Next Article in Journal
High-Fat Diet-Induced Dysregulation of Immune Cells Correlates with Macrophage Phenotypes and Chronic Inflammation in Adipose Tissue
Next Article in Special Issue
Crocin Inhibits Angiogenesis and Metastasis in Colon Cancer via TNF-α/NF-kB/VEGF Pathways
Previous Article in Journal
Towards Kinase Inhibitor Therapies for Fragile X Syndrome: Tweaking Twists in the Autism Spectrum Kinase Signaling Network
Previous Article in Special Issue
Lichen Secondary Metabolites Inhibit the Wnt/β-Catenin Pathway in Glioblastoma Cells and Improve the Anticancer Effects of Temozolomide
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

Role of Plant-Derived Active Constituents in Cancer Treatment and Their Mechanisms of Action

1
Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
2
S&K Therapeutics, Ajou University Campus Plaza 418, 199 Worldcup-ro, Yeongtong-gu, Suwon 16502, Korea
*
Author to whom correspondence should be addressed.
Cells 2022, 11(8), 1326; https://doi.org/10.3390/cells11081326
Submission received: 17 March 2022 / Revised: 31 March 2022 / Accepted: 11 April 2022 / Published: 13 April 2022
(This article belongs to the Special Issue Advances in Plants-Derived Bioactives for Cancer Treatment)

Abstract

:
Despite significant technological advancements in conventional therapies, cancer remains one of the main causes of death worldwide. Although substantial progress has been made in the control and treatment of cancer, several limitations still exist, and there is scope for further advancements. Several adverse effects are associated with modern chemotherapy that hinder cancer treatment and lead to other critical disorders. Since ancient times, plant-based medicines have been employed in clinical practice and have yielded good results with few side effects. The modern research system and advanced screening techniques for plants’ bioactive constituents have enabled phytochemical discovery for the prevention and treatment of challenging diseases such as cancer. Phytochemicals such as vincristine, vinblastine, paclitaxel, curcumin, colchicine, and lycopene have shown promising anticancer effects. Discovery of more plant-derived bioactive compounds should be encouraged via the exploitation of advanced and innovative research techniques, to prevent and treat advanced-stage cancers without causing significant adverse effects. This review highlights numerous plant-derived bioactive molecules that have shown potential as anticancer agents and their probable mechanisms of action and provides an overview of in vitro, in vivo and clinical trial studies on anticancer phytochemicals.

1. Introduction

Cancer is a challenging disease and is the main cause of mortality worldwide; however, its impact is not evenly distributed. The cancer burden in developed and underdeveloped countries has increased over time owing to a variety of factors, including aging and growing populations, rapid socioeconomic growth, and changes in the incidence of risk factors. Owing to the growth and aging of the world population, cancer is showing reduced survival rates in many countries [1,2]. Cancer is a complex disease involving uncontrolled growth and proliferation of cells in tissues, resulting in cell aggregation locally (tumor), and it can spread to an entire organ or even to other neighboring tissues systemically (metastasis) [3]. The uncontrolled cell behavior can be caused by genetic or epigenetic changes in oncogenes involved in cell proliferation or cell death regulation [4]. The incidence and mortality rates of cancer are continuously increasing. According to a study published in 2020, the global incidence of cancer cases was 247.5, whereas the mortality rate was 127.8 per 100,000 people. Developed countries, such as Japan, Australia, New Zealand, Germany, Canada, and France, topped the list in cancer incidence and mortality rates [2]. Furthermore, breast cancer had the highest incidence rate of 11.7%, while lung cancer had the highest mortality rate of 18% [5]. The worldwide estimated incidence and mortality rates of different cancers are shown in Table 1, and the percentages of incidence and mortality of different types of cancers are shown in Figure 1.
Several pathways are involved in cancer development, including the VEGF receptor pathway that can activate the RAS/RAF/MEK/ERK pathway [6] and the fibroblast growth factor (FGF) receptor pathway that activates multiple downward pathways, including the PI3K/Akt/mTOR, RAS/RAF/MEK/ERK and signal transducer and activator of transcription (STAT) pathways [7]. Reactive oxygen species (ROS) can activate the Akt/mTOR and AMPK signaling systems to induce cancer [8]. Wnt/β-catenin also plays a role in the development of multiple cancers [9]. Some important cancer-causing pathways and targets of the anticancer activity of phytochemicals are presented in Figure 2.
Since ancient times, herbal medicines have been used in health care systems. Research conducted to confirm the effectiveness of these medicines led to the discovery and development of plant-based medications. Local communities use medicinal plants to treat most diseases owing to lack of access to modern medication. In the past few decades, increasing evidence has revealed the remarkable potential plant-based therapeutics. Compared with synthetic medicines, medical plants have therapeutic potential with fewer side effects and lower costs [10].
Phytochemicals are plant-derived secondary metabolites. Based on epidemiological, in vitro, in vivo, and clinical trial data, a plant-based diet can lower the risk of many chronic diseases (e.g., neurological diseases, cardiovascular disease, diabetes, and cancer) owing to the action of bioactive plant constituents or phytochemicals [11].
Despite significant progress in the prevention and treatment of cancer, major gaps still exist, and further improvements are warranted. Modern chemotherapy has several side effects that impede the progress of cancer treatment and lead to other serious health problems. The development of integrated research systems and advanced screening procedures for plant bioactive components has ushered in a new era of phytochemical discoveries for the prevention and treatment of complex diseases such as cancer. Bioactive compounds such as berberine, curcumin, crocetin, colchicine, gingerol, lycopene, kaempferol, resveratrol, vincristine, and vinblastine have demonstrated remarkable anticancer potential [4]. Using modern and novel research approaches, more plant-derived constituents might be discovered to prevent and treat advanced-stage cancer without significant side effects.
In this review, we highlight phytochemicals that have been reported as anticancer agents and their putative mechanisms of action in cancer treatment and summarize in vitro, in vivo, and clinical trial data on these phytoconstituents.

2. Methodology

Data Collection

Articles on phytoconstituents with anticancer activity were searched for using specific keywords such as “phytochemicals”, “plant-derived constituents”, “plant-based medicine”, “antitumor”, “cytotoxic”, “cancer epidemiology,” and “incidence” from online research databases such as PubMed, Web of Science, Medline, Google Scholar, and Science Direct and downloaded. The articles were entirely read, and data on phytochemicals with anticancer properties were collected and tabulated in Table 2.

3. Data Analysis

A total of 78 plant-derived compounds belonging to various families were found to have significant anticancer activity; tested via in vitro and in vivo experiments. Most of these phytochemicals were alkaloids 19 (24%), flavonoids 14 (18%), terpenes 12 (15%), isoflavones 5 (6%), and phenols 5 (6%) (Figure 3).
Multiple phytochemicals were found to exhibit activity against multiple cancers. Most of the phytochemicals were found to be effective against breast (55), lung and colon (53 each), prostate (45), liver (30), ovarian (27), gastric (24), pancreatic (18), cervical (14), bladder (13), skin (11), oral (9), kidney (7), esophageal and thyroid (6 each), bile duct and brain (5 each), and miscellaneous (10) cancers (Table 3).
Of the total phytochemicals, lycopene was found to exhibit activity against 10 different types of cancer; baicalin, corosolic acid, plumbagin, shikonin, and thymoquinone displayed activity against 9; erianin, evodiamine, gallic acid, and gossypol exerted effects against 8; apigenin, curcumin, luteolin, oridonin, resveratrol, and silibinin had effects against 7; and other phytochemicals showed activity against six or less than six types of cancer (Table 4).
Several plant-derived active constituents, such as vincristine, vinblastine, paclitaxel, have been approved by the FDA as therapeutics for different cancers. Several other phytochemicals are currently in clinical trials for the treatment of various cancers (Table 5), and their structures are given (Figure 4).

3.1. Important Anticancer Phytochemicals from the Clinical Trials and Their Structure–Activity Relationship Data

According to a scientific report, phytochemicals may have substantial anticancer properties. Approximately 50% of the drugs approved between 1940 and 2014 were obtained directly or indirectly from natural sources [403]. Some important phytochemicals, currently in clinical trials, that showed good in vitro and in vivo potentials in different types of cancers are described below.

