. Am. Heart Assoc. 2021, 10, e023077. [Google Scholar] [CrossRef]
- Skyschally, A.; Gent, S.; Amanakis, G.; Schulte, C.; Kleinbongard, P.; Heusch, G. Across-species transfer of protection by remote ischemic preconditioning with species-specific myocardial signal transduction by reperfusion injury salvage kinase and survival activating factor enhancement pathways. Circ. Res. 2015, 117, 279–288. [Google Scholar] [CrossRef] [Green Version]
- Lishmanov, Y.B.; Maslov, L.N.; Mukhomedzyanov, A.V. Role of β-Adrenoceptors and L-Type Ca2+-Channels in the Mechanism of Reperfusion-Induced Heart Injury. Bull. Exp. Biol. Med. 2016, 161, 20–23. [Google Scholar] [CrossRef]
- Maslov, L.N.; Mukhomedzyanov, A.V.; Tsibulnikov, S.Y.; Suleiman, M.S.; Khaliulin, I.; Oeltgen, P.R. Activation of peripheral δ2-opioid receptor prevents reperfusion heart injury. Eur. J. Pharmacol. 2021, 907, 174302. [Google Scholar] [CrossRef]
- Popov, S.V.; Mukhomedzyanov, A.V.; Maslov, L.N.; Naryzhnaya, N.V.; Kurbatov, B.K.; Prasad, N.R.; Singh, N.; Fu, F.; Azev, V.N. The Infarct-Reducing Effect of the δ2 Opioid Receptor Agonist Deltorphin II: The Molecular Mechanism. Membranes 2023, 13, 63. [Google Scholar] [CrossRef]
- Koyama, T.; Munakata, M.; Akima, T.; Kageyama, T.; Shibata, M.; Moritani, K.; Kanki, H.; Ishikawa, S.; Mitamura, H. Impact of postconditioning with lactate-enriched blood on in-hospital outcomes of patients with ST-segment elevation myocardial infarction. Int. J. Cardiol. 2016, 220, 146–148. [Google Scholar] [CrossRef]
- Koyama, T. Lactated Ringer’s solution for preventing myocardial reperfusion injury. Int. J. Cardiol. Heart Vasc. 2017, 15, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Koyama, T.; Munakata, M.; Akima, T.; Miyamoto, K.; Kanki, H.; Ishikawa, S. Muscle squeezing immediately after coronary reperfusion therapy using postconditioning with lactate-enriched blood. Int. J. Cardiol. 2019, 275, 36–38. [Google Scholar] [CrossRef]
- Chepelev, S.N.; Vismont, F.I.; Goubkin, S.V.; Maslov, L.N. The influence of old age on cardioprotective efficiency of pharmacological postconditioning using lactic acid in ischemia-reperfusion of the myocardium in experiment. Dokl. Natl. Acad. Sci. Belarus 2021, 65, 207–216. [Google Scholar] [CrossRef]
- Yellon, D.M.; Downey, J.M. Preconditioning the myocardium: From cellular physiology to clinical cardiology. Physiol. Rev. 2003, 83, 1113–1151. [Google Scholar] [CrossRef] [Green Version]
- de Miranda, D.C.; de Oliveira Faria, G.; Hermidorff, M.M.; Dos Santos Silva, F.C.; de Assis, L.V.M.; Isoldi, M.C. Pre- and Post-Conditioning of the Heart: An Overview of Cardioprotective Signaling Pathways. Curr. Vasc. Pharmacol. 2021, 19, 499–524. [Google Scholar] [CrossRef]
- Tyagi, S.; Singh, N.; Virdi, J.K.; Jaggi, A.S. Diabetes abolish cardioprotective effects of remote ischemic conditioning: Evidences and possible mechanisms. J. Physiol. Biochem. 2019, 75, 19–28. [Google Scholar] [CrossRef]
- Popov, S.V.; Mukhomedzyanov, A.V.; Voronkov, N.S.; Derkachev, I.A.; Boshchenko, A.A.; Fu, F.; Sufianova, G.Z.; Khlestkina, M.S.; Maslov, L.N. Regulation of autophagy of the heart in ischemia and reperfusion. Apoptosis 2022, 28, 55–80. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Jia, X.J.; Zong, Q.F.; Zhang, G.J.; Ye, H.W.; Hu, J.; Gao, Q.; Guan, S.D. Remote ischemic postconditioning protects the heart by upregulating ALDH2 expression levels through the PI3K/Akt signaling pathway. Mol. Med. Rep. 2014, 10, 536–542. [Google Scholar] [CrossRef] [Green Version]
