Reconstitution of Caruncle Placenta through the 20α-HSD/Casp-3 Apoptotic Pathway during Early Pregnancy in Bovines
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation and Certification of Animals
2.2. Histological Examination of the Endometrial and Caruncle Tissues
2.3. Immunofluorescence Detection
2.4. Immunofluorescence Method for Multicolor Staining of mTOR and VEGF Proteins
2.5. Immunohistochemical Analysis of the Casp-3 Protein
2.6. Non-Immune Controls of Immunolocalization Analysis
2.7. In Situ End Labeling
2.8. Alizarin Red Stain
2.9. Real-Time PCR
2.10. Efficiency of Primers of Real-Time PCR
2.11. Western Blotting
2.12. Statistical Analysis
3. Results
3.1. Morphological Changes in the Uterus and Caruncle during Early Pregnancy
3.2. Expression of Apoptosis-and Survival-Related Genes in Uterine and Caruncle Tissues
3.3. Detection of 20α-HSD Protein in Uterine and Caruncle Tissues
3.4. Expression of mTOR and VEGF Proteins in Caruncle Tissues
3.5. Apoptosis over the Pregnancy Period
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wooding, F.B. Role of binucleate cells in fetomaternal cell fusion at implantation in the sheep. Am. J. Anat. 1984, 170, 233–250. [Google Scholar] [CrossRef] [PubMed]
- Wooding, F.B.; Morgan, G.; Adam, C.L. Structure and function in the ruminant synepitheliochorial placenta: Central role of the trophoblast binucleate cell in deer. Microsc. Res. Tech. 1997, 38, 88–99. [Google Scholar] [CrossRef]
- Roberts, R.M.; Cross, J.C.; Leaman, D.W. Interferons as hormones of pregnancy. Endocr. Rev. 1992, 3, 432–452. [Google Scholar]
- Bromfield, J.J. Review: The potential of seminal fluid mediated paternal–maternal communication to optimize pregnancy success. Animal 2018, 12, s104–s109. [Google Scholar] [CrossRef] [PubMed]
- Murthi, P.; Rajaraman, G.; Brennecke, S.P.; Kalionis, B. The role of placental homeobox genes in human fetal growth restriction. J. Pregnancy 2011, 1, 548171. [Google Scholar] [CrossRef] [PubMed]
- Groebner, A.E.; Schulke, K.; Schefold, J.; Fusch, G.; Sinowatz, F.; Reichenbach, H.; Wolf, E.; Meyer, H.; Ulbrich, S. Immunological mechanisms to establish embryo tolerance in early bovine pregnancy. Reprod. Fertil. Dev. 2011, 23, 619–632. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.H.; Shin, Y.S.; Kang, M.H.; Yoon, J.T.; Min, K.S. Gene expression and localization of 20α-hydroxysteroid dehydrogenase (HSD) in reproductive tissues during early pregnancy of cattle. Anim. Reprod. Sci. 2014, 147, 1–9. [Google Scholar] [CrossRef]
- Simintiras, C.A.; Sánchez, J.M.; McDonald, M.; Lonergan, P. The influence of progesterone on bovine uterine fluid energy, nucleotide, vitamin, cofactor, peptide, and xenobiotic composition during the conceptus elongation-initiation window. Sci. Rep. 2019, 22, 7716. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adams, K.L.; Bazer, F.W.; Roberts, R.M. Progesterone-induced secretion of a retinol-binding protein in the pig uterus. J. Reprod. Fertil. 1981, 62, 39–47. [Google Scholar] [CrossRef] [Green Version]
- Doldo, E.; Costanza, G.; Agostinelli, S.; Tarquini, C.; Ferlosio, A.; Arcuri, G.; Passeri, D.; Scioli, M.G.; Orlandi, A. Vitamin a, cancer treatment and prevention: The new role of cellular retinol binding proteins. Biomed Res. Int. 2015, 2015, 624627. [Google Scholar] [CrossRef] [Green Version]