3.2. Curcumin

Curcumin, a lead phytochemical extracted from Curcuma longa, inhibits the growth of human glioma cells by inhibiting numerous cellular and nuclear factors. Curcumin increases the expression of various genes and their products, including p16, p21, and p53, Bax, EIK-1, Erk, c-Jun N-terminal kinase, early growth response protein 1, and caspases-3, -8, and -9, while reducing the expression of Bcl-2, pRB, cyclin D1, mTOR, NF-κB, and p65 [404].
The potent antioxidant property of curcumin is responsible for many of its medicinal actions, including its anticancer activity. The majority of natural antioxidative chemicals are either phenolic or -diketone compounds. But curcumin, is one of the few antioxidative compounds that has both phenolic hydroxy and -diketone groups in a single molecule [405].
In one study, researchers investigated the importance of the phenolic hydroxy groups, and other substituents in the phenyl rings of curcumin and its analogs, to their antioxidant activities by using the three antioxidant bioassays (free radical scavenging activity by the ABTS method, free radical scavenging activity by the DPPH method, and inhibition of lipid peroxidation). In all the three assays, the phenolic curcumin analogs were more potent than the non-phenolic analogs, indicating that the phenolic groups are critical for antioxidant action. Curcumin is thought to be a classic phenolic chain-breaking antioxidant, donating H atoms from phenolic groups [406,407].
In another research study, curcumin analogs were synthesized or isolated from natural sources and evaluated for AR inhibitory activity in prostate cancer cell lines. Among these analogs, few exhibited the greatest inhibitory activity against the transcription of AR, while others showed less or no activity. Based on the bioassay results, researchers showed the SAR of curcumin analogs as anti-AR reagents as follows. (1) The conjugated β-diketone moiety is required for the activity. Saturating or removing the C=C bonds resulted in a decrease or loss of activity, while converting the β-diketone moiety to pyrazole leads to a reduction or loss of activity. (2) When the methylene group in the linker was not substituted, the inhibitory activity was significantly increased by substituting the phenolic hydroxy groups with methoxy or methoxycarbonylmethoxy groups. (3) Adding an ethoxycarbonylethyl group to the central methylene group dramatically improved the anti-AR action of curcumin when the phenyl ring substitution was retained. (4) Anti-AR activity was lost in all electron-withdrawing substitutions in the phenyl rings. The exact mechanism through which curcumin analogs block AR transcription is undisclosed [408,409,410,411]. Further initiatives need to be taken to extend the SAR and enhance anti-AR activities of curcumin.

3.3. Epigallocatechin Gallate (EGCG)

EGCG is the chief constituent of green tea that can restore the expression of tumor suppressor genes such as retinoid X receptor-alpha in breast cancer, ultimately preventing breast cancer by binding to other high-affinity proteins such as Zap-70 [412]. EGCG is also found to be effective against lung, colon, and prostate cancers by inducing DNA damage and AMPK signaling and inhibiting Notch1, MMP-2/9, and β-catenin expression [115,117,331].
In EGCG structure, the three aromatic rings are connected by a pyran ring. The structure of EGCG is thought to be responsible for its health-promoting properties. The potent antioxidant effect of catechins is achieved through quinone and semiquinone synthesis, which involves oxidation of phenolic groups with atomic or single electron transfer in the periphery aromatic rings [413,414]. These rings have been linked to a decrease in proteasome activity. Protected analogues are the only ones that suppress proteasome activity. In vitro, dehydroxylation of either one or both periphery aromatic rings, inhibits proteasome inhibitory activity. Furthermore, the apoptotic cell death is induced by these protected analogues in tumor cell-specific manure. These findings showed that the periphery aromatic rings peracetate protected EGCG analogues, have a lot of potential as anti-cancer and cancer-prevention drugs [415]. The first structure–activity correlations between EGCG and heat-shock protein 90 were described and analyzed by Khandelwal et al. His findings suggest that phenolic groups on the aromatic ring, adjacent to pyrin ring, are useful in inhibiting heat-shock protein 90, whereas phenolic substituents on the faraway periphery ring are unfavorable [416]. Finally, when compared to catechins without the 5′-hydroxyl group, the hydroxyl group at the 5′-position in the upper aromatic ring inhibited urease up to 100-fold and also prevented Helicobacter pylori growth in the gut [417].

3.4. Genistein

Genistein, a potent anticancer compound, can be isolated from soybeans, lentils, chickpeas, and beans. It exhibits a pro-apoptotic effect in colon cancer and has a variety of functions: it upregulates Bax and p21, blocks topoisomerase II and NF-κB, and increases the expression of antioxidant enzymes such as glutathione peroxidase [418].
Genistein is a natural flavonoid that has been found to interact with several biological targets. After orally administration, its quick breakdown into inactive metabolites and rapid excretion from the body, are the main disadvantages of using genistein as a chemotherapeutic agent [419]. Therefore, to obtain better bioavailability compounds than genistein, a delayed compound metabolism is required. In one study, it was found that the proportion of metabolites was affected by the nature of the glycosidic bond. The metabolization of genistein derivatives with a more stable C-glycosidic bond was slower than derivatives with an O-glycosidic bond. It was also reported that linking a sugar moiety to the genistein structure increases its metabolism time in the body [420].
In another research work, it has been found that in comparison to the genistein parent molecule, novel genistein glycosyl derivatives with an O-glycosidic or C-glycosidic linkage have better antiproliferative effects. [421,422]. The C-7 or C-4′-hydroxyalkyl ethers of genistein (intermediates in the glycoconjugates synthesis), are found to be more active in preventing tumor cell growth than genistein. Furthermore, biological investigations have also revealed that derivatives with a substituent at the C-7 position inhibit the cell cycle in the G2 phase, whereas derivatives with a substituent at the C-4′ position disrupt the cell cycle in the G1 phase. [421]. It is concluded that the structural modification (hydroxyl group etherification) of genistein, successfully improved its antiproliferative activity.

3.5. Lycopene

Lycopene is a vibrant red pigment found in tomatoes, red carrots, watermelons, and red papaya. It plays a key role in targeting the PI3K/Akt pathway in stomach and pancreatic cancers by suppressing the expression of Bcl-2, an Erk protein. In breast, endometrial, prostate, and colon cancers, lycopene upregulates antioxidant enzymes GSH, GPxn, and GST and eliminates oxidative injury induced by toxins. Lycopene has been demonstrated to affect the growth and progression of HT-29 cells in culture and tumors in animal models by interfering with numerous cellular signal transduction pathways such as those of JNK and NF-κB. Lycopene also prevents infiltration, metastasis, and multiplication of human SW480 colon cancer cells by inhibiting JNK and NF-κB activation, and suppressing the production of COX-2, IL-1, IL-6, IL-10, and iNOS [423,424].
Carotenoids promoted the expression of phase II enzymes by activating the electrophile/antioxidant response element (EpRE/ARE) transcription pathway. Phase II detoxifying enzymes are a key biological method for minimizing cancer risk. By disrupting the inhibitory effect of Keap1 on Nrf2, the key EpRE/ARE activating transcription factor; certain electrophilic phytonutrients have been demonstrated to stimulate the EpRE/ARE system. However, carotenoids like lycopene are hydrophobic, lacking an electrophilic group, which is unlikely to activate Nrf2 and the EpRE/ARE system directly. The active mediators in lycopene’s activation of the EpRE/ARE system are carotenoid oxidation products. Researchers discovered the main structure–activity rules for EpRE/ARE activation using a series of described mono- and di-apocarotenoids that might potentially be produced from in vivo metabolism of carotenoids (lycopene). Such as active molecules are the aldehydes, not acids; the methyl group on the terminal aldehyde, which regulates the reactivity of the conjugated double bond, is responsible for the activity, and the main chain of the molecule is constituted of the dialdehyde’s optimum length (12 carbons). The apocarotenals suppressed breast and prostate cancer cell proliferation with an efficacy comparable to that of EpRE/ARE activation. These findings may provide a molecular explanation for the cancer-preventive properties of carotenoids like lycopene [425,426].

3.6. Resveratrol

Resveratrol, a naturally occurring polyphenol, is found in peanuts, mulberries, grapes, blueberries, and bilberries. It plays a significant role in the treatment of different types of cancers, including colorectal, breast, pancreatic, liver, lung, and prostate cancers, by increasing the expression of Bax and p53 and decreasing the expression of NF-κB, AP-1, Bcl-2, MMPs, cyclins, COX-2, cyclin-dependent kinases, and cytokines. Resveratrol has been recognized to impede angiogenesis and suppress VEGF by decreasing MAP kinase phosphorylation [418].
A research study was carried out to find the structure–activity relationship of resveratrol in cancer. It was observed that the number and position of free phenolic hydroxyl groups have a key role in the anticancer activities of resveratrol. For this purpose, the researchers used different analogs of resveratrol having different phenolic hydroxyl groups for their anticancer activities in T24 cells. They found that the oxyresveratrol (3-OH glycosylated RV, having an extra -OH group than RV) has greater inhibitory effect that RV but polydatin (3-OH glycosylated RV, lack of one -OH group) has a lesser effect than RV. This showed that the increased number of phenolic hydroxyl groups are responsible for the anticancer activity of RV [427]. Herath et al. proved the theory by discovering that when the hydroxyl groups in RV were replaced, the drug’s pharmacological activity decreased [428]. Furthermore, Miksits et al. found that all of RV’s sulfated metabolites were less effective against various cancer cell lines [309]. This suggests that the anti-tumor efficacy of RV can be affected by the conjugation of phenolic hydroxyl groups with sulfuric acid. Hence, again it is proved that the free phenolic hydroxyl groups are important for antitumor effect of RV.
Currently, several investigations on plant-based drugs to treat cancer are ongoing. Some well-known and effective phytochemicals, such as vincristine, were approved by the FDA in 1963 to treat acute leukemia (brand name, Oncovin). Furthermore, paclitaxel was approved for the treatment of metastatic breast cancer, advanced lung cancer, and pancreatic cancer in 2005, 2012, and 2013, respectively, under the brand name, Abraxane. Curcumin, lycopene, and capsaicin, which are under phase-III trials for prostate and breast cancers, are promising candidates for cancer therapy. Quercetin, genistein, silibinin, and EGCG are undergoing clinical trials or treatment for various types of cancers.
This study of anticancer plant-derived phytochemicals will help ethnomedicine and ethnopharmacology investigations, resulting in better outcomes for the medical potential of natural resources. Various phytochemicals highlighted in this review could be further investigated in clinical trials, enabling the availability of more effective anticancer medicines with fewer adverse effects. This study will be beneficial to researchers working on or interested in the discovery of plant-based medicines for treatment of various cancers.

