Pinpointing Genomic Regions and Candidate Genes Associated with Seed Oil and Protein Content in Soybean through an Integrative Transcriptomic and QTL Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Compilation, Curation and Meta-Analysis of QTLs Information
2.2. Meta-QTLs Region-Specific Association Analysis
2.3. Identification of Candidate Genes
2.4. Haplotypic Characterization of Selected Genes
2.5. Transcriptomics and Co-Expression Network Analysis
2.6. Quantitative Real Time PCR
3. Results
3.1. Meta-QTLs Governing Seed Oil and Protein Content in Soybean
3.2. Region Specific Association Analysis
3.3. Candidate Genes for Seed Oil and Protein Content in Soybean
3.4. Genotype Variation and Haplotypic Characterization of Candidate Genes
3.5. Transcriptomics Analysis
3.6. QPCR Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hymowitz, T. The History of the Soybean. In Soybeans; Elsevier: Amsterdam, The Netherlands, 2008; pp. 1–31. [Google Scholar]
- Kumar, V.; Vats, S.; Kumawat, S.; Bisht, A.; Bhatt, V.; Shivaraj, S.M.; Padalkar, G.; Goyal, V.; Zargar, S.; Gupta, S. Omics advances and integrative approaches for the simultaneous improvement of seed oil and protein content in soybean (Glycine max L.). Crit. Rev. Plant Sci. 2021, 40, 398–421. [Google Scholar] [CrossRef]
- El-Hamidi, M.; Zaher, F.A. Production of vegetable oils in the world and in Egypt: An overview. Bull. Natl. Res. Cent. 2018, 42, 19. [Google Scholar] [CrossRef]
- Medic, J.; Atkinson, C.; Hurburgh, C.R. Current knowledge in soybean composition. J. Am. Oil Chem. Soc. 2014, 91, 363–384. [Google Scholar] [CrossRef]
- Jegadeesan, S.; Yu, K. Food grade soybean breeding, current status and future directions. Legume Crops Prospect. Prod. Uses 2020, 51, 75. [Google Scholar]
- Cheng, M.-H.; Rosentrater, K.A. Economic feasibility analysis of soybean oil production by hexane extraction. Ind. Crops Prod. 2017, 108, 775–785. [Google Scholar] [CrossRef]
- Hwang, E.-Y.; Song, Q.; Jia, G.; Specht, J.E.; Hyten, D.L.; Costa, J.; Cregan, P.B. A genome-wide association study of seed protein and oil content in soybean. BMC Genom. 2014, 15, 1. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Jiang, G.-L.; Green, M.; Scott, R.A.; Song, Q.; Hyten, D.L.; Cregan, P.B. Identification and validation of quantitative trait loci for seed yield, oil and protein contents in two recombinant inbred line populations of soybean. Mol. Genet. Genom. 2014, 289, 935–949. [Google Scholar] [CrossRef] [Green Version]
- Seo, J.H.; Kim, K.S.; Ko, J.M.; Choi, M.S.; Kang, B.K.; Kwon, S.W.; Jun, T.H. Quantitative trait locus analysis for soybean (Glycine max) seed protein and oil concentrations using selected breeding populations. Plant Breed. 2019, 138, 95–104. [Google Scholar] [CrossRef] [Green Version]
- Brummer, E.C.; Graef, G.L.; Orf, J.; Wilcox, J.R.; Shoemaker, R.C. Mapping QTL for seed protein and oil content in eight soybean populations. Crop Sci. 1997, 37, 370–378. [Google Scholar] [CrossRef]
- Chung, J.; Babka, H.L.; Graef, G.L.; Staswick, P.E.; Lee, D.J.; Cregan, P.B.; Shoemaker, R.C.; Specht, J.E. The seed protein, oil, and yield QTL on soybean linkage group I. Crop Sci. 2003, 43, 1053–1067. [Google Scholar] [CrossRef] [Green Version]
