The Apelinergic System: Apelin, ELABELA, and APJ Action on Cell Apoptosis: Anti-Apoptotic or Pro-Apoptotic Effect?
Abstract
:1. Introduction
2. Structure and Expression of the Apelinergic System
2.1. Apelin
2.2. ELABELA
3. Pleiotropic Function of the Apelinergic System
3.1. Apelin
3.2. ELABELA
4. APJ Receptor: Structure and Function
4.1. Nervous System
4.2. Cardiovascular System
4.3. Haematopoietic System
4.4. Skeletal System
4.5. Respiratory System
4.6. Digestive System
4.7. Reproductive System
4.8. Urinary System
4.9. Other Tissues and Cells
5. Anti-Apoptotic Effect of ELABELA
6. Pro-Apoptotic Effect of Apelinergic System
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hongmei, Z. Extrinsic and Intrinsic Apoptosis Signal Pathway Review. In Apoptosis and Medicine; Ntuli, T., Ed.; IntechOpen: London, UK, 2012; pp. 3–22. [Google Scholar] [CrossRef] [Green Version]
- Arends, M.J.; Wyllie, A.H. Apoptosis: Mechanisms and Roles in Pathology. Int. Rev. Exp. Pathol. 1991, 32, 223–254. [Google Scholar] [CrossRef] [PubMed]
- Gourgue, F.; Mignion, L.; Van Hul, M.; Dehaen, N.; Bastien, E.; Payen, V.; Leroy, B.; Joudiou, N.; Vertommen, D.; Bouzin, C.; et al. Obesity and triple-negative-breast-cancer: Is apelin a new key target? J. Cell Mol. Med. 2020, 24, 10233–10244. [Google Scholar] [CrossRef] [PubMed]
- Janssens, P.; Decuypere, J.P.; Bammens, B.; Llorens-Cortes, C.; Vennekens, R.; Mekahli, D. The emerging role of the apelinergic system in kidney physiology and disease. Nephrol. Dial. Transplant. 2022, 37, 2314–2326. [Google Scholar] [CrossRef]
- Falcao-Pires, I.; Ladeiras-Lopes, R.; Leite-Moreira, A.F. The apelinergic system: A promising therapeutic target. Expert Opin. Ther. Targets 2010, 6, 633–645. [Google Scholar] [CrossRef] [PubMed]
- Knezevic, Z.; Wellbrock, J.; Fuchs, F.; Vohwinkel, G.; Matzat, A.; Fiedler, W. Expression of the apelinergic system and influence on functional properties of tumor cells. Genet. Appl. 2021, 5, 26–39. [Google Scholar] [CrossRef]
- Tatemoto, K.; Hosoya, M.; Habata, Y.; Fujii, R.; Kakegawa, T.; Zou, M.X.; Kawamata, Y.; Fukusumi, S.; Hinuma, S.; Kitada, C.; et al. Isolation and characterization of a novel endogenous peptide ligand for the human APJ receptor. Biochem. Biophys. Res. Commun. 1998, 251, 471–476. [Google Scholar] [CrossRef]
- Lee, D.K.; Ferguson, S.S.; George, S.R.; O’Dowd, B. The fate of the internalized apelin receptor is determined by different isoforms of apelin mediating differential interaction with beta-arrestin. Biochem. Biophys. Res. Commun. 2010, 395, 185–189. [Google Scholar] [CrossRef]
- Habata, Y.; Fujii, R.; Hosoya, M.; Fukusumi, S.; Kawamata, Y.; Hinuma, S.; Kitada, C.; Nishizawa, N.; Murosaki, S.; Kurokawa, T.; et al. Apelin, the natural ligand of the orphan receptor APJ, is abundantly secreted in the colostrum. Biochim. Biophys. Acta 1999, 1452, 25–35. [Google Scholar] [CrossRef] [Green Version]
- O’Carroll, A.M.; Lolait, S.J.; Harris, L.E.; Pope, G.R. The apelin receptor APJ: Journey from an orphan to a multifaceted regulator of homeostasis. J. Endocrinol. 2013, 219, 13–35. [Google Scholar] [CrossRef]
- Chng, S.C.; Ho, L.; Tian, J.; Reversade, B. ELABELA: A hormone essential for heart development signals via the apelin receptor. Dev. Cell 2013, 27, 672–680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kawamata, Y.; Habata, Y.; Fukusumi, S.; Hosoya, M.; Fujii, R.; Hinuma, S.; Nishizawa, N.; Kitada, C.; Onda, H.; Nishimura, O. Molecular properties of apelin: Tissue distribution and receptor binding. Biochim. Biophys. Acta 2001, 2–3, 162–171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Mota, N.; Goazigo, A.; El Messari, S.; Chartel, N.; Roesch, D.; Dujardin, C.; Kordon, C.; Vaudry, H.; Moos, F.; Llorens-Cortes, C. Apelin, a potent diuretic neuropeptide counteracting vasopressin actions through inhibition of vasopressin neuron activity and vasopressin release. Proc. Natl. Acad. Sci. USA 2004, 101, 10464–10469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamaleyeva, L.M.; Chappell, M.C.; Brosnihan, B.; Anton, L.; Caudell, D.L.; Shi, S.; McGee, C.; Pirro, N.; Hallagher, P.E.; Taylor, R.N.; et al. Downregulation of apelin in the human placental chorionic villi from preeclamptic pregnancies. Am. J. Physiol. Endocrinol. Metab. 2015, 10, E852–E860. [Google Scholar] [CrossRef] [Green Version]
- Boucher, J.; Masri, B.; Daviaud, D.; Gesta, S.; Guigné, C.; Mazzucotelli, A.; Castan-Laurell, I.; Tack, I.; Knibiehler, B.; Carpéné, C.; et al. Apelin, a newly identified adipokine up-regulated by insulin and obesity. Endocrinology 2005, 146, 1764–1771. [Google Scholar] [CrossRef]