- Arosh, J.A.; Parent, J.; Chapdelaine, P.; Sirois, J.; Fortier, M.A. Expression of cyclooxygenases 1 and 2 and prostaglandin E synthesis in bovine endometrial tissue during the estrus cycle. Biol. Reprod. 2002, 67, 161–169. [Google Scholar] [CrossRef] [PubMed]
- Northrop-Albrecht, E.J.; Rich, J.J.J.; Cushman, R.A.; Yao, R.; Ge, X.; Perry, G.A. Influence of estradiol on bovine trophectoderm and uterine gene transcripts around maternal recognition of pregnancy. Biol. Reprod. 2021, 105, 381–392. [Google Scholar] [CrossRef] [PubMed]
- Banu, S.K.; Arosh, J.A.; Chapdelaine, P.; Fortier, M.A. Expression of prostaglandin transporter in the bovine uterus and fetal membrane during pregnancy. Biol. Reprod. 2005, 73, 230–236. [Google Scholar] [CrossRef] [PubMed]
- Kamat, M.M.; Vasudevan, S.; Maalouf, S.A.; Townson, D.H.; Pate, J.L.; Ott, T.L. Changes in myeloid lineage cells in the uterus and peripheral blood of dairy heifers during early pregnancy. Biol. Reprod. 2016, 95, 68. [Google Scholar] [CrossRef] [PubMed]
- Vasudevan, S.; Kamat, M.M.; Walusimbi, S.S.; Pate, J.L.; Ott, T.L. Effects of early pregnancy on uterine lymphocytes and endometrial expression of immune-regulatory molecules in dairy heifers. Biol. Reprod. 2017, 97, 104. [Google Scholar] [CrossRef]
- Gonçalves, G.A.; Camargo-Kosugi, C.M.; Bonetti, T.C.; Invitti, A.L.; Girão, M.J.; Silva, I.D.; Schor, E. p27kip1 overexpression regulates VEGF expression, cell proliferation and apoptosis in cell culture from eutopic endometrium of women with endometriosis. Apoptosis 2015, 20, 327–335. [Google Scholar] [CrossRef]
- Han, L.W.; Jiang, W.G. The effect of GnRHa on endometrial stromal cell proliferation and Angiogenesis in endometriosis. Prog. Obstet. Gynecol. 2008, 17, 737–739. [Google Scholar]
- Huang, F.; Wang, H.; Zou, Y.; Liu, Q.; Cao, J.; Yin, T. Effect of GnRH-II on the ESC proliferation, apoptosis and VEGF secretion in patients with endometriosis in vitro. Int. J. Clin. Exp. Pathol. 2013, 6, 2487–2496. [Google Scholar]
- Zhao, Z.Z.; Nyholt, D.R.; Thomas, S.; Treloar, S.A.; Montgomery, G.W. Polymorphisms in the vascular endothelial growth factor gene and the risk of familial endometriosis. Mol. Hum. Reprod. 2008, 14, 531–538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, S.H.; Park, Y.S.; Shin, D.H.; Moon, J.C.; Oh, M.G.; Yoon, J.T. Porcine endometrial 3D co-culture: Morphological changes in 3D endometrium tissues according to hormonal changes. Histol. Histopathol. 2021, 36, 833–844. [Google Scholar] [PubMed]
- Hewitt, S.M.; Baskin, D.G.; Frevert, C.W.; Stahl, W.L.; Rosa-Molinar, E. Controls for immunohistochemistry: The Histochemical Society’s standards of practice for validation of immunohistochemical assays. J. Histochem. Cytochem. 2014, 62, 693–697. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oliveira, L.J.; Mansourri-Attia, N.; Fahey, A.G.; Browne, J.; Forde, N.; Roche, J.F.; Lonergan, P.; Fair, T. Characterization of the Th profile of the bovine endometrium during the oestrous cycle and early pregnancy. PLoS ONE 2013, 8, e75571. [Google Scholar] [CrossRef] [PubMed]