- Eskandari, M.; Cober, E.R.; Rajcan, I. Genetic control of soybean seed oil: II. QTL and genes that increase oil concentration without decreasing protein or with increased seed yield. Theor. Appl. Genet. 2013, 126, 1677–1687. [Google Scholar] [CrossRef] [PubMed]
- Sonah, H.; O’Donoughue, L.; Cober, E.; Rajcan, I.; Belzile, F. Identification of loci governing eight agronomic traits using a GBS-GWAS approach and validation by QTL mapping in soya bean. Plant Biotechnol. J. 2015, 13, 211–221. [Google Scholar] [CrossRef] [PubMed]
- Hwang, S.; King, C.A.; Chen, P.; Ray, J.D.; Cregan, P.B.; Carter, T.E.; Li, Z.; Abdel-Haleem, H.; Matson, K.W.; Schapaugh, W. Meta-analysis to refine map position and reduce confidence intervals for delayed-canopy-wilting QTLs in soybean. Mol. Breed. 2016, 36, 91. [Google Scholar] [CrossRef]
- Yin, Z.; Qi, H.; Chen, Q.; Zhang, Z.; Jiang, H.; Zhu, R.; Hu, Z.; Wu, X.; Li, C.; Zhang, Y. Soybean plant height QTL mapping and meta-analysis for mining candidate genes. Plant Breed. 2017, 136, 688–698. [Google Scholar] [CrossRef]
- Sun, Y.-N.; Pan, J.-B.; Shi, X.-L.; Du, X.-Y.; Wu, Q.; Qi, Z.-M.; Jiang, H.-W.; Xin, D.-W.; Liu, C.-Y.; Hu, G.-H. Multi-environment mapping and meta-analysis of 100-seed weight in soybean. Mol. Biol. Rep. 2012, 39, 9435–9443. [Google Scholar] [CrossRef]
- Gong, Q.-C.; Yu, H.-X.; Mao, X.-R.; Qi, H.-D.; Yan, S.; Xiang, W.; Chen, Q.-S.; Qi, Z.-M. Meta-analysis of soybean amino acid QTLs and candidate gene mining. J. Integr. Agric. 2018, 17, 1074–1084. [Google Scholar] [CrossRef] [Green Version]
- Qiu, H.; Li, Z.; Yu, Y.; Gao, S.; Ma, X.; Zheng, Y.; Meng, F.; Hou, Y.; Wang, Y.; Wang, S. Mining and analysis of genes related to sulfur-containing amino acids in soybean based on Meta-QTL. Chin. J. Oil Crop Sci. 2015, 37, 141. [Google Scholar]
- Qin, H.; Liu, Z.; Wang, Y.; Xu, M.; Mao, X.; Qi, H.; Yin, Z.; Li, Y.; Jiang, H.; Hu, Z. Meta-analysis and overview analysis of quantitative trait locis associated with fatty acid content in soybean for candidate gene mining. Plant Breed. 2018, 137, 181–193. [Google Scholar] [CrossRef]
- Qi, Z.; Wu, Q.; Han, X.; Sun, Y.; Du, X.; Liu, C.; Jiang, H.; Hu, G.; Chen, Q. Soybean oil content QTL mapping and integrating with meta-analysis method for mining genes. Euphytica 2011, 179, 499–514. [Google Scholar] [CrossRef]
- Qi, Z.; Sun, Y.; Wu, Q.; Liu, C.; Hu, G.; Chen, Q. A meta-analysis of seed protein concentration QTL in soybean. Can. J. Plant Sci. 2011, 91, 221–230. [Google Scholar]
- Grant, D.; Nelson, R.T.; Cannon, S.B.; Shoemaker, R.C. SoyBase, the USDA-ARS soybean genetics and genomics database. Nucleic Acids Res. 2010, 38, D843–D846. [Google Scholar] [CrossRef] [PubMed]