- Raux, A.; De Mota, N.; Skultetyova, I.; Lenkei, Z.; El Messari, S.; Gallatz, K.; Corvol, P.; Palkovits, M.; Llorens-Cortes, C. Physiological role of a novel neuropeptide, apelin, and its receptor in the rat brain. J. Neurochem. 2001, 77, 1085–1096. [Google Scholar] [CrossRef]
- Azizi, M.; Iturrioz, X.; Blanchard, A.; Peyrard, S.; De Mota, N.; Chartrel, N.; Vaudry, H.; Corvol, P.; Llorens-Cortes, C. Reciprocal regulation of plasma apelin and vasopressin by osmotic stimuli. J. Am. Soc. Nephrol. 2008, 19, 1015–1024. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heinonen, M.V.; Purhonen, A.K.; Miettinen, P.; Pääkkönen, M.; Pirinen, E.; Alhava, E.; Akerman, K.; Herzig, K.H. Apelin, orexin-A and leptin plasma levels in morbid obesity and effect of gastric banding. Regul. Pept. 2005, 130, 7–13. [Google Scholar] [CrossRef]
- Xu, S.; Philip, S.T.; Yue, P. Apelin and insulin resistance: Another arrow for the quiver? Diabetes 2011, 3, 225–231. [Google Scholar] [CrossRef]
- Masri, B.; Lahlou, H.; Mazarguil, H.; Knibiehler, B.; Audigier, Y. Apelin (65–77) Activates Extracellular Signal–Regulated Kinases via a PTX-Sensitive G Protein. Biochem. Biophys. Res. Commun. 2002, 290, 539–545. [Google Scholar] [CrossRef]
- Davenport, A.P.; Alexander, S.P.; Sharman, J.L.; Pawson, A.J.; Benson, H.E.; Monaghan, A.E.; Liew, W.C.; Mpamhanga, C.P.; Bonner, T.I.; Neubig, R.; et al. International Union of Basic and Clinical Pharmacology. LXXXVIII. G protein-coupled receptor list: Recommendations for new pairings with cognate ligands. Pharmacol. Rev. 2013, 65, 967–986. [Google Scholar] [CrossRef] [Green Version]
- Couvineau, P.; Llorens-Cortes, C.; Iturrioz, X. Elabela/Toddler and apelin bind differently to the apelin receptor. FASEB J. 2020, 34, 7989–8000. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deng, C.; Chen, H.; Yang, N.; Feng, Y.; Hsueh, A.J.W. Apela regulates fluid homeostasis by binding to the APJ receptor to activate Gi signaling. J. Biol. Chem. 2015, 290, 18261–18268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, S.K.; Shin, K.; Sarker, M.; Rainey, J.K. Apela exhibits isoform- and headgroup-dependent modulation of micelle binding, peptide conformation and dynamics. Biochim. Biophys. Acta Biomembr. 2017, 5, 767–778. [Google Scholar] [CrossRef] [PubMed]
- Pauli, A.; Norris, M.L.; Valen, E.; Chew, G.L.; Gagnon, J.A.; Zimmerman, S.; Mitchell, A.; Ma, J.; Dubrulle, J.; Reyon, D.; et al. Toddler: An embryonic signal that promotes cell movement via Apelin receptors. Science 2014, 343, 6172–6183. [Google Scholar] [CrossRef] [PubMed]
- Yang, P.; Read, C.; Kuc, R.E.; Buoninocntri, G.; Southwood, M.; Torella, R.; Upton, P.D.; Crosby, A.; Sawiak, S.J.; Carpenter, T.A. Elabela/Toddler is an endogenous agonist of the apelin APJ receptor in the adult cardiovascular system, and exogenous administration of the peptide compensates for the downregulation of its expression in pulmonary arterial hypertension. Circulation 2017, 135, 1160–1173. [Google Scholar] [CrossRef] [PubMed]
- Ho, L.; Tan, S.Y.X.; Wee, S.; Wu, Y.; Tan, S.J.C.; Ramakrishna, N.B.; Chng, S.C.; Nama, S.; Szczerbińska, I.; Chan, Y.S.; et al. ELABELA is an endogenous growth factor that sustains hESC self-renewal via the PI3K/AKT pathway. Cell Stem Cell 2015, 17, 435–447. [Google Scholar] [CrossRef] [Green Version]
- Murza, A.; Sainsily, X.; Coquerel, D.; Cote, J.; Marx, P.; Besserer-Offroy, E.; Longpre, J.M.; Laine, J.; Reversade, B.; Salvail, D.; et al. Discovery and structure-activity relationship of a bioactive fragment of ELABELA that modulates vascular and cardiac functions. J. Med. Chem. 2016, 59, 2962–2972. [Google Scholar] [CrossRef]
- Winzell, M.S.; Magnusson, C.; Ahrén, B. The apj receptor is expressed in pancreatic islets and its ligand, apelin, inhibits insulin secretion in mice. Regul. Pept. 2005, 131, 12–17. [Google Scholar] [CrossRef] [Green Version]
- Krist, J.; Wieder, K.; Kloting, N.; Oberbach, A.; Kralisch, S.; Wiesner, T.; Schon, M.R.; Gartner, D.; Dietrich, A.; Shang, E. Exercise on Apelin Serum Concentrations and Adipose Tissue Expression in Human Obesity. Obes. Facts 2013, 6, 57–69. [Google Scholar] [CrossRef]
- Yue, P.; Jin, H.; Xu, S.; Aillaud, M.; Deng, A.C.; Azuma, J.; Kundu, R.K.; Reaven, G.M.; Quertermous, T.; Tsao, P.S. Apelin decreases lipolysis via G(q), G(i), and AMPK-Dependent Mechanisms. Endocrinology 2011, 152, 59–68. [Google Scholar] [CrossRef] [Green Version]