- Gao, S.; Zhan, L.; Yang, Z.; Shi, R.; Li, H.; Xia, Z.; Yuan, S.; Wu, Q.P.; Wang, T.; Yao, S. Remote limb ischaemic postconditioning protects against myocardial ischaemia/reperfusion injury in mice: Activation of JAK/STAT3-mediated Nrf2-antioxidant signalling. Cell. Physiol. Biochem. 2017, 43, 1140–1151. [Google Scholar] [CrossRef] [PubMed]
- Miura, T.; Miki, T. GSK-3β, a therapeutic target for cardiomyocyte protection. Circ. J. 2009, 73, 1184–1192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Milano, G.; Morel, S.; Bonny, C.; Samaja, M.; von Segesser, L.K.; Nicod, P.; Vassalli, G. A peptide inhibitor of c-Jun NH2-terminal kinase reduces myocardial ischemia-reperfusion injury and infarct size in vivo. Am. J. Physiol. Heart Circ. Physiol. 2007, 292, H1828–H1835. [Google Scholar] [CrossRef] [Green Version]
- Hong, J.; Ge, H.W.; Liu, J.Q.; Sun, R.H.; Kong, F.J. Pharmacological Inhibition of PTEN Restores Remote Ischemic Postconditioning Cardioprotection in Hypercholesterolemic Mice: Potential Role of PTEN/AKT/GSK3β SIGNALS. Shock 2019, 52, 522–531. [Google Scholar] [CrossRef] [PubMed]
- Popov, S.V.; Maslov, L.N.; Naryzhnaya, N.V.; Mukhomezyanov, A.V.; Krylatov, A.V.; Tsibulnikov, S.Y.; Ryabov, V.V.; Cohen, M.V.; Downey, J.M. The Role of Pyroptosis in Ischemic and Reperfusion Injury of the Heart. J. Cardiovasc. Pharmacol. Ther. 2021, 26, 562–574. [Google Scholar] [CrossRef] [PubMed]
- Baxter, G.F.; Ferdinandy, P. Delayed preconditioning of myocardium: Current perspectives. Basic Res. Cardiol. 2001, 96, 329–344. [Google Scholar] [CrossRef]
- Tang, Y.H.; Yang, J.S.; Xiang, H.Y.; Xu, J.J. PI3K-Akt/eNOS in remote postconditioning induced by brief pulmonary ischemia. Clin. Investig. Med. 2014, 37, E26–E37. [Google Scholar] [CrossRef] [Green Version]
- Kleinbongard, P.; Skyschally, A.; Gent, S.; Pesch, M.; Heusch, G. STAT3 as a common signal of ischemic conditioning: A lesson on “rigor and reproducibility” in preclinical studies on cardioprotection. Basic Res. Cardiol. 2017, 113, 3. [Google Scholar] [CrossRef]
- Behmenburg, F.; Trefz, L.; Dorsch, M.; Ströthoff, M.; Mathes, A.; Raupach, A.; Heinen, A.; Hollmann, M.W.; Berger, M.M.; Huhn, R. Milrinone-induced postconditioning requires activation of mitochondrial Ca2+-sensitive potassium (mBKCa) channels. J. Cardiothorac. Vasc. Anesth. 2018, 32, 2142–2148. [Google Scholar] [CrossRef]
- Logvinov, S.V.; Naryzhnaya, N.V.; Kurbatov, B.K.; Gorbunov, A.S.; Birulina, Y.G.; Maslov, L.N.; Oeltgen, P.R. High carbohydrate high fat diet causes arterial hypertension and histological changes in the aortic wall in aged rats: The involvement of connective tissue growth factors and fibronectin. Exp. Gerontol. 2021, 154, 111543. [Google Scholar] [CrossRef]
- Logvinov, S.V.; Mukhomedzyanov, A.V.; Kurbatov, B.K.; Sirotina, M.A.; Naryzhnaya, N.V.; Maslov, L.N. Participation of Leptin and Corticosterone in the Decrease in Infarct-Limiting Efficiency of Remote Postconditioning and in the Development of Arterial Hypertension in Metabolic Syndrome in Rats. Bull. Exp. Biol. Med. 2023, 174, 312–317. [Google Scholar] [CrossRef] [PubMed]
- Smith, C.C.; Dixon, R.A.; Wynne, A.M.; Theodorou, L.; Ong, S.G.; Subrayan, S.; Davidson, S.M.; Hausenloy, D.J.; Yellon, D.M. Leptin-induced cardioprotection involves JAK/STAT signaling that may be linked to the mitochondrial permeability transition pore. Am. J. Physiol. Heart Circ. Physiol. 2010, 299, H1265–H1270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dixon, R.A.; Davidson, S.M.; Wynne, A.M.; Yellon, D.M.; Smith, C.C. The cardioprotective actions of leptin are lost in the Zucker obese (fa/fa) rat. J. Cardiovasc. Pharmacol. 2009, 53, 311–317. [Google Scholar] [CrossRef] [PubMed]