- Sosnowski, O.; Charcosset, A.; Joets, J. BioMercator V3: An upgrade of genetic map compilation and quantitative trait loci meta-analysis algorithms. Bioinformatics 2012, 28, 2082–2083. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cingolani, P.; Platts, A.; Wang, L.L.; Coon, M.; Nguyen, T.; Wang, L.; Land, S.J.; Lu, X.; Ruden, D.M. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly 2012, 6, 80–92. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.; Chan, A.P. PROVEAN web server: A tool to predict the functional effect of amino acid substitutions and indels. Bioinformatics 2015, 31, 2745–2747. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, C.H.M.; Pires, D.E.V.; Ascher, D.B. DynaMut2: Assessing changes in stability and flexibility upon single and multiple point missense mutations. Protein Sci. 2021, 30, 60–69. [Google Scholar] [CrossRef]
- Langewisch, T.; Zhang, H.; Vincent, R.; Joshi, T.; Xu, D.; Bilyeu, K. Major soybean maturity gene haplotypes revealed by SNPViz analysis of 72 sequenced soybean genomes. PLoS ONE 2014, 9, e94150. [Google Scholar] [CrossRef]
- Goffinet, B.; Gerber, S. Quantitative trait loci: A meta-analysis. Genetics 2000, 155, 463–473. [Google Scholar] [CrossRef]
- Van, K.; McHale, L.K. Meta-analyses of QTLs associated with protein and oil contents and compositions in soybean [Glycine max (L.) Merr.] seed. Int. J. Mol. Sci. 2017, 18, 1180. [Google Scholar] [CrossRef] [Green Version]
- Qi, Z.; Zhang, Z.; Wang, Z.; Yu, J.; Qin, H.; Mao, X.; Jiang, H.; Xin, D.; Yin, Z.; Zhu, R. Meta-analysis and transcriptome profiling reveal hub genes for soybean seed storage composition during seed development. Plant Cell Environ. 2018, 41, 2109–2127. [Google Scholar] [CrossRef]
- Li, D.; Jin, C.; Duan, S.; Zhu, Y.; Qi, S.; Liu, K.; Gao, C.; Ma, H.; Zhang, M.; Liao, Y. MYB89 transcription factor represses seed oil accumulation. Plant Physiol. 2017, 173, 1211–1225. [Google Scholar] [CrossRef] [Green Version]
- Xing, G.; Li, J.; Li, W.; Lam, S.M.; Yuan, H.; Shui, G.; Yang, J. AP2/ERF and R2R3-MYB family transcription factors: Potential associations between temperature stress and lipid metabolism in Auxenochlorella protothecoides. Biotechnol. Biofuels 2021, 14, 22. [Google Scholar] [CrossRef] [PubMed]
- Cernac, A.; Benning, C. WRINKLED1 encodes an AP2/EREB domain protein involved in the control of storage compound biosynthesis in Arabidopsis. Plant J. 2004, 40, 575–585. [Google Scholar] [CrossRef]
- Song, G.; Li, X.; Munir, R.; Khan, A.R.; Azhar, W.; Yasin, M.U.; Jiang, Q.; Bancroft, I.; Gan, Y. The WRKY6 transcription factor affects seed oil accumulation and alters fatty acid compositions in Arabidopsis thaliana. Physiol. Plant. 2020, 169, 612–624. [Google Scholar] [CrossRef]
- Ma, L.; Li, G. FAR1-related sequence (FRS) and FRS-related factor (FRF) family proteins in Arabidopsis growth and development. Front. Plant Sci. 2018, 9, 692. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, L.; Xue, N.; Fu, X.; Zhang, H.; Li, G. Arabidopsis thaliana FAR-RED ELONGATED HYPOCOTYLS3 (FHY3) and FAR-RED-IMPAIRED RESPONSE1 (FAR1) modulate starch synthesis in response to light and sugar. New Phytol. 2017, 213, 1682–1696. [Google Scholar] [CrossRef] [PubMed]
- Tang, W.; Ji, Q.; Huang, Y.; Jiang, Z.; Bao, M.; Wang, H.; Lin, R. FAR-RED ELONGATED HYPOCOTYL3 and FAR-RED IMPAIRED RESPONSE1 transcription factors integrate light and abscisic acid signaling in Arabidopsis. Plant Physiol. 2013, 163, 857–866. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.; Yao, Q.; Patil, G.B.; Agarwal, G.; Deshmukh, R.K.; Lin, L.; Wang, B.; Wang, Y.; Prince, S.J.; Song, L. Identification and comparative analysis of differential gene expression in soybean leaf tissue under drought and flooding stress revealed by RNA-Seq. Front. Plant Sci. 2016, 7, 1044. [Google Scholar] [CrossRef] [Green Version]