- Cox, C.M.; D’Agostino, S.L.; Miller, M.K.; Heimark, R.L.; Krieg, P.A. Apelin, the ligand for the endothelial G-protein-coupled receptor, APJ, is a potent angiogenic factor required for normal vascular development of the frog embryo. Dev. Biol. 2006, 296, 177–189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, L.; Jialong, Y.; Weinan, P.; Mengjie, T. Apelin/Elabela-APJ: A novel therapeutic target in the cardiovascular system. Ann. Transl. Med. 2020, 8, 243–251. [Google Scholar] [CrossRef]
- Kidoya, H.; Takakura, N. Biology of the apelin-APJ axis in vascular formation. J. Biochem. 2012, 152, 125–131. [Google Scholar] [CrossRef] [PubMed]
- Kalin, R.E.; Kretz, M.P.; Meyer, A.M.; Kispert, A.; Heppner, F.L.; Brandli, A.W. Paracrine and autocrine mechanisms of apelin signaling govern embryonic and tumor angiogenesis. Dev. Biol. 2007, 305, 599–614. [Google Scholar] [CrossRef] [Green Version]
- Neelakantan, D.; Dogra, S.; Devapatla, B.; Jaiprasart, P.; Mukashyaka, M.C.; Janknecht, R.; Dwivedi, S.K.D.; Bhattacharya, R.; Husain, S.; Ding, K.; et al. Multifunctional APJ Pathway Promotes Ovarian Cancer Progression and Metastasis. Mol. Cancer Res. 2019, 17, 1378–1390. [Google Scholar] [CrossRef] [Green Version]
- Berta, J.; Hoda, M.A.; Laszlo, V.; Rozsas, A.; Garay, T.; Torok, S.; Grusch, M.; Berger, W.; Paku, S.; Renyi-Vamos, F.; et al. Apelin promotes lymphangiogenesis and lymph node metastasis. Oncotarget 2014, 30, 4426–4437. [Google Scholar] [CrossRef] [Green Version]
- Soliman, M.; Arafah, M. Apelin protect against multiple organ injury following hemorrhagic shock and decrease the inflammatory response. Int. J. Appl. Basic Med. Res. 2015, 5, 195–199. [Google Scholar] [CrossRef] [Green Version]
- Than, A.; Zhang, X.; Leow, M.K.; Poh, C.L.; Chong, S.K.; Chen, P. Apelin attenuates oxidative stress in human adipocytes. J. Biol. Chem. 2014, 289, 3763–3774. [Google Scholar] [CrossRef] [Green Version]
- Taheri, S.; Murphy, K.; Cohen, M.; Sujkovic, E.; Kennedy, A.; Dhillo, W.; Dakin, C.; Sajedi, A.; Ghatei, M.; Bloom, S. The effects of centrally administered apelin-13 on food intake, water intake and pituitary hormone release in rats. Biochem. Biophys. Res. Commun. 2002, 291, 1208–1212. [Google Scholar] [CrossRef]
- Roche, J.; Ramé, C.; Reverchon, M.; Mellouk, N.; Cornuau, M.; Guerif, F.; Froment, P.; Dupont, J. Apelin (APLN) and Apelin Receptor (APLNR) in Human Ovary: Expression, Signaling, and Regulation of Steroidogenesis in Primary Human Luteinized Granulosa Cells. Biol. Reprod. 2016, 95, 104–110. [Google Scholar] [CrossRef]
- Rak, A.; Drwal, E.; Rame, C.; Knapczyk-Stwora, K.; Słomczyńska, M.; Dupont, J.; Gregoraszczuk, E.L. Expression of apelin and apelin receptor (APJ) in porcine ovarian follicles and in vitro effect of apelin on steroidogenesis and proliferation through APJ activation and different signaling pathways. Theriogenology 2017, 96, 126–135. [Google Scholar] [CrossRef] [PubMed]
- Shuang, L.; Jidong, W.; Hongjuan, P.; Zhenwei, Y. Effects of apelin on proliferation and apoptosis in rat ovarian granulosa cells. Clin. Exp. Obstet. Gynecol. 2016, 43, 409–413. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, Y.; Lou, Y.; Luo, M.; Lu, Y.; Li, Z.; Wang, Y.; Miao, L. Elabela, a newly discovered APJ ligand: Similarities and differences with Apelin. Peptides 2018, 109, 23–32. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Y.; Luo, M.; Xu, F.; Lu, Y.; Zhou, X.; Cui, W.; Miao, L. Elabela protects against podocyte injury in mice with streptozocin- induced diabetes by associating with the PI3K/Akt/mTOR pathway. Peptides 2019, 114, 29–37. [Google Scholar] [CrossRef]
- Wang, Z.; Yu, D.; Wang, M.; Wang, Q.; Kouznetsova, J.; Yang, R.; Qian, K.; Wu, W.; Shuldiner, A.; Sztarlyd, A.; et al. Elabela-apelin receptor signaling pathway is functional in mammalian systems. Sci. Rep. 2015, 5, 8170. [Google Scholar] [CrossRef] [Green Version]
- Perjés, Á.; Kilpiö, T.; Ulvila, J.; Magga, J.; Alakoski, T.; Szabo, Z.; Vainio, L.; Halmetoja, E.; Vuolteenaho, O.; Petaja-Repo, U.; et al. Characterization of apela, a novel endogenous ligand of apelin receptor, in the adult heart. Basic Res. Cardiol. 2016, 2, 111–124. [Google Scholar] [CrossRef]