- Rutledge, R.G.; Stewart, D. Critical evaluation of methods used todetermine amplification efficiency refutes the exponential char-acter of real-time PCR. BMC Mol. Biol. 2008, 9, 96. [Google Scholar] [CrossRef] [PubMed]
- Saraiva, K.D.; de Fernandes, M.D.; Morais, V.D.; Vasconcelos, I.M.; Costa, J.H. Selection of suitable soybean EF1α genes as internal controls for real-time PCR analyses of tissues during plant development and under stress conditions. Plant Cell Rep. 2014, 33, 1453–1465. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.H.; Kim, K.L.; Lee, J.H.; Shin, D.H.; Jung, N.H.; Lee, H.J.; Yoon, J.T. Detection of matrix metalloproteinases patterns in bovine luteum cell during pregnancy. J. Embryo Transf. 2018, 33, 61–68. [Google Scholar] [CrossRef]
- Carlson, J.; Kammerer, R.; Teifke, J.P.; Sehl-Ewert, J.; Pfarrer, C.; Meyers, G. A double deletion prevents replication of the pestivirus bovine viral diarrhea virus in the placenta of pregnant heifers. PLoS Pathog. 2021, 17, e1010107. [Google Scholar] [CrossRef]
- Tekin, Ş.; Hansen, P.J. Natural killer-like cells in the sheep: Functional characterization and regulation by pregnancy-associated proteins. Exp. Biol. Med. 2002, 227, 803–811. [Google Scholar] [CrossRef]
- Ott, T.L. Symposium review: Immunological detection of the bovine conceptus during early pregnancy. J. Dairy Sci. 2019, 102, 3766–3777. [Google Scholar] [CrossRef] [Green Version]
- Topaloğlu, U.; Aydın Ketani, M. The distribution of some homeobox proteins in the bovine placenta during gestation. Theriogenology 2021, 166, 71–82. [Google Scholar] [CrossRef]
- Bridger, P.S.; Haupt, S.; Leiser, R.; Johnson, G.A.; Burghardt, R.C.; Tinneberg, H.R.; Pfarrer, C. Integrin Activation in bovine placentomes and in caruncular epithelial cells isolated from pregnant cows. Biol. Reprod. 2008, 79, 274–282. [Google Scholar] [CrossRef] [Green Version]
- Akbalik, M.E.; Ketani, M.A. Expression of epidermal growth factor receptors and epidermal growth factor, amphiregulin and neuregulin in bovine uteroplacental tissues during gestation. Placenta 2013, 34, 1232–1242. [Google Scholar] [CrossRef]
- Oliveira, L.J.; McClellan, S.; Hansen, P.J. Differentiation of the endometrial macrophage during pregnancy in the cow. PLoS ONE 2010, 5, e13213. [Google Scholar] [CrossRef]
- Oliveira, A.G.; Aquino, D.J.; Mahecha, G.A.; Oliveira, C.A. Involvement of the transepithelial calcium transport disruption and the formation of epididymal stones in roosters. Reproduction 2012, 143, 835–844. [Google Scholar] [CrossRef]
- Jayasekara, W.S.; Yonezawa, T.; Ishida, M.; Yamanouchi, K.; Nishihara, M. Expression and possible role of 20-hydroxysteroid dehydrogenase in the placenta of the goat. J. Reprod. Dev. 2005, 51, 265–272. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Nadeau, M.; Faucher, F.; Leschlleur, O.; Biron, S.; Daris, M.; Rheaume, C.; Luu-The, V.; Tchernor, A. Progesterone metabolism in adipose cells. Mol. Cell. Endocrinol. 2009, 198, 76–83. [Google Scholar] [CrossRef] [PubMed]
- Nallasamy, S.; Palacios, H.H.; Setlem, R.; Colon Caraballo, M.; Li, K.; Cao, E.; Shankaran, M.; Hellerstein, M.; Mahendroo, M. Transcriptome and proteome dynamics of cervical remodeling in the mouse during pregnancy. Biol. Reprod. 2021, 105, 1257–1271. [Google Scholar] [CrossRef] [PubMed]