4. Conclusions

Researchers have found multiple synthetic drugs for the treatment of cancer, but anticancer drugs are costly and have some major adverse effects like anemia, vital organs damage, and hair and nail loss. Keeping in mind these drawbacks, we searched multiple papers on natural anticancer compounds, their mechanisms, clinicals trials and SAR data of important phytochemicals. The epidemiology data showed that the breast and lung cancers have the highest mortality and prevalence rates. In this study, we found that majority of anticancer compounds belong to alkaloids and flavonoids classes, and the highest number of phytochemicals were found to be effective against breast and lung cancers, which give us a chance to try these phytochemicals in clinical trials and discover some plant-based drugs that control these high spreading cancers. To discover effective anticancer treatments with less side effects and less cost, the world must rely upon, and conduct more research on natural resources, especially plants and their active constituents.

Author Contributions

Conceptualization, methodology, original draft preparation, article writing, visualization, A.W.K. and S.C., software work, validation, data curation, review, and editing, M.F. and M.H., resources, review and editing, supervision, project administration, funding acquisition, S.C. All authors have read and agreed to the published version of the manuscript.

Funding

This research was supported by the Korea Drug Development Fund, funded by the Ministry of Science and ICT, Ministry of Trade, Industry, and Energy, and Ministry of Health and Welfare (HN21C1058). This work was also supported by the National Research Foundation of Korea [2022M3A9G1014520, 2019M3D1A1078940 and 2019R1A6A1A11051471]. The sponsor had no role in the study design; collection, analysis, and interpretation of the data; writing of the report; and the decision to submit the article for publication.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.

Conflicts of Interest

The authors declare no conflict of interest.

Abbreviations

AIFApoptosis-inducing factorMUC1-CMucin 1, cell surface associated protein
Apaf-1Apoptotic protease activating factor 1NAF-1Nuclear assembly factor 1
ATF4Activating transcription factor 4NAG-1NSAID activated gene 1
Bcl-XLB-cell lymphoma-extra largeNBR1Neighbor of BRCA1 gene 1
CCL2Chemokine (C-C motif) ligand 2 Nrf2Nuclear factor erythroid 2–related factor 2
CDKCyclin-dependent kinases PD-L1Programmed death-ligand 1
CHOPC/EBP homologous proteinPKM2Pyruvate kinase M2
CREBcAMP-response element binding proteinPLK1Polo-like kinase 1
CXCR4C-X-C chemokine receptor type 4PPARγPeroxisome proliferator- activated receptor gamma
DR5Death receptor 5PTENPhosphatase and tensin homolog deleted in chromosome 10
ER Endoplasmic reticulumRafRapidly accelerated aibrosarcoma
FAKFocal adhesion kinaseRASSF6Ras-association domain family
FOXA2Forkhead box protein A2RHAMMHMMR hyaluronan-mediated motility receptor
GADD45BGrowth arrest and DNA-damage-inducible, beta proteinRhoARas-homolog family member A
GLUT1Glucose transporter 1RIP1Receptor interacting protein 1
H2AXH2A histone family member XROCK1Rho-associated protein kinase 1
HIF-2αHypoxia inducible factor 2 alphaROSReactive oxygen species
HMGB1High mobility group box 1 proteinSGK1Serum/glucocorticoid regulated kinase 1
HOXD3Homeobox D3Skp2S-phase kinase associated protein 2
HSP90Heat shock protein 90TASK-3Two-pore-domain acid sensitive K+ channel 3 TASK-3
hTERTHuman telomerase reverse transcriptaseTGF-β1Transforming growth factor-beta1
iNOSInducible nitric oxide synthaseTNF-αTumor necrosis factor alpha
IκBαIkappaB alphaTop1Topoisomerase 1
IκK-αInhibitory-κB kinase alphaTRAILTNF-related apoptosis-inducing ligand
JNKJun N-terminal kinaseTRIM16Tripartite motif-containing protein 16
Keap1Kelch-like ECH-associated protein 1uPAUrokinase-type plasminogen activator
LOXLysyl oxidaseUSP14Ubiquitin specific peptidase 14
MEKMAPK/ERK kinaseWntWingless-related integration site
mTORMammalian target of rapamycinXIAPX-linked inhibitor of apoptosis protein