- Sato, T.; Sato, C.; Kadowaki, A.; Watanabe, H.; Ho, L.; Ishida, J.; Yamagucji, T.; Kimura, A.; Fukamizu, J.M.; Reversade, B.; et al. ELABELA-APJ axis protects from pressure overload heart failure and angiotensin II-induced cardiac damage. Cardiovasc. Res. 2017, 113, 760–769. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geng, Z.; Ye, C.; Tong, Y.; Zhang, F.; Zhou, Y.B.; Xiong, X.Q. Exacerbated pressor and sympathoexcitatory effects of central Elabela in spontaneously hypertensive rats. Am. J. Physiol. Heart Circ. Physiol. 2020, 318, H124–H134. [Google Scholar] [CrossRef] [PubMed]
- Santoso, P.; Maejima, Y.; Kumamoto, K.; Takenoshita, S.; Shimomura, K. Central action of ELABELA reduces food intake and activates arginine vasopressin and corticotropin-releasing hormone neurons in the hypothalamic paraventricular nucleus. NeuroReport 2015, 26, 820–826. [Google Scholar] [CrossRef]
- Perez-Camps, M.; Tian, J.; Chng, S.C.; Sem, K.P.; Sudhaharan, T.; Teh, C.; Wachsmuth, M.; Korzh, V.; Ahmed, S.; Reversade, B. Quantitative imaging reveals real-time Pou5f3-Nanog complexes driving dorsoventral mesendoderm pattering in zebrafish. Elife 2016, 5, e11475. [Google Scholar] [CrossRef]
- O’Dowd, B.F.; Heiber, M.; Chan, A.; Heng, H.Q.; Tsui, L.C.; Kennedy, J.L.; Shi, X.; Petronis, A.; George, S.R.; Nguyen, T. A human gene that shows identity with the gene encoding the angiotensin receptor is located on chromosome 1. Gene 1993, 136, 355–360. [Google Scholar] [CrossRef]
- Huynh, J.; Thomas, W.G.; Aguilar, M.I.; Pattenden, L.K. Role of helix 8 in G protein-coupled receptors based on structure–function studies on the type 1 angiotensin receptor. Mol. Cell Endocrinol. 2009, 302, 118–127. [Google Scholar] [CrossRef] [PubMed]
- Devic, E.; Rizzoti, K.; Bodin, S.; Knibiehler, B.; Audigier, Y. Amino acid sequence and embryonic expression of msr/apj, the mouse homolog of Xenopus X-msr and human APJ. Mech. Dev. 1999, 84, 199–203. [Google Scholar] [CrossRef] [PubMed]
- Zou, M.X.; Liu, H.Y.; Haraguchi, Y.; Soda, Y.; Tatemoto, K.; Hoshino, H. Apelin peptides block the entry of human immunodeficiency virus (HIV). FEBS Lett. 2000, 473, 15–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maguire, J.J.; Kleinz, M.J.; Pitkin, S.L.; Davenport, A.P. [Pyr1]apelin-13 identified as the predominant apelin isoform in the human heart: Vasoactive mechanisms and inotropic actionin disease. Hypertension 2009, 54, 598–604. [Google Scholar] [CrossRef] [Green Version]
- Szokodi, I.; Tavi, P.; Foldes, G.; Voutilainen-Myllyla, S.; Ilves, M.; Tokola, H.; Pikkarainen, S.; Piuhola, J.; Rysa, J.; Toth, M.; et al. Apelin, the novel endogenous ligand of the orphan receptor APJ, regulates cardiac contractility. Circ. Res. 2002, 91, 434–440. [Google Scholar] [CrossRef] [Green Version]
- Zhou, N.; Fan, X.; Mukhtar, M.; Fang, J.; Patel, C.; Dubois, G.C.; Pomerantz, R.J. Cell-cell fusion and internalization of the CNS-based, HIV-1 co-receptor, APJ. Virology 2003, 307, 22–36. [Google Scholar] [CrossRef] [Green Version]
- Choe, W.; Albright, A.; Sulcove, J.; Jaffer, S.; Hesselgesser, J.; Lavi, E.; Crino, P.; Kolson, D.L. Functional expression of the seven–Transmembrane HIV-1 co-receptor APJ in neural cells. J. NeuroVirol. 2000, 6, S61–S69. [Google Scholar] [PubMed]
- Masri, B.; Morin, N.; Cornu, M.; Knibiehler, B.; Audigier, Y. Apelin (65-77) activates p70 S6 kinase and is mitogenic for umbilical endothelial cells. FASEB J. 2004, 18, 1909–1911. [Google Scholar] [CrossRef]
- Dawid, M.; Mlyczynska, E.; Kurowska, P.; Sierpowski, M.; Rak, A. Apelin decreased placental hormone secretion by human trophoblast BeWo cells via apelin receptor, protein kinase A and extracellular signal-regulated kinases 1/2 activation. J. Physiol. Pharmacol. 2019, 70, 895–907. [Google Scholar] [CrossRef]
- Song, J.J.; Yang, M.; Liu, Y.; Song, J.W.; Liu, X.Y.; Miao, R.; Zhang, Z.Z.; Liu, Y.; Fan, F.; Zhang, Y.; et al. Elabela prevents angiotensin II-induced apoptosis and inflammation in rat aortic adventitial fibroblasts via the activation of FGF21–ACE2 signaling. J. Mol. Histol. 2021, 52, 905–918. [Google Scholar] [CrossRef] [PubMed]
- Mlyczyńska, E.; Kurowska, P.; Drwal, E.; Opydo-Chanek, M.; Tworzydło, W.; Kotula-Balak, M.; Rak, A. Apelin and apelin receptor in human placenta: Expression, signalling pathway and regulation of trophoblast JEG-3 and BeWo cells proliferation and cell cycle. Int. J. Mol. Med. 2020, 45, 691–702. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mlyczyńska, E.; Myszka, M.; Kurowska, P.; Dawid, M.; Milewicz, T.; Bałajewicz-Nowak, M.; Kowalczyk, P.; Rak, A. Anti-apoptotic effect of apelin in human placenta: Studies on BeWo cells and villous explants from third-trimester human pregnancy. Int. J. Mol. Sci. 2021, 22, 2760. [Google Scholar] [CrossRef] [PubMed]
