Comparative Analysis of Two Candida parapsilosis Isolates Originating from the Same Patient Harbouring the Y132F and R398I Mutations in the ERG11 Gene
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characterization of C. parapsilosis Isolates
2.2. Formation of a 24 h Biofilm and XTT Reduction Assay
2.3. Isolation of RNA
2.4. Relative Gene Expression
2.5. Cultivation of Cells for Lipid and Fatty Acid Analysis
2.6. Lipid Extraction and TLC Analysis of Neutral Lipids
2.7. Extraction and Analysis of Sterols
2.8. Fatty Acid Analysis
2.9. Lipase Activity and Prediction of the Lip2 Protein Structure
2.10. Statistical Analysis
3. Results
3.1. C. parapsilosis HC Demonstrated Higher Biofilm Metabolic Activity Compared to CVC after FLC Treatment
3.2. Regulation of the ERG6 and ERG9 Genes Triggered by FLC
3.3. C. parapsilosis HC and CVC Isolates Differ in Neutral Lipid Composition
3.4. FLC-Resistant C. parapsilosis Differ in FA Composition
3.5. HC Isolate Exhibits Elevated Lipase Activity
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Patel, R.; Grogg, K.L.; Edwards, W.D.; Wright, A.J.; Schwenk, N.M. Death from Inappropriate Therapy for Lyme Disease. Clin. Infect. Dis. 2000, 31, 1107–1109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rafat, Z.; Hashemi, S.J.; Ahamdikia, K.; Daie Ghazvini, R.; Bazvandi, F. Study of Skin and Nail Candida Species as a Normal Flora Based on Age Groups in Healthy Persons in Tehran-Iran. J. Mycol. Med. 2017, 27, 501–505. [Google Scholar] [CrossRef]
- Tóth, R.; Nosek, J.; Mora-Montes, H.M.; Gabaldon, T.; Bliss, J.M.; Nosanchuk, J.D.; Turner, S.A.; Butler, G.; Vágvölgyi, C.; Gácser, A. Candida Parapsilosis: From Genes to the Bedside. Clin. Microbiol. Rev. 2019, 32, e00111-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamin, D.; Akanmu, M.H.; al Mutair, A.; Alhumaid, S.; Rabaan, A.A.; Hajissa, K. Global Prevalence of Antifungal-Resistant Candida Parapsilosis: A Systematic Review and Meta-Analysis. Trop. Med. Infect. Dis. 2022, 7, 188. [Google Scholar] [CrossRef] [PubMed]
- de Paula Menezes, R.; de Oliveira Melo, S.G.; Bessa, M.A.S.; Silva, F.F.; Alves, P.G.V.; Araújo, L.B.; Penatti, M.P.A.; Abdallah, V.O.S.; von Dollinger de Brito Röder, D.; dos Santos Pedroso, R. Candidemia by Candida Parapsilosis in a Neonatal Intensive Care Unit: Human and Environmental Reservoirs, Virulence Factors, and Antifungal Susceptibility. Braz. J. Microbiol. 2020, 51, 851–860. [Google Scholar] [CrossRef] [PubMed]
- Magobo, R.E.; Naicker, S.D.; Wadula, J.; Nchabeleng, M.; Coovadia, Y.; Hoosen, A.; Lockhart, S.R.; Govender, N.P. Detection of Neonatal Unit Clusters of Candida Parapsilosis Fungaemia by Microsatellite Genotyping: Results from Laboratory-Based Sentinel Surveillance, South Africa, 2009–2010. Mycoses 2017, 60, 320–327. [Google Scholar] [CrossRef]
- Pammi, M.; Holland, L.; Butler, G.; Gacser, A.; Bliss, J.M. Candida Parapsilosis Is a Significant Neonatal Pathogen: A Systematic Review and Meta-Analysis. Pediatr. Infect. Dis. J. 2013, 32, e206-16. [Google Scholar] [CrossRef] [Green Version]
- Clerihew, L.; Lamagni, T.L.; Brocklehurst, P.; McGuire, W. Candida Parapsilosis Infection in Very Low Birthweight Infants. Arch. Dis. Child. Fetal Neonatal Ed. 2007, 92, F127-9. [Google Scholar] [CrossRef] [Green Version]