- Li, N.; Xu, C.; Li-Beisson, Y.; Philippar, K. Fatty acid and lipid transport in plant cells. Trends Plant Sci. 2016, 21, 145–158. [Google Scholar] [CrossRef] [Green Version]
- Partida, V.G.S.; Dias, H.M.; Corcino, D.S.M.; Van Sluys, M.-A. Sucrose-phosphate phosphatase from sugarcane reveals an ancestral tandem duplication. BMC Plant Biol. 2021, 21, 23. [Google Scholar] [CrossRef]
- Stein, O.; Granot, D. An overview of sucrose synthases in plants. Front. Plant Sci. 2019, 10, 95. [Google Scholar] [CrossRef] [Green Version]
- Miao, L.; Yang, S.; Zhang, K.; He, J.; Wu, C.; Ren, Y.; Gai, J.; Li, Y. Natural variation and selection in GmSWEET39 affect soybean seed oil content. New Phytol. 2020, 225, 1651–1666. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Yokosho, K.; Guo, R.; Whelan, J.; Ruan, Y.-L.; Ma, J.F.; Shou, H. The soybean sugar transporter GmSWEET15 mediates sucrose export from endosperm to early embryo. Plant Physiol. 2019, 180, 2133–2141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, X.; Zhang, Y.; Yang, C.; Tian, Z.; Li, J. AtSWEET4, a hexose facilitator, mediates sugar transport to axial sinks and affects plant development. Sci. Rep. 2016, 6, 24563. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Goettel, W.; Song, Q.; Jiang, H.; Hu, Z.; Wang, M.L.; An, Y.-Q.C. Selection of GmSWEET39 for oil and protein improvement in soybean. PLoS Genet. 2020, 16, e1009114. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhou, W.; Lu, Z.; Ouyang, Y.; Yao, J. A lipid transfer protein, OsLTPL36, is essential for seed development and seed quality in rice. Plant Sci. 2015, 239, 200–208. [Google Scholar] [CrossRef] [PubMed]
- Heng, Y.; Wu, C.; Long, Y.; Luo, S.; Ma, J.; Chen, J.; Liu, J.; Zhang, H.; Ren, Y.; Wang, M. OsALMT7 maintains panicle size and grain yield in rice by mediating malate transport. Plant Cell 2018, 30, 889–906. [Google Scholar] [CrossRef] [Green Version]
- Zou, J.; Qi, Q.; Katavic, V.; Marillia, E.-F.; Taylor, D.C. Effects of antisense repression of an Arabidopsis thaliana pyruvate dehydrogenase kinase cDNA on plant development. Plant Mol. Biol. 1999, 41, 837–849. [Google Scholar] [CrossRef]
- Ma, X.; Yao, L.; Yang, B.; Lee, Y.K.; Chen, F.; Liu, J. RNAi-mediated silencing of a pyruvate dehydrogenase kinase enhances triacylglycerol biosynthesis in the oleaginous marine alga Nannochloropsis salina. Sci. Rep. 2017, 7, 11485. [Google Scholar] [CrossRef] [Green Version]
- Patil, G.; Do, T.; Vuong, T.D.; Valliyodan, B.; Lee, J.-D.; Chaudhary, J.; Shannon, J.G.; Nguyen, H.T. Genomic-assisted haplotype analysis and the development of high-throughput SNP markers for salinity tolerance in soybean. Sci. Rep. 2016, 6, 19199. [Google Scholar] [CrossRef] [Green Version]
- Bhat, J.A.; Karikari, B.; Adeboye, K.A.; Ganie, S.A.; Barmukh, R.; Hu, D.; Varshney, R.K.; Yu, D. Identification of superior haplotypes in a diverse natural population for breeding desirable plant height in soybean. Theor. Appl. Genet. 2022, 135, 2407–2422. [Google Scholar] [CrossRef]