References

  1. World Health Organization. International Agency for Research on Cancer; World Health Organization: Geneva, Switzerland, 2019. [Google Scholar]
  2. Cao, W.; Chen, H.-D.; Yu, Y.-W.; Li, N.; Chen, W.-Q. Changing profiles of cancer burden worldwide and in China: A secondary analysis of the global cancer statistics 2020. Chin. Med. J. 2021, 134, 783. [Google Scholar] [CrossRef] [PubMed]
  3. Martin, T.A.; Ye, L.; Sanders, A.J.; Lane, J.; Jiang, W.G. Cancer invasion and metastasis: Molecular and cellular perspective. In Madame Curie Bioscience Database [Internet]; Landes Bioscience: Austin, TX, USA, 2013. [Google Scholar]
  4. Garcia-Oliveira, P.; Otero, P.; Pereira, A.G.; Chamorro, F.; Carpena, M.; Echave, J.; Fraga-Corral, M.; Simal-Gandara, J.; Prieto, M.A. Status and challenges of plant-anticancer compounds in cancer treatment. Pharmaceuticals 2021, 14, 157. [Google Scholar] [CrossRef] [PubMed]
  5. Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
  6. Li, L.; Zhao, G.D.; Shi, Z.; Qi, L.L.; Zhou, L.Y.; Fu, Z.X. The Ras/Raf/MEK/ERK signaling pathway and its role in the occurrence and development of HCC. Oncol. Lett. 2016, 12, 3045–3050. [Google Scholar] [CrossRef] [Green Version]
  7. Farooq, M.; Khan, A.W.; Kim, M.S.; Choi, S. The Role of Fibroblast Growth Factor (FGF) Signaling in Tissue Repair and Regeneration. Cells 2021, 10, 3242. [Google Scholar] [CrossRef]
  8. Zhao, Y.; Hu, X.; Liu, Y.; Dong, S.; Wen, Z.; He, W.; Zhang, S.; Huang, Q.; Shi, M. ROS signaling under metabolic stress: Cross-talk between AMPK and AKT pathway. Mol. Cancer 2017, 16, 1–12. [Google Scholar] [CrossRef] [Green Version]
  9. Zhang, Y.; Wang, X. Targeting the Wnt/β-catenin signaling pathway in cancer. J. Hematol. Oncol. 2020, 13, 1–16. [Google Scholar] [CrossRef]
  10. Khan, A.W.; Khan, A.U.; Shah, S.M.M.; Ullah, A.; Faheem, M.; Saleem, M. An updated list of neuromedicinal plants of Pakistan, their uses, and phytochemistry. Evid. Based Complement. Alternat. Med. 2019, 2019, 6191505. [Google Scholar] [CrossRef] [Green Version]
  11. Catalano, E. Role of phytochemicals in the chemoprevention of tumors. arXiv 2016, arXiv:1605.04519. [Google Scholar]
  12. Alhasan, L.; Addai, Z.R. Allicin-induced modulation of angiogenesis in lung cancer cells (A549). Trop. J. Pharm. Res. 2018, 17, 2129–2134. [Google Scholar] [CrossRef]
  13. Zhang, X.; Zhu, Y.; Duan, W.; Feng, C.; He, X. Allicin induces apoptosis of the MGC-803 human gastric carcinoma cell line through the p38 mitogen-activated protein kinase/caspase-3 signaling pathway. Mol. Med. Rep. 2015, 11, 2755–2760. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  14. Guo, Y.; Liu, H.; Chen, Y.; Yan, W. The effect of allicin on cell proliferation and apoptosis compared to blank control and cis-platinum in oral tongue squamous cell carcinoma. Onco Targets Ther. 2020, 13, 13183. [Google Scholar] [CrossRef] [PubMed]
  15. Li, C.; Jing, H.; Ma, G.; Liang, P. Allicin induces apoptosis through activation of both intrinsic and extrinsic pathways in glioma cells. Mol. Med. Rep. 2018, 17, 5976–5981. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  16. Qiu, M.; Liu, J.; Su, Y.; Liu, J.; Wu, C.; Zhao, B. Aloperine induces apoptosis by a reactive oxygen species activation mechanism in human ovarian cancer cells. Protein Pept. Lett. 2020, 27, 860–869. [Google Scholar] [CrossRef] [PubMed]
  17. Lee, Y.-R.; Chen, S.-H.; Lin, C.-Y.; Chao, W.-Y.; Lim, Y.-P.; Yu, H.-I.; Lu, C.-H. In vitro antitumor activity of aloperine on human thyroid cancer cells through caspase-dependent apoptosis. Int. J. Mol. Sci. 2018, 19, 312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  18. Ling, Z.; Guan, H.; You, Z.; Wang, C.; Hu, L.; Zhang, L.; Wang, Y.; Chen, S.; Xu, B.; Chen, M. Aloperine executes antitumor effects through the induction of apoptosis and cell cycle arrest in prostate cancer In Vitro and In Vivo. Onco Targets Ther. 2018, 11, 2735. [Google Scholar] [CrossRef] [Green Version]
  19. Zhang, L.; Liang, J.; Liu, X.; Wu, J.; Tan, D.; Hu, W. Aloperine exerts antitumor effects on bladder cancer In Vitro. Onco Targets Ther. 2020, 13, 10351. [Google Scholar] [CrossRef]
  20. Zhang, L.; Zheng, Y.; Deng, H.; Liang, L.; Peng, J. Aloperine induces G2/M phase cell cycle arrest and apoptosis in HCT116 human colon cancer cells. Int. J. Mol. Med. 2014, 33, 1613–1620. [Google Scholar] [CrossRef] [Green Version]
  21. Chen, S.; Jin, Z.; Dai, L.; Wu, H.; Wang, J.; Wang, L.; Zhou, Z.; Yang, L.; Gao, W. Aloperine induces apoptosis and inhibits invasion in MG-63 and U2OS human osteosarcoma cells. Biomed. Pharmacother. 2018, 97, 45–52. [Google Scholar] [CrossRef]
  22. Li, D.; Li, X.; Li, G.; Meng, Y.; Jin, Y.; Shang, S.; Li, Y. Alpinumisoflavone causes DNA damage in colorectal cancer cells via blocking DNA repair mediated by RAD51. Life Sci. 2019, 216, 259–270. [Google Scholar] [CrossRef]
  23. Han, Y.; Yang, X.; Zhao, N.; Peng, J.; Gao, H.; Qiu, X. Alpinumisoflavone induces apoptosis in esophageal squamous cell carcinoma by modulating miR-370/PIM1 signaling. Am. J. Cancer Res. 2016, 6, 2755. [Google Scholar] [PubMed]
  24. Zhao, X.; Zhang, T.; Jiang, K.; Gao, H. Alpinumisoflavone exhibits anticancer activities in glioblastoma multiforme by suppressing glycolysis (Retraction of Vol 11, Pg 631, 2019). Anat. Rec. (Hoboken) 2020, 303, 2192–2201. [Google Scholar] [CrossRef] [PubMed]
  25. Makarević, J.; Rutz, J.; Juengel, E.; Kaulfuss, S.; Tsaur, I.; Nelson, K.; Pfitzenmaier, J.; Haferkamp, A.; Blaheta, R.A. Amygdalin influences bladder cancer cell adhesion and invasion In Vitro. PLoS ONE 2014, 9, e110244. [Google Scholar] [CrossRef] [Green Version]
  26. Lee, H.M.; Moon, A. Amygdalin regulates apoptosis and adhesion in Hs578T triple-negative breast cancer cells. Biomol. Ther. 2016, 24, 62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  27. Chang, H.-K.; Shin, M.-S.; Yang, H.-Y.; Lee, J.-W.; Kim, Y.-S.; Lee, M.-H.; Kim, J.; Kim, K.-H.; Kim, C.-J. Amygdalin induces apoptosis through regulation of Bax and Bcl-2 expressions in human DU145 and LNCaP prostate cancer cells. Biol. Pharm. Bull. 2006, 29, 1597–1602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  28. Chen, Y.; Ma, J.; Wang, F.; Hu, J.; Cui, A.; Wei, C.; Yang, Q.; Li, F. Amygdalin induces apoptosis in human cervical cancer cell line HeLa cells. Immunopharmacol. Immunotoxicol. 2013, 35, 43–51. [Google Scholar] [CrossRef]
  29. Khan, I.; Khan, F.; Farooqui, A.; Ansari, I.A. Andrographolide exhibits anticancer potential against human colon cancer cells by inducing cell cycle arrest and programmed cell death via augmentation of intracellular reactive oxygen species level. Nutr. Cancer 2018, 70, 787–803. [Google Scholar] [CrossRef]
  30. Liu, G.; Chu, H. Andrographolide inhibits proliferation and induces cell cycle arrest and apoptosis in human melanoma cells. Oncol. Lett. 2018, 15, 5301–5305. [Google Scholar] [CrossRef] [Green Version]
  31. Peng, Y.; Wang, Y.; Tang, N.; Sun, D.; Lan, Y.; Yu, Z.; Zhao, X.; Feng, L.; Zhang, B.; Jin, L. Andrographolide inhibits breast cancer through suppressing COX-2 expression and angiogenesis via inactivation of p300 signaling and VEGF pathway. J. Exp. Clin. Cancer Res. 2018, 37, 1–14. [Google Scholar] [CrossRef] [Green Version]
  32. Forestier-Román, I.S.; López-Rivas, A.; Sánchez-Vázquez, M.M.; Rohena-Rivera, K.; Nieves-Burgos, G.; Ortiz-Zuazaga, H.; Torres-Ramos, C.A.; Martínez-Ferrer, M. Andrographolide induces DNA damage in prostate cancer cells. Oncotarget 2019, 10, 1085. [Google Scholar] [CrossRef]