- Vogiatzi, L.; Ilia, S.; Sideri, G.; Vagelakoudi, E.; Vassilopoulou, M.; Sdougka, M.; Briassoulis, G.; Papadatos, I.; Kalabalikis, P.; Sianidou, L.; et al. Invasive Candidiasis in Pediatric Intensive Care in Greece: A Nationwide Study. Intensiv. Care Med. 2013, 39, 2188–2195. [Google Scholar] [CrossRef] [PubMed]
- Zuo, X.-S.; Liu, Y.; Hu, K. Epidemiology and Risk Factors of Candidemia Due to Candida Parapsilosis in an Intensive Care Unit. Rev. Inst. Med. Trop. Sao Paulo 2021, 63, e20. [Google Scholar] [CrossRef]
- Yamin, D.H.; Husin, A.; Harun, A. Risk Factors of Candida Parapsilosis Catheter-Related Bloodstream Infection. Front. Public Health 2021, 9, 631865. [Google Scholar] [CrossRef] [PubMed]
- Štefánek, M.; Wenner, S.; Borges, V.; Pinto, M.; Gomes, J.P.; Rodrigues, J.; Faria, I.; Pessanha, M.A.; Martins, F.; Sabino, R.; et al. Antimicrobial Resistance and Biofilms Underlying Catheter-Related Bloodstream Coinfection by Enterobacter Cloacae Complex and Candida Parapsilosis. Antibiotics 2022, 11, 1245. [Google Scholar] [CrossRef] [PubMed]
- Pristov, K.E.; Ghannoum, M.A. Resistance of Candida to Azoles and Echinocandins Worldwide. Clin. Microbiol. Infect. 2019, 25, 792–798. [Google Scholar] [CrossRef] [PubMed]
- Spampinato, C.; Leonardi, D. Candida Infections, Causes, Targets, and Resistance Mechanisms: Traditional and Alternative Antifungal Agents. Biomed. Res. Int. 2013, 2013, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Noël, T. The Cellular and Molecular Defense Mechanisms of the Candida Yeasts against Azole Antifungal Drugs. J. Mycol. Med. 2012, 22, 173–178. [Google Scholar] [CrossRef]
- White, T.C.; Holleman, S.; Dy, F.; Mirels, L.F.; Stevens, D.A. Resistance Mechanisms in Clinical Isolates of Candida Albicans. Antimicrob. Agents Chemother. 2002, 46, 1704. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martel, C.M.; Parker, J.E.; Bader, O.; Weig, M.; Gross, U.; Warrilow, A.G.S.; Rolley, N.; Kelly, D.E.; Kelly, S.L. Identification and Characterization of Four Azole-Resistant Erg3 Mutants of Candida Albicans. Antimicrob. Agents Chemother. 2010, 54, 4527–4533. [Google Scholar] [CrossRef] [Green Version]
- Miyazaki, Y.; Geber, A.; Miyazaki, H.; Falconer, D.; Parkinson, T.; Hitchcock, C.; Grimberg, B.; Nyswaner, K.; Bennett, J.E. Cloning, Sequencing, Expression and Allelic Sequence Diversity of ERG3 (C-5 Sterol Desaturase Gene) in Candida Albicans. Gene 1999, 236, 43–51. [Google Scholar] [CrossRef]
- Corzo-Leon, D.E.; Peacock, M.; Rodriguez-Zulueta, P.; Salazar-Tamayo, G.J.; MacCallum, D.M. General Hospital Outbreak of Invasive Candidiasis Due to Azole-Resistant Candida Parapsilosis Associated with an Erg11 Y132F Mutation. Med. Mycol. 2021, 59, 664–671. [Google Scholar] [CrossRef]
- Arastehfar, A.; Hilmioğlu-Polat, S.; Daneshnia, F.; Pan, W.; Hafez, A.; Fang, W.; Liao, W.; Şahbudak-Bal, Z.; Metin, D.Y.; Júnior, J.N. de A.; et al. Clonal Candidemia Outbreak by Candida Parapsilosis Carrying Y132F in Turkey: Evolution of a Persisting Challenge. Front. Cell Infect. Microbiol. 2021, 11, 676177. [Google Scholar] [CrossRef]