- Wang, X.; Pang, Y.; Zhang, J.; Wu, Z.; Chen, K.; Ali, J.; Ye, G.; Xu, J.; Li, Z. Genome-wide and gene-based association mapping for rice eating and cooking characteristics and protein content. Sci. Rep. 2017, 7, 17203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, H.; Wang, W.; He, Q.; Xiang, S.; Tian, D.; Zhao, T.; Gai, J. Identifying a wild allele conferring small seed size, high protein content and low oil content using chromosome segment substitution lines in soybean. Theor. Appl. Genet. 2019, 132, 2793–2807. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Liu, S.; Wang, J.; Yokosho, K.; Zhou, B.; Yu, Y.-C.; Liu, Z.; Frommer, W.B.; Ma, J.F.; Chen, L.-Q. Simultaneous changes in seed size, oil content and protein content driven by selection of SWEET homologues during soybean domestication. Natl. Sci. Rev. 2020, 7, 1776–1786. [Google Scholar] [CrossRef] [PubMed]
MetaQTL 1 | MetaQTL Position (cm) | CI2 (cm) | No of QTLs | Left Marker | Right Marker | ||||
---|---|---|---|---|---|---|---|---|---|
Name | Map Position (cm) | Physical Position (bp) | Name | Map Position (cm) | Physical Position (bp) | ||||
METAQTL-OC_1.2 | 41.83 | 41.56–42.1 | 10 | BARC-057643-14873 | 41.58 | 38765880 | BARC-055131-13049 | 42.23 | 40218915 |
METAQTL-OC_2.4 | 117.27 | 116.81–117.74 | 13 | BARC-054149-12354 | 118.34 | 45295687 | Satt274 | 118.62 | 45267222 |
METAQTL-PC_3.1 | 28.08 | 27.72–28.45 | 13 | BARC-016199-02307 | 25.97 | 5664735 | BARC-044085-08610 | 27.18 | 7805399 |
METAQTL-OC_5.4 | 81.41 | 80.95–81.87 | 11 | BARC-020535-04656 | 80.93 | 40294725 | BARC-021775-04203 | 81.93 | 39224723 |
METAQTL-OC_6.2 | 30.46 | 30.32–30.6 | 10 | Satt640 | 29.63 | 4682853 | BARC-018563-02977 | 30.83 | 4789924 |
METAQTL-PC_6.1 | 38.74 | 38.05–39.43 | 15 | Satt281 | 38.9 | 6529270 | BARC-027948-06704 | 40.25 | 6712097 |
METAQTL-PC_6.3 | 109.02 | 108.46–109.58 | 16 | BARC-028441-05872 | 108.33 | 47212988 | Satt307 | 109.96 | 46820834 |
METAQTL-OC_6.4 | 108.54 | 108.52–108.57 | 26 | BARC-010457-00640 | 108.5 | 45851263 | BARC-062515-17881 | 108.55 | 46596066 |
METAQTL-PC_7.2 | 48.46 | 47.94–48.98 | 11 | BARC-048517-10647 | 47.38 | 8461619 | Satt245 | 49.03 | 9357922 |
METAQTL-PC_8.2 | 53.56 | 52.72–54.41 | 16 | BARC-053809-12037 | 52.44 | 10179802 | BARC-013587-01169 | 54.55 | 10563212 |
METAQTL-PC_9.2 | 43.74 | 43.34–44.15 | 15 | BARC-041483-08020 | 43.33 | 32421233 | BARC-050815-09887 | 44.17 | 33502306 |
METAQTL-OC_9.4 | 72.05 | 71.54–72.56 | 12 | BARC-065467-19490 | 71.27 | 44006810 | BARC-008211-00113 | 73.2 | 44329945 |
METAQTL-PC_10.2 | 54.94 | 54.31–55.57 | 14 | BARC-059863-16170 | 54.35 | 9249171 | BARC-055953-13923 | 54.63 | 9887514 |
METAQTL-PC_10.3 | 95.12 | 94.29–95.95 | 11 | BARC-050013-09288 | 94.97 | 44718071 | BARC-029627-06257 | 95.93 | 44695771 |
METAQTL-OC_12.4 | 83.71 | 82.87–84.56 | 10 | BARC-040047-07645 | 82.95 | 35640928 | BARC-017985-02493 | 84.21 | 36147908 |
METAQTL-PC_13.2 | 61.43 | 60.97–61.9 | 10 | Satt335 | 61.05 | 32721481 | BARC-055499-13329 | 61.35 | 32684846 |