- Crimi, G.; Pica, S.; Raineri, C.; Bramucci, E.; De Ferrari, G.M.; Klersy, C.; Ferlini, M.; Marinoni, B.; Repetto, A.; Romeo, M.; et al. Remote ischemic post-conditioning of the lower limb during primary percutaneous coronary intervention safely reduces enzymatic infarct size in anterior myocardial infarction: A randomized controlled trial. JACC Cardiovasc. Interv. 2013, 6, 1055–1063. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhong, H.; Gao, Z.; Chen, M.; Zhao, J.; Wang, F.; Li, L.; Dong, H.; Liu, L.; Wang, Q.; Xiong, L. Cardioprotective effect of remote ischemic postconditioning on children undergoing cardiac surgery: A randomized controlled trial. Paediatr. Anaesth. 2013, 23, 726–733. [Google Scholar] [CrossRef] [PubMed]
- Hong, D.M.; Lee, E.H.; Kim, H.J.; Min, J.J.; Chin, J.H.; Choi, D.K.; Bahk, J.H.; Sim, J.Y.; Choi, I.C.; Jeon, Y. Does remote ischaemic preconditioning with postconditioning improve clinical outcomes of patients undergoing cardiac surgery? Remote Ischaemic Preconditioning with Postconditioning Outcome Trial. Eur. Heart J. 2014, 35, 176–183. [Google Scholar] [CrossRef] [Green Version]
- Prunier, F.; Angoulvant, D.; Saint Etienne, C.; Vermes, E.; Gilard, M.; Piot, C.; Roubille, F.; Elbaz, M.; Ovize, M.; Bière, L.; et al. The RIPOST-MI study, assessing remote ischemic perconditioning alone or in combination with local ischemic postconditioning in ST-segment elevation myocardial infarction. Basic Res. Cardiol. 2014, 109, 400. [Google Scholar] [CrossRef]
- Eitel, I.; Stiermaier, T.; Rommel, K.P.; Fuernau, G.; Sandri, M.; Mangner, N.; Linke, A.; Erbs, S.; Lurz, P.; Boudriot, E.; et al. Cardioprotection by combined intrahospital remote ischaemic perconditioning and postconditioning in ST-elevation myocardial infarction: The randomized LIPSIA CONDITIONING trial. Eur. Heart J. 2015, 36, 3049–3057. [Google Scholar] [CrossRef] [Green Version]
- Cho, Y.J.; Lee, E.H.; Lee, K.; Kim, T.K.; Hong, D.M.; Chin, J.H.; Choi, D.K.; Bahk, J.H.; Sim, J.Y.; Choi, I.C.; et al. Long-term clinical outcomes of Remote Ischemic Preconditioning and Postconditioning Outcome (RISPO) trial in patients undergoing cardiac surgery. Int. J. Cardiol. 2017, 231, 84–89. [Google Scholar] [CrossRef]
- Hausenloy, D.J.; Kharbanda, R.K.; Møller, U.K.; Ramlall, M.; Aarøe, J.; Butler, R.; Bulluck, H.; Clayton, T.; Dana, A.; Dodd, M.; et al. CONDI-2/ERIC-PPCI Investigators. Effect of remote ischaemic conditioning on clinical outcomes in patients with acute myocardial infarction (CONDI-2/ERIC-PPCI): A single-blind randomised controlled trial. Lancet 2019, 394, 1415–1424. [Google Scholar] [CrossRef] [Green Version]
- Ikonomidis, I.; Vlastos, D.; Andreadou, I.; Gazouli, M.; Efentakis, P.; Varoudi, M.; Makavos, G.; Kapelouzou, A.; Lekakis, J.; Parissis, J.; et al. Vascular conditioning prevents adverse left ventricular remodelling after acute myocardial infarction: A randomised remote conditioning study. Basic Res. Cardiol. 2021, 116, 9. [Google Scholar] [CrossRef] [PubMed]
- Garcia-de-la-Asuncion, J.; Moreno, T.; Duca, A.; García-Del-Olmo, N.; Perez-Griera, J.; Belda, J.; Soro, M.; García-Del-Olmo, E. Effects of remote ischemic postconditioning on HIF-1α and other markers in on-pump cardiac surgery. Gen. Thorac. Cardiovasc. Surg. 2022, 70, 239–247. [Google Scholar] [CrossRef] [PubMed]
Enzyme | RPost Type | Effect | Animals | References |
---|---|---|---|---|
AMPK activation | limb I/R | IS ↓ | rats | [11] |
mTOR activation | limb I/R | IS ↓ | rats | [11] |
Akt activation | limb I/R | IS ↓ | rats | [40] |
PI3K activation | limb I/R | IS ↓ | rats | [40] |
PI3K activation | limb I/R | IS ↓ | pigs | [28] |
ERK1/2 activation | limb I/R | IS ↓ | pigs | [28] |