- Magobo, R.E.; Lockhart, S.R.; Govender, N.P. Fluconazole-Resistant Candida Parapsilosis Strains with a Y132F Substitution in the ERG11 Gene Causing Invasive Infections in a Neonatal Unit, South Africa. Mycoses 2020, 63, 471–477. [Google Scholar] [CrossRef] [PubMed]
- Martini, C.; Torelli, R.; de Groot, T.; de Carolis, E.; Morandotti, G.A.; de Angelis, G.; Posteraro, B.; Meis, J.F.; Sanguinetti, M. Prevalence and Clonal Distribution of Azole-Resistant Candida Parapsilosis Isolates Causing Bloodstream Infections in a Large Italian Hospital. Front. Cell Infect. Microbiol. 2020, 10, 232. [Google Scholar] [CrossRef] [PubMed]
- Arastehfar, A.; Daneshnia, F.; Hilmioglu-Polat, S.; Fang, W.; Yaşar, M.; Polat, F.; Metin, D.Y.; Rigole, P.; Coenye, T.; Ilkit, M.; et al. First Report of Candidemia Clonal Outbreak Caused by Emerging Fluconazole-Resistant Candida Parapsilosis Isolates Harboring Y132F and/or Y132F+K143R in Turkey. Antimicrob. Agents Chemother. 2020, 64, e01001-20. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.J.; Kim, Y.J.; Yong, D.; Byun, J.H.; Kim, T.S.; Chang, Y.S.; Choi, M.J.; Byeon, S.A.; Won, E.J.; Kim, S.H.; et al. Fluconazole-Resistant Candida Parapsilosis Bloodstream Isolates with Y132F Mutation in ERG11 Gene, South Korea. Emerg. Infect. Dis. 2018, 24, 1768–1770. [Google Scholar] [CrossRef] [Green Version]
- Whaley, S.G.; Berkow, E.L.; Rybak, J.M.; Nishimoto, A.T.; Barker, K.S.; Rogers, P.D. Azole Antifungal Resistance in Candida Albicans and Emerging Non- Albicans Candida Species. Front. Microbiol. 2017, 7, 2173. [Google Scholar] [CrossRef] [Green Version]
- Xiang, M.J.; Liu, J.Y.; Ni, P.H.; Wang, S.; Shi, C.; Wei, B.; Ni, Y.X.; Ge, H.L. Erg11 Mutations Associated with Azole Resistance in Clinical Isolates of Candida Albicans. FEMS Yeast Res. 2013, 13, 386–393. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berkow, E.L.; Manigaba, K.; Parker, J.E.; Barker, K.S.; Kelly, S.L.; Rogers, P.D. Multidrug Transporters and Alterations in Sterol Biosynthesis Contribute to Azole Antifungal Resistance in Candida Parapsilosis. Antimicrob. Agents Chemother. 2015, 59, 5942–5950. [Google Scholar] [CrossRef] [Green Version]
- Prasad, R.; Singh, A. Lipids of Candida Albicans and Their Role in Multidrug Resistance. Curr. Genet. 2013, 59, 243–250. [Google Scholar] [CrossRef]
- Kohli, A.; Smriti; Mukhopadhyay, K.; Rattan, A.; Prasad, R. In Vitro Low-Level Resistance to Azoles in Candida Albicans Is Associated with Changes in Membrane Lipid Fluidity and Asymmetry. Antimicrob. Agents Chemother. 2002, 46, 1046–1052. [Google Scholar] [CrossRef] [Green Version]
- Feng, W.; Yang, J.; Xi, Z.; Qiao, Z.; Lv, Y.; Wang, Y.; Ma, Y.; Wang, Y.; Cen, W. Mutations and/or Overexpressions of ERG4 and ERG11 Genes in Clinical Azoles-Resistant Isolates of Candida Albicans. Microb. Drug Resist. 2017, 23, 563–570. [Google Scholar] [CrossRef] [PubMed]
- Flowers, S.A.; Barker, K.S.; Berkow, E.L.; Toner, G.; Chadwick, S.G.; Gygax, S.E.; Morschhäuser, J.; David Rogers, P. Gain-of-Function Mutations in UPC2 Are a Frequent Cause of ERG11 Upregulation in Azole-Resistant Clinical Isolates of Candida Albicans. Eukaryot. Cell 2012, 11, 1289–1299. [Google Scholar] [CrossRef] [Green Version]