- Zeng, X.; Yu, S.P.; Taylor, T.; Ogle, M.; Wei, L. Protective effect of apelin on cultured rat bone marrow mesenchymal stem cells against apoptosis. Stem Cell Res. 2012, 8, 357–367. [Google Scholar] [CrossRef] [Green Version]
- Zeng, X.J.; Yub, S.P.; Zhanga, L.; Weib, L. Neuroprotective effect of the endogenous neural peptide apelin in cultured mouse cortical neurons. Exp. Cell Res. 2010, 316, 1773–1783. [Google Scholar] [CrossRef] [Green Version]
- Gu, Q.; Zhai, L.; Feng, X.; Chen, J.; Miao, Z.; Ren, L.; Qian, X.; Yu, J.; Li, Y.; Xu, X.; et al. Apelin-36, a potent peptide, protects against ischemic brain injury by activating the PI3K/Akt pathway. Neurochem. Int. 2013, 63, 535–540. [Google Scholar] [CrossRef]
- Chen, P.; Wang, Y.; Chen, L.; Song, N.; Xie, J. Apelin-13 Protects Dopaminergic Neurons against Rotenone—Induced Neurotoxicity through the AMPK/mTOR/ULK-1 Mediated Autophagy Activation. Int. J. Mol. Sci. 2020, 21, 8376. [Google Scholar] [CrossRef]
- Jiang, Y.; Liu, H.; Ji, B.; Wang, Z.; Wang, Z.; Yang, C.; Pan, Y.; Chen, J.; Chen, B.; Bai, B. Apelin-13 attenuates ER stress-associated apoptosis induced by MPP+ in SH-SY5Y cells. Int. J. Mol. Med. 2018, 42, 1732–1740. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Wang, Y.; Shan, M.; Chen, J.; Wang, H.; Sun, B.; Jin, C.; Li, X.; Yin, Y.; Song, C.; et al. Apelin receptor homodimer inhibits apoptosis in vascular dementia. Exp. Cell Res. 2021, 407, 112–122. [Google Scholar] [CrossRef]
- Xu, J.; Li, T.; Gao, L.; Zheng, J.; Yan, J.; Zhang, J.; Shao, A. Apelin-13/APJ system attenuates early brain injury via suppression of endoplasmic reticulum stress-associated TXNIP/NLRP3 inflammasome activation and oxidative stress in a AMPK-dependent manner after subarachnoid hemorrhage in rats. J. Neuroinflam. 2019, 16, 247. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, T.; Wang, Y.; Wu, P.; Li, Y.; Wang, C.; Xu, S.; Shi, H. Apelin-13 attenuates early brain injury following subarachnoid hemorrhage via suppressing neuronal apoptosis through the GLP-1R/PI3K/Akt signaling. Biochem. Biophys. Res. Commun. 2019, 513, 105–111. [Google Scholar] [CrossRef] [PubMed]
- Bao, H.; Yang, X.; Huang, Y.; Qiu, H.; Huang, G.; Xiao, H.; Kuai, J. The neuroprotective effect of apelin-13 in a mouse model of intracerebral hemorrhage. Neurosci. Lett. 2016, 628, 219–224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, F.; Qiub, J.; Fanb, Y.; Zhang, Q.; Cheng, B.; Wue, Y.; Bai, B. Apelin-13 attenuates ER stress-mediated neuronal apoptosis by activating Gαi/Gαq-CK2 signaling in ischemic stroke. Exp. Neurol. 2018, 302, 136–144. [Google Scholar] [CrossRef] [PubMed]
- Khaksari, M.; Aboutaleb, N.; Nasirinezhad, F.; Vakili, A.; Madjd, Z. Apelin-13 Protects the Brain Against Ischemic Reperfusion Injury and Cerebral Edema in a Transient Model of Focal Cerebral Ischemia. J. Mol. Neurosci. 2012, 48, 201–208. [Google Scholar] [CrossRef]
- Yang, Y.; Zhanga, X.; Cuia, H.; Zhanga, C.; Zhua, C.; Li, L. Apelin-13 protects the brain against ischemia/reperfusion injurythrough activating PI3K/Akt and ERK1/2 signaling pathways. Neurosci. Lett. 2014, 568, 44–49. [Google Scholar] [CrossRef]
- Yang, Y.; Zhanga, X.; Lid, L.; Cuia, H.; Zhanga, C.; Zhua, C.; Miaoa, J. Apelin-13 protects against apoptosis by activating AMP-activatedprotein kinase pathway in ischemia stroke. Peptides 2016, 75, 96–100. [Google Scholar] [CrossRef]
- Zhu, J.; Gao, W.; Shan, X.; Wang, C.; Wang, H.; Shao, Z.; Dou, S. Apelin-36 mediates neuroprotective effects by regulating oxidative stress, autophagy, and apoptosis in MPTP-induced Parkinson’s Disease model mice. Brain Res. 2020, 1726, 146493. [Google Scholar] [CrossRef]
- Foroughi, K.; Khaksari, M.; Rahmati, M.; Bitaraf, F.S.; Shayannia, A. Apelin-13 Protects PC12 Cells Against Methamphetamine-Induced Oxidative Stress, Autophagy and Apoptosis. Neurochem. Res. 2019, 47, 2103–2112. [Google Scholar] [CrossRef]
- Zou, Y.; Wang, B.; Zhou, S.; Nie, Y.; Tian, S. Apelin-13 Protects PC12 Cells from Corticosterone-Induced Apoptosis Through PI3K and ERKs Activation. Neurochem. Res. 2016, 41, 1635–1644. [Google Scholar] [CrossRef]
- Aminyavari, S.; Zahmatkesh, M.; Farahmandfar, M.; Khodagholi, F.; Dargahi, L.; Zarrindast, M.R. Protective role of Apelin-13 on amyloid β25–35-induced memory deficit; Involvement of autophagy and apoptosis process. Prog. Neuropsychopharmacol. Biol. Psychiatry 2019, 89, 322–334. [Google Scholar] [CrossRef]