  33. Pearngam, P.; Kumkate, S.; Okada, S.; Janvilisri, T. Andrographolide inhibits cholangiocarcinoma cell migration by down-regulation of claudin-1 via the p-38 signaling pathway. Front. Pharmacol. 2019, 10, 827. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  34. Beesetti, S.L.; Jayadev, M.; Subhashini, G.V.; Mansour, L.; Alwasel, S.; Harrath, A.H. Andrographolide as a therapeutic agent against breast and ovarian cancers. Open Life Sci. 2019, 14, 462–469. [Google Scholar] [CrossRef] [PubMed]
  35. Shao, H.; Jing, K.; Mahmoud, E.; Huang, H.; Fang, X.; Yu, C. Apigenin sensitizes colon cancer cells to antitumor activity of ABT-263. Mol. Cancer Ther. 2013, 12, 2640–2650. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  36. Chen, M.; Wang, X.; Zha, D.; Cai, F.; Zhang, W.; He, Y.; Huang, Q.; Zhuang, H.; Hua, Z.-C. Apigenin potentiates TRAIL therapy of non-small cell lung cancer via upregulating DR4/DR5 expression in a p53-dependent manner. Sci. Rep. 2016, 6, 1–17. [Google Scholar] [CrossRef] [Green Version]
  37. Yang, J.; Pi, C.; Wang, G. Inhibition of PI3K/Akt/mTOR pathway by apigenin induces apoptosis and autophagy in hepatocellular carcinoma cells. Biomed. Pharmacother. 2018, 103, 699–707. [Google Scholar] [CrossRef]
  38. Ujiki, M.B.; Ding, X.-Z.; Salabat, M.R.; Bentrem, D.J.; Golkar, L.; Milam, B.; Talamonti, M.S.; Bell, R.H.; Iwamura, T.; Adrian, T.E. Apigenin inhibits pancreatic cancer cell proliferation through G2/M cell cycle arrest. Mol. Cancer 2006, 5, 1–8. [Google Scholar] [CrossRef] [Green Version]
  39. Li, Y.-W.; Xu, J.; Zhu, G.-Y.; Huang, Z.-J.; Lu, Y.; Li, X.-Q.; Wang, N.; Zhang, F.-X. Apigenin suppresses the stem cell-like properties of triple-negative breast cancer cells by inhibiting YAP/TAZ activity. Cell Death Discov. 2018, 4, 1–9. [Google Scholar] [CrossRef]
  40. Gupta, S.; Afaq, F.; Mukhtar, H. Involvement of nuclear factor-kappa B, Bax and Bcl-2 in induction of cell cycle arrest and apoptosis by apigenin in human prostate carcinoma cells. Oncogene 2002, 21, 3727–3738. [Google Scholar] [CrossRef] [Green Version]
  41. Liu, X.; Li, L.; Lv, L.; Chen, D.; Shen, L.; Xie, Z. Apigenin inhibits the proliferation and invasion of osteosarcoma cells by suppressing the Wnt/β-catenin signaling pathway. Oncol. Rep. 2015, 34, 1035–1041. [Google Scholar] [CrossRef] [Green Version]
  42. Wang, J.; Zhang, J.; Shi, Y.; Xu, C.; Zhang, C.; Wong, Y.K.; Lee, Y.M.; Krishna, S.; He, Y.; Lim, T.K. Mechanistic investigation of the specific anticancer property of artemisinin and its combination with aminolevulinic acid for enhanced anticolorectal cancer activity. ACS Cent. Sci. 2017, 3, 743–750. [Google Scholar] [CrossRef]
  43. Yu, C.; Sun, P.; Zhou, Y.; Shen, B.; Zhou, M.; Wu, L.; Kong, M. Inhibition of AKT enhances the anti-cancer effects of Artemisinin in clear cell renal cell carcinoma. Biomed. Pharmacother. 2019, 118, 109383. [Google Scholar] [CrossRef] [PubMed]
  44. Li, X.; Zhou, Y.; Liu, Y.; Zhang, X.; Chen, T.; Chen, K.; Ba, Q.; Li, J.; Liu, H.; Wang, H. Preclinical efficacy and safety assessment of artemisinin-chemotherapeutic agent conjugates for ovarian cancer. EBioMedicine 2016, 14, 44–54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  45. Jia, J.; Qin, Y.; Zhang, L.; Guo, C.; Wang, Y.; Yue, X.; Qian, J. Artemisinin inhibits gallbladder cancer cell lines through triggering cell cycle arrest and apoptosis. Mol. Med. Rep. 2016, 13, 4461–4468. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  46. Cathcart, M.-C.; Useckaite, Z.; Drakeford, C.; Semik, V.; Lysaght, J.; Gately, K.; O’Byrne, K.J.; Pidgeon, G.P. Anti-cancer effects of baicalein in non-small cell lung cancer in-vitro and in-vivo. BMC Cancer 2016, 16, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  47. Palko-Labuz, A.; Sroda-Pomianek, K.; Uryga, A.; Kostrzewa-Suslow, E.; Michalak, K. Anticancer activity of baicalein and luteolin studied in colorectal adenocarcinoma LoVo cells and in drug-resistant LoVo/Dx cells. Biomed. Pharmacother. 2017, 88, 232–241. [Google Scholar] [CrossRef] [PubMed]
  48. Wu, J.-Y.; Tsai, K.-W.; Li, Y.-Z.; Chang, Y.-S.; Lai, Y.-C.; Laio, Y.-H.; Wu, J.-D.; Liu, Y.-W. Anti-bladder-tumor effect of baicalein from Scutellaria baicalensis Georgi and its application In Vivo. Evid. Based Complement. Alternat. Med. 2013, 2013. [Google Scholar] [CrossRef] [Green Version]
  49. Tian, Y.; Zhen, L.; Bai, J.a.; Mei, Y.; Li, Z.; Lin, A.; Li, X. Anticancer effects of Baicalein in pancreatic Neuroendocrine tumors In Vitro and In Vivo. Pancreas 2017, 46, 1076. [Google Scholar] [CrossRef] [Green Version]
  50. Bie, B.; Sun, J.; Li, J.; Guo, Y.; Jiang, W.; Huang, C.; Yang, J.; Li, Z. Baicalein, a natural anti-cancer compound, alters microRNA expression profiles in Bel-7402 human hepatocellular carcinoma cells. Cell. Physiol. Biochem. 2017, 41, 1519–1531. [Google Scholar] [CrossRef]
  51. Guo, Z.; Hu, X.; Xing, Z.; Xing, R.; Lv, R.; Cheng, X.; Su, J.; Zhou, Z.; Xu, Z.; Nilsson, S. Baicalein inhibits prostate cancer cell growth and metastasis via the caveolin-1/AKT/mTOR pathway. Mol. Cell. Biochem. 2015, 406, 111–119. [Google Scholar] [CrossRef] [Green Version]
  52. Yu, X.; Cao, Y.; Tang, L.; Yang, Y.; Chen, F.; Xia, J. Baicalein inhibits breast cancer growth via activating a novel isoform of the long noncoding RNA PAX8-AS1-N. J. Cell. Biochem. 2018, 119, 6842–6856. [Google Scholar] [CrossRef]
  53. Li, Y.; Wang, D.; Liu, J.; Li, Y.; Chen, D.; Zhou, L.; Lang, T.; Zhou, Q. Baicalin Attenuates YAP Activity to Suppress Ovarian Cancer Stemness. Onco Targets Ther. 2020, 13, 7151. [Google Scholar] [CrossRef] [PubMed]
  54. Huang, L.; Peng, B.; Nayak, Y.; Wang, C.; Si, F.; Liu, X.; Dou, J.; Xu, H.; Peng, G. Baicalein and baicalin promote melanoma apoptosis and senescence via metabolic inhibition. Front. Cell Dev. Biol. 2020, 8, 836. [Google Scholar] [CrossRef] [PubMed]
  55. Dong, Q.; Zheng, S.; Xu, R.; Lu, Q.; He, L. Study on effect of berbamine on multidrug resistance leukemia K562/Adr cells. Chin. J. Integr. Med. 2004, 24, 820–822. [Google Scholar]
  56. Meng, Z.; Li, T.; Ma, X.; Wang, X.; Van Ness, C.; Gan, Y.; Zhou, H.; Tang, J.; Lou, G.; Wang, Y. Berbamine inhibits the growth of liver cancer cells and cancer-initiating cells by targeting Ca2+/calmodulin-dependent protein kinase II. Mol. Cancer Ther. 2013, 12, 2067–2077. [Google Scholar] [CrossRef] [Green Version]
  57. Zhang, H.; Jiao, Y.; Shi, C.; Song, X.; Chang, Y.; Ren, Y.; Shi, X. Berbamine suppresses cell proliferation and promotes apoptosis in ovarian cancer partially via the inhibition of Wnt/β-catenin signaling. Acta Biochim. Biophys. Sin. 2018, 50, 532–539. [Google Scholar] [CrossRef] [Green Version]
  58. Mou, L.; Liang, B.; Liu, G.; Jiang, J.; Liu, J.; Zhou, B.; Huang, J.; Zang, N.; Liao, Y.; Ye, L. Berbamine exerts anticancer effects on human colon cancer cells via induction of autophagy and apoptosis, inhibition of cell migration and MEK/ERK signalling pathway. J. BUON 2019, 24, 1870–1875. [Google Scholar]
  59. Zhu, H.; Ruan, S.; Jia, F.; Chu, J.; Zhu, Y.; Huang, Y.; Liu, G. In vitro and In Vivo superior radiosensitizing effect of berbamine for head and neck squamous cell carcinoma. Onco Targets Ther. 2018, 11, 8117. [Google Scholar] [CrossRef] [Green Version]
  60. Chen, M.; Xiao, C.; Jiang, W.; Yang, W.; Qin, Q.; Tan, Q.; Lian, B.; Liang, Z.; Wei, C. Capsaicin Inhibits Proliferation and Induces Apoptosis in Breast Cancer by Down-Regulating FBI-1-Mediated NF-κB Pathway. Drug Des. Devel. Ther. 2021, 15, 125. [Google Scholar] [CrossRef]
  61. Anandakumar, P.; Kamaraj, S.; Jagan, S.; Ramakrishnan, G.; Asokkumar, S.; Naveenkumar, C.; Raghunandhakumar, S.; Vanitha, M.K.; Devaki, T. The anticancer role of capsaicin in experimentallyinduced lung carcinogenesis. J. Pharmacopunct. 2015, 18, 19. [Google Scholar] [CrossRef]