- Singh, A.; Yadav, V.; Prasad, R. Comparative Lipidomics in Clinical Isolates of Candida Albicans Reveal Crosstalk between Mitochondria, Cell Wall Integrity and Azole Resistance. PLoS ONE 2012, 7, e39812. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, L.N.; Trofa, D.; Nosanchuk, J.D. Fatty Acid Synthase Impacts the Pathobiology of Candida Parapsilosis In Vitro and during Mammalian Infection. PLoS ONE 2009, 4, 8421. [Google Scholar] [CrossRef] [Green Version]
- Biswas, C.; Chen, S.C.A.; Halliday, C.; Kennedy, K.; Playford, E.G.; Marriott, D.J.; Slavin, M.A.; Sorrell, T.C.; Sintchenko, V. Identification of Genetic Markers of Resistance to Echinocandins, Azoles and 5-Fluorocytosine in Candida Glabrata by next-Generation Sequencing: A Feasibility Study. Clin. Microbiol. Infect. 2017, 23, 676.e7–676.e10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lotfali, E.; Ghajari, A.; Kordbacheh, P.; Zaini, F.; Mirhendi, H.; Mohammadi, R.; Noorbakhsh, F.; Rezaie, S. Regulation of ERG3, ERG6, and ERG11 Genes in Antifungal-Resistant Isolates of Candida Parapsilosis. Iran. Biomed. J. 2017, 21, 275. [Google Scholar] [CrossRef] [Green Version]
- Horváth, P.; Nosanchuk, J.D.; Hamari, Z.; Vágvölgyi, C.; Gácser, A. The Identification of Gene Duplication and the Role of Secreted Aspartyl Proteinase 1 in Candida Parapsilosis Virulence. J. Infect. Dis. 2012, 205, 923–933. [Google Scholar] [CrossRef]
- Park, M.; Do, E.; Jung, W.H. Lipolytic Enzymes Involved in the Virulence of Human Pathogenic Fungi. Mycobiology 2013, 41, 67–72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neugnot, V.; Moulin, G.; Dubreucq, E.; Bigey, F. The Lipase/Acyltransferase from Candida Parapsilosis: Molecular Cloning and Characterization of Purified Recombinant Enzymes. Eur. J. Biochem. 2002, 269, 1734–1745. [Google Scholar] [CrossRef] [PubMed]
- Tóth, A.; Németh, T.; Csonka, K.; Horváth, P.; Vágvölgyi, C.; Vizler, C.; Nosanchuk, J.D.; Gácser, A. Secreted Candida Parapsilosis Lipase Modulates the Immune Response of Primary Human Macrophages. Virulence 2014, 5, 555. [Google Scholar] [CrossRef] [Green Version]
- Ramage, G.; vande Walle, K.; Wickes, B.L.; López-Ribot, J.L. Standardized Method for in Vitro Antifungal Susceptibility Testing of Candida Albicans Biofilms. Antimicrob. Agents Chemother. 2001, 45, 2475–2479. [Google Scholar] [CrossRef] [Green Version]
- Chupáčová, J.; Borghi, E.; Morace, G.; Los, A.; Bujdáková, H. Anti-Biofilm Activity of Antibody Directed against Surface Antigen Complement Receptor 3-Related Protein—Comparison of Candida Albicans and Candida Dubliniensis. Pathog. Dis. 2018, 76, ftx127. [Google Scholar] [CrossRef]
- Neji, S.; Hadrich, I.; Trabelsi, H.; Abbes, S.; Cheikhrouhou, F.; Sellami, H.; Makni, F.; Ayadi, A. Virulence Factors, Antifungal Susceptibility and Molecular Mechanisms of Azole Resistance among Candida Parapsilosis Complex Isolates Recovered from Clinical Specimens. J. Biomed. Sci. 2017, 24, 67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Livak, K.J.; Schmittgen, T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2-ΔΔCT Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Bligh, E.G.; Dyer, W.J. A Rapid Method of Total Lipid Extraction and Purification. Can. J. Biochem. Physiol. 1959, 37, 911–917. [Google Scholar] [CrossRef] [PubMed]