Akt activation | limb I/R | IS ↓ | mice | [14] |
PI3K activation | limb I/R | IS ↓ | mice | [14] |
PI3K activation | limb I/R | IS ↓ | rats | [7] |
PKC activation | limb I/R | IS ↓ | rats | [7] |
JAK activation | limb I/R | IS ↓ | rats | [41] |
GSK-3β inhibition | limb I/R | IS ↓ | rats | [21] |
GSK-3β inhibition | femoral artery O/R | IS ↓ | mice | [44] |
PTEN inhibition | femoral artery O/R | IS ↓ | mice | [44] |
NO-synthase | pulmonary artery O/R | CK ↓ | rabbits | [9,47] |
Groups | Model RPost | Effects | References |
---|---|---|---|
96 patients with STEMI and PCI | 3 cycles of 5 min/5 min I/R of the lower limb | No effect on CK-MB Did not improve contractility of the heart and the incidence of MVO | [46] |
69 children with open-heart surgery | 3 cycles of 5 min/5 min I/R of the lower limb | Reduced the postoperative levels of cTnI and CK-MB | [47] |
1280 patients with cardiac surgery | 4 cycles of 5 min/5 min I/R of the upper limb before CPB and after CPB | Did not improve clinical outcome in patients who underwent cardiac surgery | [48] |
151 patients with STEMI and PCI | 3 cycles of 5 min/5 min I/R of an upper-arm | Decreased the serum CK-MB within 72 h by 29% | [49] |
46 patients with STEMI and PCI | 3 cycles of 5 min/5 min I/R of the lower left limb | No effect on infarct size detected by enzymatic method, but a decrease in the plasma MDA level | [15] |
696 patients with STEMI and PCI | 3 cycles of 5 min/5 min I/R of the arm | No effect on CK-MB peak, MVO, ST-segment resolution | [50] |
1280 patients with cardiac surgery | 4 cycles of 5 min/5 min I/R of the arm | Not detected differences between groups in major adverse cardiac and cerebrovascular events | [51] |
5115 patients with STEMI and PCI | 4 cycles of 5 min/5 min I/R of the arm | Did not improve clinical outcomes | [52] |
270 patients with STEMI and PCI | RPost was performed within 48 h after PCI | No effect on post-infarction remodeling of the heart | [53,54] |
70 patients with cardiac surgery | 3 cycles of 5 min/5 min I/R of the arm | Reduced the plasma TnT and CK-MB levels | [55] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ryabov, V.V.; Vyshlov, E.V.; Maslov, L.N.; Mukhomedzyanov, A.V.; Naryzhnaya, N.V.; Boshchenko, A.A.; Gombozhapova, A.E.; Samoylova, J.O. The Signaling Mechanism of Remote Postconditioning of the Heart: Prospects of the Use of Remote Postconditioning for the Treatment of Acute Myocardial Infarction. Cells 2023, 12, 1622. https://doi.org/10.3390/cells12121622
Ryabov VV, Vyshlov EV, Maslov LN, Mukhomedzyanov AV, Naryzhnaya NV, Boshchenko AA, Gombozhapova AE, Samoylova JO. The Signaling Mechanism of Remote Postconditioning of the Heart: Prospects of the Use of Remote Postconditioning for the Treatment of Acute Myocardial Infarction. Cells. 2023; 12(12):1622. https://doi.org/10.3390/cells12121622
Chicago/Turabian StyleRyabov, Vyacheslav V., Evgenii V. Vyshlov, Leonid N. Maslov, Alexandr V. Mukhomedzyanov, Natalia V. Naryzhnaya, Alla A. Boshchenko, Aleksandra E. Gombozhapova, and Julia O. Samoylova. 2023. "The Signaling Mechanism of Remote Postconditioning of the Heart: Prospects of the Use of Remote Postconditioning for the Treatment of Acute Myocardial Infarction" Cells 12, no. 12: 1622. https://doi.org/10.3390/cells12121622
APA StyleRyabov, V. V., Vyshlov, E. V., Maslov, L. N., Mukhomedzyanov, A. V., Naryzhnaya, N. V., Boshchenko, A. A., Gombozhapova, A. E., & Samoylova, J. O. (2023). The Signaling Mechanism of Remote Postconditioning of the Heart: Prospects of the Use of Remote Postconditioning for the Treatment of Acute Myocardial Infarction. Cells, 12(12), 1622. https://doi.org/10.3390/cells12121622