  62. Ramos-Torres, Á.; Bort, A.; Morell, C.; Rodríguez-Henche, N.; Díaz-Laviada, I. The pepper’s natural ingredient capsaicin induces autophagy blockage in prostate cancer cells. Oncotarget 2016, 7, 1569. [Google Scholar] [CrossRef]
  63. Jin, J.; Lin, G.; Huang, H.; Xu, D.; Yu, H.; Ma, X.; Zhu, L.; Ma, D.; Jiang, H. Capsaicin mediates cell cycle arrest and apoptosis in human colon cancer cells via stabilizing and activating p53. Int. J. Biol. Sci. 2014, 10, 285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  64. Mao, X.; Zhu, H.; Luo, D.; Ye, L.; Yin, H.; Zhang, J.; Zhang, Y.; Zhang, Y. Capsaicin inhibits glycolysis in esophageal squamous cell carcinoma by regulating hexokinase-2 expression. Mol. Med. Rep. 2018, 17, 6116–6121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  65. Shin, D.-H.; Kim, O.-H.; Jun, H.-S.; Kang, M.-K. Inhibitory effect of capsaicin on B16-F10 melanoma cell migration via the phosphatidylinositol 3-kinase/Akt/Rac1 signal pathway. Exp. Mol. Med. 2008, 40, 486–494. [Google Scholar] [CrossRef] [PubMed]
  66. Rattanawong, A.; Payon, V.; Limpanasittikul, W.; Boonkrai, C.; Mutirangura, A.; Wonganan, P. Cepharanthine exhibits a potent anticancer activity in p53-mutated colorectal cancer cells through upregulation of p21Waf1/Cip1. Oncol. Rep. 2018, 39, 227–238. [Google Scholar] [CrossRef] [Green Version]
  67. Gao, S.; Li, X.; Ding, X.; Qi, W.; Yang, Q. Cepharanthine induces autophagy, apoptosis and cell cycle arrest in breast cancer cells. Cell. Physiol. Biochem. 2017, 41, 1633–1648. [Google Scholar] [CrossRef]
  68. Payon, V.; Kongsaden, C.; Ketchart, W.; Mutirangura, A.; Wonganan, P. Mechanism of cepharanthine cytotoxicity in human ovarian cancer cells. Planta Med. 2019, 85, 41–47. [Google Scholar] [CrossRef]
  69. Biswas, K.K.; Tancharon, S.; Sarker, K.P.; Kawahara, K.I.; Hashiguchi, T.; Maruyama, I. Cepharanthine triggers apoptosis in a human hepatocellular carcinoma cell line (HuH-7) through the activation of JNK1/2 and the downregulation of Akt. FEBS Lett. 2006, 580, 703–710. [Google Scholar] [CrossRef] [Green Version]
  70. Liu, Y.; Feng, Y.; Li, Y.; Hu, Y.; Zhang, Q.; Huang, Y.; Shi, K.; Ran, C.; Hou, J.; Zhou, G. Chlorogenic acid decreases malignant characteristics of hepatocellular carcinoma cells by inhibiting DNMT1 expression. Front. Pharmacol. 2020, 11, 867. [Google Scholar] [CrossRef]
  71. Gouthamchandra, K.; Sudeep, H.; Venkatesh, B.; Prasad, K.S. Chlorogenic acid complex (CGA7), standardized extract from green coffee beans exerts anticancer effects against cultured human colon cancer HCT-116 cells. Food Sci. Hum. Wellness. 2017, 6, 147–153. [Google Scholar] [CrossRef]
  72. Changizi, Z.; Moslehi, A.; Rohani, A.H.; Eidi, A. Chlorogenic acid inhibits growth of 4T1 breast cancer cells through involvement in Bax/Bcl2 pathway. J. Cancer Res. Ther. 2020, 16, 1435. [Google Scholar]
  73. Zhang, T.; Chen, W.; Jiang, X.; Liu, L.; Wei, K.; Du, H.; Wang, H.; Li, J. Anticancer effects and underlying mechanism of Colchicine on human gastric cancer cell lines In Vitro and In Vivo. Biosci. Rep. 2019, 39, BSR20181802. [Google Scholar] [CrossRef] [Green Version]
  74. Cho, J.H.; Joo, Y.H.; Shin, E.Y.; Park, E.J.; Kim, M.S. Anticancer effects of colchicine on hypopharyngeal cancer. Anticancer Res. 2017, 37, 6269–6280. [Google Scholar]
  75. Bakar-Ateş, F.; Özmen, N.; Kaya-Sezginer, E.; Kurt, E.E. Effects of colchicine on cell cycle arrest and MMP-2 mRNA expression in MCF-7 breast adenocarcinoma cells. Turk. Hij. Den. Biyol. Derg 2018, 75, 239–244. [Google Scholar] [CrossRef]
  76. Huang, Z.; Xu, Y.; Peng, W. Colchicine induces apoptosis in HT-29 human colon cancer cells via the AKT and c-Jun N-terminal kinase signaling pathways. Mol. Med. Rep. 2015, 12, 5939–5944. [Google Scholar] [CrossRef] [PubMed]
  77. Boehle, A.S.; Sipos, B.; Kliche, U.; Kalthoff, H.; Dohrmann, P. Combretastatin A-4 prodrug inhibits growth of human non–small cell lung cancer in a murine xenotransplant model. Ann. Thorac. Surg. 2001, 71, 1657–1665. [Google Scholar] [CrossRef]
  78. Shen, C.H.; Shee, J.J.; Wu, J.Y.; Lin, Y.W.; Wu, J.D.; Liu, Y.W. Combretastatin A-4 inhibits cell growth and metastasis in bladder cancer cells and retards tumour growth in a murine orthotopic bladder tumour model. Br. J. Pharmacol. 2010, 160, 2008–2027. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  79. Wang, H.; Li, W.; Xu, J.; Zhang, T.; Zuo, D.; Zhou, Z.; Lin, B.; Wang, G.; Wang, Z.; Sun, W. NDRG1 inhibition sensitizes osteosarcoma cells to combretastatin A-4 through targeting autophagy. Cell Death Dis. 2017, 8, e3048. [Google Scholar] [CrossRef]
  80. Zhang, B.Y.; Zhang, L.; Chen, Y.M.; Qiao, X.; Zhao, S.L.; Li, P.; Liu, J.F.; Wen, X.; Yang, J. Corosolic acid inhibits colorectal cancer cells growth as a novel HER2/HER3 heterodimerization inhibitor. Br. J. Pharmacol. 2021, 178, 1475–1491. [Google Scholar] [CrossRef]
  81. Park, J.B.; Lee, J.S.; Lee, M.S.; Cha, E.Y.; Kim, S.; Sul, J.Y. Corosolic acid reduces 5-FU chemoresistance in human gastric cancer cells by activating AMPK. Mol. Med. Rep. 2018, 18, 2880–2888. [Google Scholar] [CrossRef] [Green Version]
  82. Zhang, C.; Niu, Y.; Wang, Z.; Xu, X.; Li, Y.; Ma, L.; Wang, J.; Yu, Y. Corosolic acid inhibits cancer progression by decreasing the level of CDK19-mediated O-GlcNAcylation in liver cancer cells. Cell Death Dis. 2021, 12, 1–11. [Google Scholar] [CrossRef]
  83. Ma, B.; Zhang, H.; Wang, Y.; Zhao, A.; Zhu, Z.; Bao, X.; Sun, Y.; Li, L.; Zhang, Q. Corosolic acid, a natural triterpenoid, induces ER stress-dependent apoptosis in human castration resistant prostate cancer cells via activation of IRE-1/JNK, PERK/CHOP and TRIB3. J. Exp. Clin. Cancer Res. 2018, 37, 1–16. [Google Scholar] [CrossRef] [PubMed]
  84. Xu, Y.Q.; Zhang, J.H.; Yang, X.S. Corosolic acid induces potent anti-cancer effects in CaSki cervical cancer cells through the induction of apoptosis, cell cycle arrest and PI3K/Akt signalling pathway. Bangladesh J. Pharmacol. 2016, 11, 453–459. [Google Scholar] [CrossRef] [Green Version]
  85. Woo, S.M.; Seo, S.U.; Min, K.-j.; Im, S.-S.; Nam, J.-O.; Chang, J.-S.; Kim, S.; Park, J.-W.; Kwon, T.K. Corosolic acid induces non-apoptotic cell death through generation of lipid reactive oxygen species production in human renal carcinoma caki cells. Int. J. Mol. Sci. 2018, 19, 1309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  86. Son, K.H.; Hwang, J.H.; Kim, D.H.; Cho, Y.-E. Effect of corosolic acid on apoptosis and angiogenesis in MDA-MB-231 human breast cancer cells. J. Nutr. Health 2020, 53, 111–120. [Google Scholar] [CrossRef]
  87. Cui, A.; Li, X.; Ma, X.; Wang, X.; Liu, C.; Song, Z.; Pan, F.; Xia, Y.; Li, C. Transcriptome and Proteome Analysis Reveals Corosolic Acid Inhibiting Bladder Cancer via Targeting Cell Cycle and Inducing Mitophagy In Vitro and In Vivo. Res. Sq. 2021. [Google Scholar] [CrossRef]
  88. Festuccia, C.; Mancini, A.; Gravina, G.L.; Scarsella, L.; Llorens, S.; Alonso, G.L.; Tatone, C.; Di Cesare, E.; Jannini, E.A.; Lenzi, A. Antitumor effects of saffron-derived carotenoids in prostate cancer cell models. BioMed Res. Int. 2014, 2014, 135048. [Google Scholar] [CrossRef]
  89. Ray, P.; Guha, D.; Chakraborty, J.; Banerjee, S.; Adhikary, A.; Chakraborty, S.; Das, T.; Sa, G. Crocetin exploits p53-induced death domain (PIDD) and FAS-associated death domain (FADD) proteins to induce apoptosis in colorectal cancer. Sci. Rep. 2016, 6, 1–11. [Google Scholar] [CrossRef]
  90. Dhar, A.; Mehta, S.; Dhar, G.; Dhar, K.; Banerjee, S.; Van Veldhuizen, P.; Campbell, D.R.; Banerjee, S.K. Crocetin inhibits pancreatic cancer cell proliferation and tumor progression in a xenograft mouse model. Mol. Cancer Ther. 2009, 8, 315–323. [Google Scholar] [CrossRef] [Green Version]