- Dong, H.; Dong, B.; Zhang, N.; Liu, S.; Zhao, H. microRNA-182 Negatively Influences the Neuroprotective Effect of Apelin Against Neuronal Injury in Epilepsy. Neuropsychiatr. Dis. Treat. 2020, 16, 327–338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeng, X.J.; Zhang, L.K.; Wang, H.; Lu, L.Q.; Ma, L.Q.; Tang, C. Apelin protects heart against ischemia/reperfusion injury in rat. Peptides 2009, 30, 1144–1152. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Bo, Y.U.; Tao, G.Z. Apelin protects against cardiomyocyte apoptosis induced by glucose deprivation. Chin. Med. J. 2009, 122, 2360–2365. [Google Scholar] [PubMed]
- Ouyang, Q.; You, T.; Guo, J.; Xu, R.; Guo, Q.; Lin, J.; Zhao, H. Effects of Apelin on Left Ventricular-Arterial Coupling and Mechanical Efficiency in Rats with Ischemic Heart Failure. Dis. Markers 2019, 2019, 4823156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ustunela, I.; Acara, N.; Gemicib, B.; Ozbeya, O.; Edizera, I.; Soylua, H.; Tepekoya, F.; Izgut-Uysal, V.N. The effects of water immersion and restraint stress on the expressionsof apelin, apelin receptor (APJR) and apoptosis rate in the rat heart. Acta Histochem. 2014, 116, 675–681. [Google Scholar] [CrossRef]
- Tao, J.; Zhu, W.; Li, Y.; Xin, P.; Li, J.; Liu, M.; Li, J.; Redington, A.N.; Wei, M. Apelin-13 protects the heart against ischemia-reperfusion injury through inhibition of ER dependent apoptotic pathways in a time-dependent fashion. Am. J. Physiol. Heart Circ. Physiol. 2011, 301, H1471–H1486. [Google Scholar] [CrossRef]
- Li, L.; Zeng, H.; Chen, J.X. Apelin-13 increases myocardial progenitor cells and improves repair postmyocardial infarction. Am. J. Physiol. Heart Circ. Physiol. 2012, 303, H605–H618. [Google Scholar] [CrossRef]
- Boal, F.; Timotin, A.; Roumegoux, J.; Alfarano, C.; Calise, D.; Anesia, R.; Parini, A.; Valet, P.; Tronchere, H.; Kunduzova, O. Apelin-13 administration protects against ischaemia/reperfusion-mediated apoptosis through the FoxO1 pathway in high-fat diet-induced obesity. Br. J. Pharmacol. 2016, 173, 1850–1863. [Google Scholar] [CrossRef] [Green Version]
- Sujin, K.; Suji, K.; Ae-Rang, H.; Chul, C.C.; Ji-Yun, L.; Chang-Hoon, W. Apelin-13 Inhibits Methylglyoxal-Induced Unfolded Protein Responses and Endothelial Dysfunction via Regulating AMPK Pathway. Int. J. Mol. Sci. 2020, 21, 4069. [Google Scholar] [CrossRef]
- Xie, H.; Yuan, L.; Luo, X.; Huang, J.; Cui, R.; Guo, L.; Zhou, H.; Wu, X.; Liao, E. Apelin suppresses apoptosis of human osteoblasts. Apoptosis 2007, 12, 247–254. [Google Scholar] [CrossRef]
- Fu, J.; Chen, X.; Liu, X.; Xu, D.; Yang, H.; Zeng, C.; Long, H.; Zhou, C.; Wu, H.; Zheng, G.; et al. ELABELA ameliorates hypoxic/ischemic-induced bone mesenchymal stem cell apoptosis via alleviation of mitochondrial dysfunction and activation of PI3K/AKT and ERK1/2 pathways. Stem Cell Res. Ther. 2020, 11, 541. [Google Scholar] [CrossRef] [PubMed]
- Tang, S.; Xie, H.; Yuan, L.; Luo, X.; Huang, J.; Cui, R.; Zhou, H.; Wu, X.P.; Liao, E. Apelin stimulates proliferation and suppresses apoptosis of mouse osteoblastic cell line MC3T3-E1 via JNK and PI3-K/Akt signaling pathways. Peptides 2007, 28, 708–718. [Google Scholar] [CrossRef] [PubMed]
- He, Q.; Wang, Y.; Yang, H.; Wang, J.; Zhang, J.; Liu, D. Apelin 36 protects against lipopolysaccharide induced acute lung injury by inhibiting the ASK1/MAPK signaling pathway. Mol. Med. Rep. 2021, 23, 6–15. [Google Scholar] [CrossRef]
- Zhang, L.; Su, X.; Wang, Y.; Fang, R.; Guo, Y.; Jin, T.; Shan, H.; Zhao, X.; Yang, R.; Shan, H.; et al. Melatonin prevents lung injury by regulating apelin 13 to improve mitochondrial dysfunction. Exp. Mol. Med. 2019, 51, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Antushevich, H.; Krawczynska, A.; Kapica, M.; Herman, A.P.; Zabielski, R. Effect of apelin on mitosis, apoptosis and DNA repair enzyme OGG 1/2 expression in intestinal cell lines IEC-6 and Caco-2. Folia Histochem. Cytobiol. 2014, 52, 51–59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Antushevich, H.; Pawlina, B.; Kapica, M.; Krawczynska, A.; Herman, A.P.; Kuwahara, A.; Kato, I.; Zabielski, R. Influence of fundectomyand intraperitoneal or intragastric administration of apelin on apoptosis, mitosis, and DNA repair enzyme OGG1.2 expression in adult rats gastrointestinal tract and pancreas. J. Physiol. Pharmacol. 2013, 64, 423–428. [Google Scholar] [PubMed]