- Spanova, M.; Czabany, T.; Zellnig, G.N.; Leitner, E.; Hapala, I.; Daum, G.N. Effect of Lipid Particle Biogenesis on the Subcellular Distribution of Squalene in the Yeast Saccharomyces Cerevisiae. J. Biol. Chem. 2010, 285, 6127–6133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Breivik, O.N.; Owades, J.L. Yeast Analysis, Spectrophotometric Semimicrodetermination of Ergosterol in Yeast. J. Agric. Food Chem. 1957, 5, 360–363. [Google Scholar] [CrossRef]
- Kainou, K.; Kamisaka, Y.; Kimura, K.; Uemura, H. Isolation of Delta12 and Omega3-Fatty Acid Desaturase Genes from the Yeast Kluyveromyces Lactis and Their Heterologous Expression to Produce Linoleic and Alpha-Linolenic Acids in Saccharomyces Cerevisiae. Yeast 2006, 23, 605–612. [Google Scholar] [CrossRef]
- Garaiova, M.; Mietkiewska, E.; Weselake, R.J.; Holic, R. Metabolic Engineering of Schizosaccharomyces Pombe to Produce Punicic Acid, a Conjugated Fatty Acid with Nutraceutic Properties. Appl. Microbiol. Biotechnol. 2017, 101, 7913–7922. [Google Scholar] [CrossRef]
- Bradford, M.M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Kuncharoen, N.; Techo, S.; Savarajara, A.; Tanasupawat, S. Identification and Lipolytic Activity of Yeasts Isolated from Foods and Wastes. Mycology 2020, 11, 279–286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mirdita, M.; Schütze, K.; Moriwaki, Y.; Heo, L.; Ovchinnikov, S.; Steinegger, M. ColabFold: Making Protein Folding Accessible to All. Nat. Methods 2022, 19, 679–682. [Google Scholar] [CrossRef] [PubMed]
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; et al. Highly Accurate Protein Structure Prediction with AlphaFold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef]
- Li, Y.; Wu, Y.; Gao, Y.; Niu, X.; Li, J.; Tang, M.; Fu, C.; Qi, R.; Song, B.; Chen, H.; et al. Machine-Learning Based Prediction of Prognostic Risk Factors in Patients with Invasive Candidiasis Infection and Bacterial Bloodstream Infection: A Singled Centered Retrospective Study. BMC Infect. Dis. 2022, 22, 1–11. [Google Scholar] [CrossRef]
- Branco, J.; Miranda, I.M.; Rodrigues, A.G. Candida Parapsilosis Virulence and Antifungal Resistance Mechanisms: A Comprehensive Review of Key Determinants. J. Fungi 2023, 9, 80. [Google Scholar] [CrossRef]
- Ning, Y.; Xiao, M.; Perlin, D.S.; Zhao, Y.; Lu, M.; Li, Y.; Luo, Z.; Dai, R.; Li, S.; Xu, J.; et al. Decreased Echinocandin Susceptibility in Candida Parapsilosis Causing Candidemia and Emergence of a Pan-Echinocandin Resistant Case in China. Emerg. Microbes. Infect. 2023, 12, 2153086. [Google Scholar] [CrossRef]
- Richardson, K.; Cooper, K.; Marriott, M.S.; Tarbit, M.H.; Troke, F.; Whittle, P.J. Discovery of Fluconazole, a Novel Antifungal Agent. Rev. Infect. Dis. 1990, 12, S267–S271. [Google Scholar] [CrossRef] [PubMed]
- Garaiová, M.; Zambojová, V.; Šimová, Z.; Griač, P.; Hapala, I. Squalene Epoxidase as a Target for Manipulation of Squalene Levels in the Yeast Saccharomyces Cerevisiae. FEMS Yeast Res. 2014, 14, 310–323. [Google Scholar] [CrossRef] [Green Version]