  91. Bathaie, S.Z.; Hoshyar, R.; Miri, H.; Sadeghizadeh, M. Anticancer effects of crocetin in both human adenocarcinoma gastric cancer cells and rat model of gastric cancer. Biochem. Cell Biol. 2013, 91, 397–403. [Google Scholar] [CrossRef]
  92. Chai, Y.; Xiang, K.; Wu, Y.; Zhang, T.; Liu, Y.; Liu, X.; Zhen, W.; Si, Y. Cucurbitacin B inhibits the Hippo-YAP signaling pathway and exerts anticancer activity in colorectal cancer cells. Med. Sci. Monit. 2018, 24, 9251. [Google Scholar] [CrossRef]
  93. Si, W.; Lyu, J.; Liu, Z.; Wang, C.; Huang, J.; Jiang, L.; Ma, T. Cucurbitacin E inhibits cellular proliferation and enhances the chemo-response in gastric cancer by suppressing AKt activation. J. Cancer 2019, 10, 5843. [Google Scholar] [CrossRef] [PubMed]
  94. Obchoei, S.; Wongkham, S.; Aroonkesorn, A.; Suebsakwong, P.; Suksamrarn, A. Anti-cancer effect of cucurbitacin B on cholangiocarcinoma cells. BMB 2018. [Google Scholar] [CrossRef]
  95. Ku, J.M.; Hong, S.H.; Kim, H.I.; Lim, Y.S.; Lee, S.J.; Kim, M.; Seo, H.S.; Shin, Y.C.; Ko, S.-G. Cucurbitacin D exhibits its anti-cancer effect in human breast cancer cells by inhibiting Stat3 and Akt signaling. Eur. J. Inflam. 2018, 16, 1721727X17751809. [Google Scholar] [CrossRef]
  96. Wang, X.; Hang, Y.; Liu, J.; Hou, Y.; Wang, N.; Wang, M. Anticancer effect of curcumin inhibits cell growth through miR-21/PTEN/Akt pathway in breast cancer cell. Oncol. Lett. 2017, 13, 4825–4831. [Google Scholar] [CrossRef] [Green Version]
  97. Maulina, T.; Hadikrishna, I.; Hardianto, A.; Sjamsudin, E.; Pontjo, B.; Yusuf, H.Y. The therapeutic activity of curcumin through its anti-cancer potential on oral squamous cell carcinoma: A study on Sprague Dawley rat. SAGE Open Med. 2019, 7, 2050312119875982. [Google Scholar] [CrossRef]
  98. Killian, P.H.; Kronski, E.; Michalik, K.M.; Barbieri, O.; Astigiano, S.; Sommerhoff, C.P.; Pfeffer, U.; Nerlich, A.G.; Bachmeier, B.E. Curcumin inhibits prostate cancer metastasis In Vivo by targeting the inflammatory cytokines CXCL1 and-2. Carcinogenesis 2012, 33, 2507–2519. [Google Scholar] [CrossRef] [Green Version]
  99. Tong, W.; Wang, Q.; Sun, D.; Suo, J. Curcumin suppresses colon cancer cell invasion via AMPK-induced inhibition of NF-κB, uPA activator and MMP9. Oncol. Lett. 2016, 12, 4139–4146. [Google Scholar] [CrossRef] [Green Version]
  100. Kim, M.J.; Park, K.-S.; Kim, K.-T.; Gil, E.Y. The inhibitory effect of curcumin via fascin suppression through JAK/STAT3 pathway on metastasis and recurrence of ovary cancer cells. BMC Womens Health 2020, 20, 1–9. [Google Scholar] [CrossRef]
  101. Tang, L.; Liu, J.; Zhu, L.; Chen, Q.; Meng, Z.; Sun, L.; Hu, J.; Ni, Z.; Wang, X. Curcumin inhibits growth of human NCI-H292 lung squamous cell carcinoma cells by increasing FOXA2 expression. Front. Pharmacol. 2018, 9, 60. [Google Scholar] [CrossRef] [Green Version]
  102. Liu, Y.; Zhou, Z.; Yan, J.; Wu, X.; Xu, G. Diosgenin exerts antitumor activity via downregulation of Skp2 in breast cancer cells. Biomed Res. Int. 2020, 2020, 8072639. [Google Scholar] [CrossRef]
  103. Li, Y.; Wang, X.; Cheng, S.; Du, J.; Deng, Z.; Zhang, Y.; Liu, Q.; Gao, J.; Cheng, B.; Ling, C. Diosgenin induces G2/M cell cycle arrest and apoptosis in human hepatocellular carcinoma cells. Oncol. Rep. 2015, 33, 693–698. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  104. Jia, S.-S.; Xi, G.-P.; Zhang, M.; Chen, Y.-B.; Lei, B.; Dong, X.-S.; Yang, Y.-M. Induction of apoptosis by D-limonene is mediated by inactivation of Akt in LS174T human colon cancer cells. Oncol. Rep. 2013, 29, 349–354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  105. Yu, X.; Lin, H.; Wang, Y.; Lv, W.; Zhang, S.; Qian, Y.; Deng, X.; Feng, N.; Yu, H.; Qian, B. D-limonene exhibits antitumor activity by inducing autophagy and apoptosis in lung cancer. Onco Targets Ther. 2018, 11, 1833. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  106. Rabi, T.; Bishayee, A. d-Limonene sensitizes docetaxel-induced cytotoxicity in human prostate cancer cells: Generation of reactive oxygen species and induction of apoptosis. J. Carcinog. 2009, 8. [Google Scholar] [CrossRef]
  107. Zhang, N.; Wang, J.; Sheng, A.; Huang, S.; Tang, Y.; Ma, S.; Hong, G. Emodin Inhibits the proliferation of MCF-7 human breast cancer cells through activation of aryl hydrocarbon receptor (AhR). Front. Pharmacol. 2021, 2372. [Google Scholar] [CrossRef]
  108. Li, M.; Jin, S.; Cao, Y.; Xu, J.; Zhu, S.; Li, Z. Emodin regulates cell cycle of non-small lung cancer (NSCLC) cells through hyaluronan synthase 2 (HA2)-HA-CD44/receptor for hyaluronic acid-mediated motility (RHAMM) interaction-dependent signaling pathway. Cancer Cell Int. 2021, 21, 1–12. [Google Scholar] [CrossRef]
  109. Lin, S.-Z.; Wei, W.-T.; Chen, H.; Chen, K.-J.; Tong, H.-F.; Wang, Z.-H.; Ni, Z.-L.; Liu, H.-B.; Guo, H.-C.; Liu, D.-L. Antitumor activity of emodin against pancreatic cancer depends on its dual role: Promotion of apoptosis and suppression of angiogenesis. PLoS ONE 2012, 7, e42146. [Google Scholar] [CrossRef]
  110. Saunders, I.T.; Mir, H.; Kapur, N.; Singh, S. Emodin inhibits colon cancer by altering BCL-2 family proteins and cell survival pathways. Cancer Cell Int. 2019, 19, 1–15. [Google Scholar] [CrossRef] [Green Version]
  111. Deng, G.; Ju, X.; Meng, Q.; Yu, Z.J.; Ma, L.B. Emodin inhibits the proliferation of PC3 prostate cancer cells In Vitro via the Notch signaling pathway. Mol. Med. Rep. 2015, 12, 4427–4433. [Google Scholar] [CrossRef] [Green Version]
  112. Kwak, T.W.; Park, S.B.; Kim, H.-J.; Jeong, Y.-I.; Kang, D.H. Anticancer activities of epigallocatechin-3-gallate against cholangiocarcinoma cells. Onco Targets Ther. 2017, 10, 137. [Google Scholar] [CrossRef]
  113. Chen, B.-H.; Hsieh, C.-H.; Tsai, S.-Y.; Wang, C.-Y.; Wang, C.-C. Anticancer effects of epigallocatechin-3-gallate nanoemulsion on lung cancer cells through the activation of AMP-activated protein kinase signaling pathway. Sci. Rep. 2020, 10, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  114. Rao, S.D.; Pagidas, K. Epigallocatechin-3-gallate, a natural polyphenol, inhibits cell proliferation and induces apoptosis in human ovarian cancer cells. Anticancer Res. 2010, 30, 2519–2523. [Google Scholar] [PubMed]
  115. Moses, M.A.; Henry, E.C.; Ricke, W.A.; Gasiewicz, T.A. The heat shock protein 90 inhibitor,(−)-epigallocatechin gallate, has anticancer activity in a novel human prostate cancer progression model. Cancer Prev. Res. 2015, 8, 249–257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  116. Shin, Y.S.; Kang, S.U.; Park, J.K.; Kim, Y.E.; Kim, Y.S.; Baek, S.J.; Lee, S.-H.; Kim, C.-H. Anti-cancer effect of (−)-epigallocatechin-3-gallate (EGCG) in head and neck cancer through repression of transactivation and enhanced degradation of β-catenin. Phytomedicine 2016, 23, 1344–1355. [Google Scholar] [CrossRef]
  117. Md Nesran, Z.N.; Shafie, N.H.; Ishak, A.H.; Mohd Esa, N.; Ismail, A.; Md Tohid, S.F. Induction of endoplasmic reticulum stress pathway by green tea epigallocatechin-3-gallate (EGCG) in colorectal cancer cells: Activation of PERK/p-eIF2α/ATF4 and IRE1α. Biomed Res. Int. 2019, 2019. [Google Scholar] [CrossRef] [Green Version]
  118. Xu, Y.; Fang, R.; Shao, J.; Cai, Z. Erianin induces triple-negative breast cancer cells apoptosis by activating PI3K/Akt pathway. Biosci. Rep. 2021, 41, BSR20210093. [Google Scholar] [CrossRef]
  119. Chen, P.; Wu, Q.; Feng, J.; Yan, L.; Sun, Y.; Liu, S.; Xiang, Y.; Zhang, M.; Pan, T.; Chen, X. Erianin, a novel dibenzyl compound in Dendrobium extract, inhibits lung cancer cell growth and migration via calcium/calmodulin-dependent ferroptosis. Signal Transduct. Target. Ther. 2020, 5, 1–11. [Google Scholar] [CrossRef]