- Green, J.A.; Xie, S.; Quan, X.; Bao, B.; Gan, X.; Mathialagan, N.; Beckers, J.-F.; Roberts, R.M. Pregnancy-associated bovine and ovine glycoproteins exhibit spatially and temporally distinct expression patterns during pregnancy. Biol. Reprod. 2000, 62, 1624–1631. [Google Scholar] [CrossRef]
- Zhang, Y.; Dufort, I.; Rheault, P.; Luu-The, V. Characterization of a human 20-HSD. J. Mol. Endocrinol. 2000, 25, 221–228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bischof, R.J.; Brandon, M.R.; Lee, C.S. Cellular immune responses in the pig uterus during pregnancy. J. Reprod. Immunol. 1995, 29, 161–178. [Google Scholar] [CrossRef] [PubMed]
- Bauersachs, S.; Wolf, E. Uterine responses to the preattachment embryo in domestic ungulates: Recognition of pregnancy and preparation for implantation. Annu. Rev. Anim. Biosci. 2015, 3, 489–511. [Google Scholar] [CrossRef]
- Rancourt, D.E.; Tsuzuki, T.; Capecchi, M.R. Genetic interaction between hoxb-5 and hoxb-6 is revealed by nonallelic noncomplementation. Genes Dev. 1995, 9, 108–122. [Google Scholar] [CrossRef] [PubMed]
Primer Name | Sequence | Gene ID | Annealing Temperature (°C) | Amplification Efficiency (%) | Product Size (bp) |
---|---|---|---|---|---|
Bos 20α-HSD FW | 5′- GCC ATT GCC AAA AAG CAC AAG -3′ | NM_001167660.1 | 60 | 96 | 234 |
Bos 20α-HSD RV | 5′- GGA AAG CGG ATA GTC AGG GTG ATC -3′ | ||||
Bos Casp-3 FW | 5′-AGC CAT GGT GAA GAA GGA ATC A-3′ | NM_001077840.1 | 60 | 97 | 137 |
Bos Casp-3 RV | 5′- CCT CGG CAG GCC TGA ATA AT-3′ | ||||
Bos mTOR FW | 5′-TCT CAT GGG TTT TGG AAC GA-3′ | XM_005216989.1 | 60 | 93 | 111 |
Bos mTOR RV | 5′-TGA GAG CTG TAC CCC AGC AG-3′ | ||||
Bos BCL-2 FW | 5′-GAGTTCGGAGGGGTCATGTG-3′ | NM_001166486.1 | 60 | 94 | 158 |
Bos BCL-2 RV | 5′-GGGCCATACAGCTCCACAAA-3′ | ||||
Bos Bax FW | 5′-GCCCTTTTGCTTCAGGGTTT-3′ | NM_173894.1 | 57 | 96 | 179 |
Bos Bax RV | 5′-ACAGCTGCGATCATCCTCTG-3′ | ||||
Bos P4-r FW | 5′-TGG TTT GAG GCA AAA AGG AG-3′ | NM_001205356.1 | 58 | 94 | 131 |
Bos P4-r RV | 5′-CCC GGG ACT GGA TAA ATG T-3′ | ||||
Bos GAPDH FW | 5′-GAAGGTCGGAGTGAACGGAT-3′ | NM_001034034.2 | 60 | 98 | 180 |
Bos GAPDH RV | 5′-TTCTCTGCCTTGACTGTGCC-3′ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.-H.; Oh, M.-G.; Kim, S.-H. Reconstitution of Caruncle Placenta through the 20α-HSD/Casp-3 Apoptotic Pathway during Early Pregnancy in Bovines. Cells 2023, 12, 162. https://doi.org/10.3390/cells12010162
Lee J-H, Oh M-G, Kim S-H. Reconstitution of Caruncle Placenta through the 20α-HSD/Casp-3 Apoptotic Pathway during Early Pregnancy in Bovines. Cells. 2023; 12(1):162. https://doi.org/10.3390/cells12010162
Chicago/Turabian StyleLee, Ji-Hye, Min-Gee Oh, and Sang-Hwan Kim. 2023. "Reconstitution of Caruncle Placenta through the 20α-HSD/Casp-3 Apoptotic Pathway during Early Pregnancy in Bovines" Cells 12, no. 1: 162. https://doi.org/10.3390/cells12010162
APA StyleLee, J.-H., Oh, M.-G., & Kim, S.-H. (2023). Reconstitution of Caruncle Placenta through the 20α-HSD/Casp-3 Apoptotic Pathway during Early Pregnancy in Bovines. Cells, 12(1), 162. https://doi.org/10.3390/cells12010162