- Ma, M.; Haoyue, H.; Lin, M.; Chen, L.; Li, H.; Quan, S. ELABELA alleviates syncytiotrophoblast hypoxia/reoxygenation injury and preeclampsia-like symptoms in mice by reducing apoptosis. Placenta 2021, 106, 30–39. [Google Scholar] [CrossRef]
- Vinel, C.; Schanstra, J.P.; Boizard, F.; Péreira, O.; Auriau, J.; Dortignac, A.; Breuil, B.; Feuillet, G.; Nkuipou-Kenfack, E.; Zürbig, P.; et al. Apelin affects the mouse aging urinary peptidome with minimal effects on kidney. Sci. Rep. 2019, 9, 10647. [Google Scholar] [CrossRef] [Green Version]
- Müller, T.; Kalea, A.Z.; Marquez, A.; Hsieh, I.; Haque, S.; Ye, M.; Wysocki, J.; Bader, M.; Batlle, D. Apelinergic system in the kidney: Implications for diabetic kidney disease. Physiol. Rep. 2018, 23, e13939. [Google Scholar] [CrossRef]
- Ho, L.; Dijk, M.; Chye, S.T.J.; Messerschmidt, D.M.; Chng, S.C.; Ong, S.; Yi, L.; Boussata, S.; Goh, G.; Afink, G.B.; et al. ELABELA deficiency promotes preeclampsia and cardiovascular malformations in mice. Science 2017, 357, 707–713. [Google Scholar] [CrossRef] [Green Version]
- Khoshsirat, S.; Abbaszadeh, H.A.; Peyvandi, A.A.; Heidari, F.; Peyvandi, M.; Simani, L.; Niknazar, S. Apelin-13 prevents apoptosis in the cochlear tissue of noise-exposed rat via Sirt-1 regulation. J. Chem. Neuroanat. 2021, 114, 101–116. [Google Scholar] [CrossRef] [PubMed]
- Yin, H.; Zhanga, H.; Konga, Y.; Wangb, C.; Guoa, Y.; Gaoa, Y.; Yuana, L.; Yang, X.; Chenb, J. Apelin protects auditory cells from cisplatin-induced toxicity in vitro by inhibiting ROS and apoptosis. Neurosci. Lett. 2020, 728, 134–148. [Google Scholar] [CrossRef] [PubMed]
- Lu, Q.; Jiang, Y.; Qian, J.; Tao, Y. Apelin-13 regulates proliferation, migration and survival of retinal Müller cells under hypoxia. Diabetes Res. Clin. Pract. 2013, 99, 158–167. [Google Scholar] [CrossRef]
- Chen, L.; Tao, Y.; Feng, J.; Jiang, Y.R. Apelin Protects Primary Rat Retinal Pericytes from Chemical Hypoxia-Induced Apoptosis. J. Ophthalmol. 2015, 2015, 186946. [Google Scholar] [CrossRef] [Green Version]
- Cui, R.R.; Mao, D.A.; Yi, L.; Wang, C.; Zhang, X.; Xie, H.; Wu, X.; Liao, X.; Zhou, H.; Meng, J.; et al. Apelin suppresses apoptosis of human vascular smooth muscle cells via APJ/PI3-K/Akt signaling pathways. Amino Acids 2010, 39, 1193–1200. [Google Scholar] [CrossRef]
- Li, M.; Gou, H.; Tripathi, B.K.; Huang, J.; Jiang, S.; Dubois, W.; Waybright, T.; Lei, M.; Shi, J.; Zhou, M.; et al. An apela RNA-containing negative feedback loop regulates p53- mediated apoptosis in embryonic stem cells. Cell Stem Cell 2015, 16, 669–683. [Google Scholar] [CrossRef] [Green Version]
- Shimizu, T.; Kosaka, N.; Murayama, C.; Tetsuka, M.; Miyamoto, A. Apelin and APJ receptor expression in granulosa and theca cells during different stages of follicular development in the bovine ovary: Involvement of apoptosis and hormonal regulation. Anim. Reprod. Sci. 2009, 116, 28–37. [Google Scholar] [CrossRef]
- Chen, S.; Chen, F.; Sun, K.; Zhou, S.; Wang, J.; Wang, Q.; Meng, Z.; Peng, J.; Song, W.; Zhou, Y. Essential Role of the ELABELA-APJ Signaling Pathway in Cardiovascular System Development and Diseases. J. Cardiovasc. Pharmacol. 2020, 4, 284–291. [Google Scholar] [CrossRef] [PubMed]
Tissues | Species | Doses | Times | Signalling Pathways | References |
---|---|---|---|---|---|
cortical neurons | mouse | 1–5 nM | 24 h | ↓ROS, ↓cytochrome c, ↓caspase-3, PI3/AKT, ERK1/2 | [66] |
SH-SY5Y | human | 10–9 M | 24 h | ↓caspase-3 activity | [68] |
SH-SY5Y | human | 100 nM | 2 h | ↑p ERK1/2, ↓GRP78/CHOP/cleaved caspase 12 | [69] |
SH-SY5Y | human | 100 nM | 2, 4, 16 h | ↓caspase-3, ↓caspase-9, Gαi3, Gαq | [70] |
PC12 | rat | 4 µM | 1 h prior to METH | ↓apoptotic cells, ↓ROS | [79] |
PC12 | rat | 4 µM | 0.5 h prior to corticosterone | ↓caspase-3, PI3K/AKT, ERK1/2 | [80] |
hippocampus | rat | 2 µg | once a day for 14 days | ↓caspase-3, mTOR | [81] |
sections of brain | mouse | 50 µg | 24 h after ICH | ↑Bcl-2, ↓Bax, ↓caspase-3,GLP-1R/PI3K/AKT | [72] |
hippocampal neurons | rat | overexpression of APLN | 48 h post-transfection | ↑Bcl-2, ↓Bax, ↓caspase-3, ↓mGluR1, ↑p-AKT, miR-182 | [82] |
brain | mouse | 1 µg | 1 h | ↓Bax, ↓caspase-3, PI3K/AKT | [67] |
brain | rat | 50, 150 μg/kg | 1 h after SAH | ↓ATF6/CHOP, ↓caspase-3, ↑Bcl-2/Bax | [71] |
brain | rat | 150 µg/kg | 0.5 h after SAH | ↑Bcl-2, ↓Bax, ↓caspase-3, GLP-1R/PI3K/AKT | [72] |
brain | mouse | 50 µg | immediately after ICH | ↓caspase-3, ↑Bcl-2 | [73] |
brain | rat | 0.5 µg/g | 30 min before I/R | ↓CK2, ↓eIF2-ATF4-CHOP | [74] |
brain | rat | 50, 100 μg/kg | immediately after I/R | ↓caspase-3 | [75] |