- Mayatepek, E.; Herz, A.; Leichsenring, M.; Kappe, R. Fatty Acid Analysis of Different Candida Species by Capillary Column Gas-Liquid Chromatography. Mycoses 1991, 34, 53–57. [Google Scholar] [CrossRef]
- Buček, A.; Matoušková, P.; Sychrová, H.; Pichová, I.; Hrušková-Heidingsfeldová, O. Δ12-Fatty Acid Desaturase from Candida Parapsilosis Is a Multifunctional Desaturase Producing a Range of Polyunsaturated and Hydroxylated Fatty Acids. PLoS ONE 2014, 9, e93322. [Google Scholar] [CrossRef] [Green Version]
- Tóth, R.; Alonso, M.F.; Bain, J.M.; Vágvölgyi, C.; Erwig, L.P.; Gácser, A. Different Candida Parapsilosis Clinical Isolates and Lipase Deficient Strain Trigger an Altered Cellular Immune Response. Front. Microbiol. 2015, 6, 1102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
C. parapsilosis | Zymosterol | ERG | Ergosta-5,7-Dien-3β-ol | LAN | SQ | Minor Precursors |
---|---|---|---|---|---|---|
CDC317 | 0.8 ± 0.3 | 82.3 ± 1.4 | 1.9 ± 0.2 | 4.6 ± 0.9 | 6.8 ± 3.1 | 3.6 ± 0.3 |
CDC317 + FLC | 0.7 ± 0.1 | 73.7 ± 1.6 | 1.8 ± 0.1 | 19.4 ± 1.2 | 0.8 ± 0.2 | 3.6 ± 0.2 |
HC | 0.9 ± 0.1 | 82.9 ± 0.7 | 1.1 ± 0.1 | 8.6 ± 1.5 | 1.2 ± 0.7 | 5.3 ± 0.4 |
HC + FLC | 0.9 ± 0.0 | 79.7 ± 0.6 | 1.2 ± 0.1 | 10.9 ± 0.9 | 2.1 ± 1.1 | 5.2 ± 0.6 |
CVC | 0.6 ± 0.1 | 78.7 ± 1.2 | 1.1 ± 0.1 | 12.9 ± 1.8 | 2.0 ± 0.7 | 4.7 ± 0.4 |
CVC + FLC | 0.6 ± 0.3 | 74.9 ± 1.4 | 1.1 ± 0.1 | 17.2 ± 1.8 | 1.5 ± 0.8 | 4.6 ± 0.5 |
C. parapsilosis | C18:1/C18:0 | UFA/SFA | SFA (%) | MUFA (%) | PUFA (%) |
---|---|---|---|---|---|
CDC317 | 5.0 ± 1.3 | 3.7 ± 0.7 | 21.5 ± 2.9 | 33.6 ± 1.8 | 44.8 ± 1.3 |
CDC317 + FLC | 5.7 ± 0.4 | 4.3 ± 0.3 | 18.9 ± 0.9 | 35.9 ± 0.5 | 45.2 ± 0.9 |
HC | 8.5 ± 2.5 | 3.3 ± 0.4 | 23.4 ± 2.1 | 34.8 ± 2.0 | 41.9 ± 0.1 |
HC + FLC | 7.6 ± 2.5 | 3.2 ± 0.5 | 24.2 ± 2.4 | 34.8 ± 1.2 | 41.0 ± 2.1 |
CVC | 5.3 ± 0.5 | 4.1 ± 0.3 | 19.6 ± 1.1 | 38.0 ± 1.2 | 42.5 ± 0.1 |
CVC + FLC | 5.4 ± 0.3 | 4.2 ± 0.2 | 19.4 ± 0.7 | 38.4 ± 0.5 | 42.1 ± 0.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Štefánek, M.; Garaiová, M.; Valček, A.; Jordao, L.; Bujdáková, H. Comparative Analysis of Two Candida parapsilosis Isolates Originating from the Same Patient Harbouring the Y132F and R398I Mutations in the ERG11 Gene. Cells 2023, 12, 1579. https://doi.org/10.3390/cells12121579
Štefánek M, Garaiová M, Valček A, Jordao L, Bujdáková H. Comparative Analysis of Two Candida parapsilosis Isolates Originating from the Same Patient Harbouring the Y132F and R398I Mutations in the ERG11 Gene. Cells. 2023; 12(12):1579. https://doi.org/10.3390/cells12121579
Chicago/Turabian StyleŠtefánek, Matúš, Martina Garaiová, Adam Valček, Luisa Jordao, and Helena Bujdáková. 2023. "Comparative Analysis of Two Candida parapsilosis Isolates Originating from the Same Patient Harbouring the Y132F and R398I Mutations in the ERG11 Gene" Cells 12, no. 12: 1579. https://doi.org/10.3390/cells12121579
APA StyleŠtefánek, M., Garaiová, M., Valček, A., Jordao, L., & Bujdáková, H. (2023). Comparative Analysis of Two Candida parapsilosis Isolates Originating from the Same Patient Harbouring the Y132F and R398I Mutations in the ERG11 Gene. Cells, 12(12), 1579. https://doi.org/10.3390/cells12121579