METAQTL-PC_13.3 | 71.73 | 71.15–72.32 | 10 | BARC-027502-06598 | 71.11 | 35434883 | BARC-055229-13122 | 71.89 | 35948473 |
METAQTL-OC_13.3 | 73.51 | 72.87–74.15 | 15 | BARC-055229-13122 | 71.89 | 35948473 | BARC-052431-11446 | 74.2 | 36674201 |
METAQTL-OC_14.4 | 62.97 | 62.66–63.29 | 14 | Satt020 | 62.76 | 41294144 | Satt556 | 63.25 | 38859467 |
METAQTL-PC_15.2 | 18.2 | 17.75–18.66 | 14 | BARC-042271-08229 | 19.5 | 3745486 | BARC-042349-08247 | 19.8 | 3985288 |
METAQTL-PC_17.3 | 76.66 | 75.95–77.38 | 13 | BARC-060095-16373 | 75.85 | 27299017 | BARC-019497-03640 | 77.39 | 15462178 |
METAQTL-PC_18.3 | 58.41 | 57.37–59.45 | 10 | Satt138 | 57.08 | 41530961 | BARC-029457-06193 | 59.71 | 48057611 |
METAQTL-OC_19.2 | 47.98 | 47.51–48.46 | 13 | BARC-016181-02303 | 46.51 | 38087635 | BARC-060795-16881 | 48.45 | 39961359 |
METAQTL-PC_20.1 | 19.16 | 18.42–19.9 | 11 | BARC-021887-04232 | 18.51 | 1900702 | BARC-052017-11314 | 19.96 | 2103067 |
METAQTL-OC_20.1 | 19.23 | 18.9–19.56 | 13 | BARC-027552-06609 | 18.91 | 1999670 | BARC-042619-08314 | 19.68 | 2072947 |
METAQTL-OC_20.2 | 29.82 | 29.63–30.01 | 26 | BARC-054889-12193 | 29.6 | 23009963 | BARC-052445-11461 | 30.13 | 28391296 |
METAQTL-PC_20.2 | 29.94 | 29.82–30.06 | 37 | Satt239 | 29.61 | 25275083 | BARC-023131-03782 | 30 | 28349696 |
METAQTL-OC_20.3 | 44.34 | 44.18–44.51 | 17 | BARC-039067-07437 | 44 | 35644777 | BARC-055423-13277 | 44.95 | 36055353 |
METAQTL-PC_20.3 | 45.87 | 45.33–46.41 | 19 | BARC-055423-13277 | 44.95 | 36055353 | BARC-054275-12433 | 46.28 | 49323397 |
METAQTL-OC_20.4 | 75.43 | 74.34–76.53 | 18 | BARC-041051-07902 | 74.61 | 40634800 | BARC-029151-06100 | 76.68 | 41023496 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar, V.; Goyal, V.; Mandlik, R.; Kumawat, S.; Sudhakaran, S.; Padalkar, G.; Rana, N.; Deshmukh, R.; Roy, J.; Sharma, T.R.; et al. Pinpointing Genomic Regions and Candidate Genes Associated with Seed Oil and Protein Content in Soybean through an Integrative Transcriptomic and QTL Meta-Analysis. Cells 2023, 12, 97. https://doi.org/10.3390/cells12010097
Kumar V, Goyal V, Mandlik R, Kumawat S, Sudhakaran S, Padalkar G, Rana N, Deshmukh R, Roy J, Sharma TR, et al. Pinpointing Genomic Regions and Candidate Genes Associated with Seed Oil and Protein Content in Soybean through an Integrative Transcriptomic and QTL Meta-Analysis. Cells. 2023; 12(1):97. https://doi.org/10.3390/cells12010097
Chicago/Turabian StyleKumar, Virender, Vinod Goyal, Rushil Mandlik, Surbhi Kumawat, Sreeja Sudhakaran, Gunashri Padalkar, Nitika Rana, Rupesh Deshmukh, Joy Roy, Tilak Raj Sharma, and et al. 2023. "Pinpointing Genomic Regions and Candidate Genes Associated with Seed Oil and Protein Content in Soybean through an Integrative Transcriptomic and QTL Meta-Analysis" Cells 12, no. 1: 97. https://doi.org/10.3390/cells12010097
APA StyleKumar, V., Goyal, V., Mandlik, R., Kumawat, S., Sudhakaran, S., Padalkar, G., Rana, N., Deshmukh, R., Roy, J., Sharma, T. R., & Sonah, H. (2023). Pinpointing Genomic Regions and Candidate Genes Associated with Seed Oil and Protein Content in Soybean through an Integrative Transcriptomic and QTL Meta-Analysis. Cells, 12(1), 97. https://doi.org/10.3390/cells12010097