brain | mouse | 50, 100 μg/kg | 15 min before I/R | ↓caspase-3, ↑Bcl-2, ↓Bax, PI3K/AKT, ERK1/2 | [76] |
brain | mouse | 100 μg/kg | 15 min before I/R | ↓caspase-3, ↓Bax, ↑Bcl-2, ↑p-AMPK | [77] |
brain | mouse | 0.5 µg/mice/day | once a day for 7 days | ↓cleaved caspase-3, ↓ASK1/JNK | [78] |
myocardial cells | rat | 30 pmol/L | 30 min before hypoxia | ↓ROS, ↓apoptotic cells, PI3K/AKT and ERK1/2 | [83] |
cardiomyocytes | rat | 10, 100 nmol/L | 12 h | ↓caspase-3, ↓Bax, ↑Bcl-2, PI3K/AKT | [84] |
cardiomyocytes | mouse | 0.1 μg/kg | 24 h after I/R | ↑Bcl-2, ↓Bax, caspase-3 | [73] |
heart | rat | 200 μg/kg | once a day for 12 weeks | inhibiting apoptosis | [85] |
heart | rat | endogenous apelin | - | ↑Bcl-2, ↓Bax | [86] |
heart | rat | 1 μg/kg | 15 min before reperfusion | ↓caspase-12, ↓CHOP, ↓JNK, PI3K/AKT, ERK1/2, eNOS | [87] |
heart | mouse | 1 mg/kg | for 14 days after MI | ↓number of apoptotic cells, ↑p-AKT, ↑eNOS | [88] |
H9C2 | rat | 1,10,100 nM | 24 h | FoxO1 | [89] |
endothelial cells | mouse | 1 μM | 24 h | AMPK, CHOP, ROS | [90] |
aortic adventitial fibroblasts | rat | 100 nM | 1h | ↓caspase-3, FGF21-ACE2 | [62] |
(ELABELA) | |||||
VSMCs | human | 10 pM–1 nM | 48 h | ↑Bcl2/Bax, APJ/PI3-K/AKT | [91] |
BMSCs | rat | 0.1–5 nM | 36 h | ↓cytochrome c, ↓caspase-3, MAPK/ERK1/2, PI3K/AKT | [65] |
MSCs | rat | 5 μM | 2 h | ↑Bcl-2, ↓Bax, ↓caspase-3, ERK1/2, PI3K/AKT | [92] |
(ELABELA) | |||||
MC3T3-E1 | mouse | 0.4–10 nM | 48 h | ↓cytochrome c, ↓caspase-3, -8, -9, JNK, PI3K/AKT | [93] |
human osteoblast-like cells | human | 0.4–10 nM | 48 h | ↓Bax, ↓cytochrome c, ↓caspase-3, ↑Bcl-2, APJ/PI3/AKT | [91] |
lungs | rat | 10 nmol/kg | 24 h | inhibition of the ASK1/MAPK | [94] |
Beas-2B | human | 1 μM | 1 h | inhibition of the ASK1/MAPK | [94] |
TC-1 | mouse | 100 nM | 24 h | ↓apoptotic cells, ↓ROS, ↑ATP | [95] |
IEC-6 | rat | 10–8 M | 4–48 h | ↓caspase-3 | [96] |
pancreas and colon epithelial cells | rat | 100 nmol/kg/day | for 10 days | ↓caspase-3 | [97] |
ovarian follicles | porcine | 2 ng/mL | 15 min | ↑AKT/ ERK1/2 | [42] |
granulosa cells | rat | 10−8 M | 12 h | PI3K/AKT | [43] |
villous explants | human | 2 and 20 ng/mL | 24 h, 48 h, 72 h | ↓caspase-3, ↑Bcl2/Bax | [64] |
BeWo | human | 0.5–50 nmol/L | 0, 12, 24 h | ↑ proliferation cells | [98] |
(ELABELA) | |||||
BeWo | human | 2 and 20 ng/mL | 24 h, 48 h, 72 h | ↑XIAP, BCL3, ↓BAK1, BAX, BOK, NOD1, CRADD, caspase-14, -8, -9, -3, -2, APAF1,BAK, BAX, p53, ERK1/2/MAPK, AKT | [63] |
podocytes | mouse | 100 nmol | 24 h | ↓caspase-3 | [99] |
podocytes | mouse | 4.5 mg/kg | twice a days | PI3K /AKT/ mTOR | [100] |
ESCs | human | - | - | PI3K/AKT | [101] |
(ELABELA) | |||||
HCs | rat | 100 μg/kg | 6 days after noise exposure | ↓caspase-3, Bax/Bcl-2 | [102] |
explants cochlear hair | mouse | 10 nM | 2 h | ↓Bax/Bcl-2 | [103] |
retinal Müller cells | rabbit | 100 ng/mL | 12 h | ↓caspase-3, ↑Bcl2/Bax | [104] |
retinal pericyte cells | rat | 100 ng/mL | 2 h | ↓apoptotic cells | [105] |
HEI-OC1 | mouse | 10 nM | 2h | ↓caspase-3 | [103] |
Tissues | Species | Doses | Times | Signalling Pathways | References |
---|---|---|---|---|---|
stomach and mid-jejunum | rat | 100 nmol/kg/day | for 10 days | ↑ caspase-3 | [97] |
Caco-2 | human | 10–8 M | 48 h | ↑ caspase-3 | [96] |
granulosa cells | bovine | - | - | pro-apoptotic effects ↑mRNA APJ expression | [108] |
ESCs | mouse | - | - | ↑ p53 | [107] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Respekta, N.; Pich, K.; Dawid, M.; Mlyczyńska, E.; Kurowska, P.; Rak, A. The Apelinergic System: Apelin, ELABELA, and APJ Action on Cell Apoptosis: Anti-Apoptotic or Pro-Apoptotic Effect? Cells 2023, 12, 150. https://doi.org/10.3390/cells12010150
Respekta N, Pich K, Dawid M, Mlyczyńska E, Kurowska P, Rak A. The Apelinergic System: Apelin, ELABELA, and APJ Action on Cell Apoptosis: Anti-Apoptotic or Pro-Apoptotic Effect? Cells. 2023; 12(1):150. https://doi.org/10.3390/cells12010150
Chicago/Turabian StyleRespekta, Natalia, Karolina Pich, Monika Dawid, Ewa Mlyczyńska, Patrycja Kurowska, and Agnieszka Rak. 2023. "The Apelinergic System: Apelin, ELABELA, and APJ Action on Cell Apoptosis: Anti-Apoptotic or Pro-Apoptotic Effect?" Cells 12, no. 1: 150. https://doi.org/10.3390/cells12010150
APA StyleRespekta, N., Pich, K., Dawid, M., Mlyczyńska, E., Kurowska, P., & Rak, A. (2023). The Apelinergic System: Apelin, ELABELA, and APJ Action on Cell Apoptosis: Anti-Apoptotic or Pro-Apoptotic Effect? Cells, 12(1), 150. https://doi.org/10.3390/cells12010150