  120. Chen, Y.-T.; Hsieh, M.-J.; Chen, P.-N.; Weng, C.-J.; Yang, S.-F.; Lin, C.-W. Erianin induces apoptosis and autophagy in oral squamous cell carcinoma cells. Am. J. Chin. Med. 2020, 48, 183–200. [Google Scholar] [CrossRef]
  121. Zhu, Q.; Sheng, Y.; Li, W.; Wang, J.; Ma, Y.; Du, B.; Tang, Y. Erianin, a novel dibenzyl compound in Dendrobium extract, inhibits bladder cancer cell growth via the mitochondrial apoptosis and JNK pathways. Toxicol. Appl. Pharmacol. 2019, 371, 41–54. [Google Scholar] [CrossRef]
  122. Wang, H.; Zhang, T.; Sun, W.; Wang, Z.; Zuo, D.; Zhou, Z.; Li, S.; Xu, J.; Yin, F.; Hua, Y. Erianin induces G2/M-phase arrest, apoptosis, and autophagy via the ROS/JNK signaling pathway in human osteosarcoma cells In Vitro and In Vivo. Cell Death Dis. 2016, 7, e2247. [Google Scholar] [CrossRef] [Green Version]
  123. Tang, J.; Liu, J.; Zhang, C.; Zhou, C.; Chen, J. Erianin induces apoptosis of colorectal cancer cells via activation of JNK signaling pathways. Int. J. Clin. Exp. Med. 2019, 12, 11404–11411. [Google Scholar]
  124. Li, M.; He, Y.; Peng, C.; Xie, X.; Hu, G. Erianin inhibits human cervical cancer cell through regulation of tumor protein p53 via the extracellular signal-regulated kinase signaling pathway. Oncol. Lett. 2018, 16, 5006–5012. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  125. Jiang, Z.-B.; Huang, J.-M.; Xie, Y.-J.; Zhang, Y.-Z.; Chang, C.; Lai, H.-L.; Wang, W.; Yao, X.-J.; Fan, X.-X.; Wu, Q.-B. Evodiamine suppresses non-small cell lung cancer by elevating CD8+ T cells and downregulating the MUC1-C/PD-L1 axis. J. Exp. Clin. Cancer Res. 2020, 39, 1–16. [Google Scholar] [CrossRef]
  126. Chen, M.C.; Yu, C.H.; Wang, S.W.; Pu, H.F.; Kan, S.F.; Lin, L.C.; Chi, C.W.; Ho, L.L.T.; Lee, C.H.; Wang, P.S. Anti-proliferative effects of evodiamine on human thyroid cancer cell line ARO. J. Cell. Biochem. 2010, 110, 1495–1503. [Google Scholar] [CrossRef] [PubMed]
  127. Kan, S.F.; Yu, C.H.; Pu, H.F.; Hsu, J.M.; Chen, M.J.; Wang, P.S. Anti-proliferative effects of evodiamine on human prostate cancer cell lines DU145 and PC3. J. Cell. Biochem. 2007, 101, 44–56. [Google Scholar] [CrossRef] [PubMed]
  128. Jia, J.; Kang, X.; Liu, Y.; Zhang, J. Inhibition of human liver cancer cell growth by evodiamine involves apoptosis and deactivation of PI3K/AKT pathway. Appl. Biol. Chem. 2020, 63, 1–8. [Google Scholar] [CrossRef]
  129. Shi, C.-S.; Li, J.-M.; Chin, C.-C.; Kuo, Y.-H.; Lee, Y.-R.; Huang, Y.-C. Evodiamine induces cell growth arrest, apoptosis and suppresses tumorigenesis in human urothelial cell carcinoma cells. Anticancer Res. 2017, 37, 1149–1159. [Google Scholar]
  130. Zhou, P.; Li, X.-P.; Jiang, R.; Chen, Y.; Lv, X.-T.; Guo, X.-X.; Tian, K.; Yuan, D.-Z.; Lv, Y.-W.; Ran, J.-H. Evodiamine inhibits migration and invasion by Sirt1-mediated post-translational modulations in colorectal cancer. Anticancer Drugs 2019, 30, 611. [Google Scholar] [CrossRef]
  131. Zhong, Z.-F.; Tan, W.; Wang, S.-P.; Qiang, W.-A.; Wang, Y.-T. Anti-proliferative activity and cell cycle arrest induced by evodiamine on paclitaxel-sensitive and-resistant human ovarian cancer cells. Sci. Rep. 2015, 5, 1–12. [Google Scholar] [CrossRef] [Green Version]
  132. Khan, M.; Qazi, J.I.; Rasul, A.; Zheng, Y.; Ma, T. Evodiamine induces apoptosis in pancreatic carcinoma PANC-1 cells via NF-κB inhibition. Bangladesh J. Pharmacol. 2013, 8, 8–14. [Google Scholar] [CrossRef]
  133. Wang, S.; Wang, K.; Wang, H.; Han, J.; Sun, H. Autophagy is essential for flavopiridol-induced cytotoxicity against MCF-7 breast cancer cells. Mol. Med. Rep. 2017, 16, 9715–9720. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  134. Pinto, N.; Prokopec, S.D.; Ghasemi, F.; Meens, J.; Ruicci, K.M.; Khan, I.M.; Mundi, N.; Patel, K.; Han, M.W.; Yoo, J. Flavopiridol causes cell cycle inhibition and demonstrates anti-cancer activity in anaplastic thyroid cancer models. PLoS ONE 2020, 15, e0239315. [Google Scholar] [CrossRef] [PubMed]
  135. Saisomboon, S.; Kariya, R.; Vaeteewoottacharn, K.; Wongkham, S.; Sawanyawisuth, K.; Okada, S. Antitumor effects of flavopiridol, a cyclin-dependent kinase inhibitor, on human cholangiocarcinoma In Vitro and in an In Vivo xenograft model. Heliyon 2019, 5, e01675. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  136. Patel, V.; Senderowicz, A.M.; Pinto, D.; Igishi, T.; Raffeld, M.; Quintanilla-Martinez, L.; Ensley, J.F.; Sausville, E.A.; Gutkind, J.S. Flavopiridol, a novel cyclin-dependent kinase inhibitor, suppresses the growth of head and neck squamous cell carcinomas by inducing apoptosis. J. Clin. Investig. 1998, 102, 1674–1681. [Google Scholar] [CrossRef] [Green Version]
  137. Cetintas, V.B.; Acikgoz, E.; Yigitturk, G.; Demir, K.; Oktem, G.; Kaymaz, B.T.; Oltulu, F.; Aktug, H. Effects of flavopiridol on critical regulation pathways of CD133high/CD44high lung cancer stem cells. Medicine 2016, 95. [Google Scholar] [CrossRef]
  138. Hassan, M.S.; Cwidak, N.; Johnson, C.; Däster, S.; Eppenberger-Castori, S.; Awasthi, N.; Li, J.; Schwarz, M.A.; von Holzen, U. Therapeutic Potential of the Cyclin-Dependent Kinase Inhibitor Flavopiridol on c-Myc Overexpressing Esophageal Cancer. Front. Pharmacol. 2021, 2589. [Google Scholar] [CrossRef]
  139. Ko, E.-B.; Jang, Y.-G.; Kim, C.-W.; Go, R.-E.; Lee, H.K.; Choi, K.-C. Gallic Acid Hindered Lung Cancer Progression by Inducing Cell Cycle Arrest and Apoptosis in A549 Lung Cancer Cells via PI3K/Akt Pathway. Biomol. Ther. 2021, 30, 151–161. [Google Scholar] [CrossRef]
  140. Shi, C.-j.; Zheng, Y.B.; Pan, F.F.; Zhang, F.W.; Zhuang, P.; Fu, W.M. Gallic Acid Suppressed Tumorigenesis by an LncRNA MALAT1-Wnt/β-Catenin Axis in Hepatocellular Carcinoma. Front. Pharmacol. 2021, 12. [Google Scholar] [CrossRef]
  141. Moghtaderi, H.; Sepehri, H.; Delphi, L.; Attari, F. Gallic acid and curcumin induce cytotoxicity and apoptosis in human breast cancer cell MDA-MB-231. BioImpacts BI 2018, 8, 185. [Google Scholar] [CrossRef] [Green Version]
  142. Lin, X.; Wang, G.; Liu, P.; Han, L.; Wang, T.; Chen, K.; Gao, Y. Gallic acid suppresses colon cancer proliferation by inhibiting SRC and EGFR phosphorylation. Exp. Ther. Med. 2021, 21, 1–11. [Google Scholar] [CrossRef]
  143. Tsai, C.-L.; Chiu, Y.-M.; Ho, T.-Y.; Hsieh, C.-T.; Shieh, D.-C.; Lee, Y.-J.; Tsay, G.J.; Wu, Y.-Y. Gallic acid induces apoptosis in human gastric adenocarcinoma cells. Anticancer Res. 2018, 38, 2057–2067. [Google Scholar] [PubMed]
  144. Chen, H.-M.; Wu, Y.-C.; Chia, Y.-C.; Chang, F.-R.; Hsu, H.-K.; Hsieh, Y.-C.; Chen, C.-C.; Yuan, S.-S. Gallic acid, a major component of Toona sinensis leaf extracts, contains a ROS-mediated anti-cancer activity in human prostate cancer cells. Cancer Lett. 2009, 286, 161–171. [Google Scholar] [CrossRef] [PubMed]
  145. Varela-Rodríguez, L.; Sánchez-Ramírez, B.; Hernández-Ramírez, V.I.; Varela-Rodríguez, H.; Castellanos-Mijangos, R.D.; González-Horta, C.; Chávez-Munguía, B.; Talamás-Rohana, P. Effect of Gallic acid and Myricetin on ovarian cancer models: A possible alternative antitumoral treatment. BMC Complement. Med. Ther. 2020, 20, 1–16. [Google Scholar] [CrossRef] [PubMed]
  146. Liu, Z.; Li, D.; Yu, L.; Niu, F. Gallic acid as a cancer-selective agent induces apoptosis in pancreatic cancer cells. Chemotherapy 2012, 58, 185–194. [Google Scholar] [CrossRef] [PubMed]
  147. Hatami, E.; Nagesh, P.K.; Jaggi, M.; Chauhan, S.C.; Yallapu, M.M. Gambogic acid potentiates gemcitabine induced anticancer activity in non-small cell lung cancer. Eur. J. Pharmacol. 2020, 888, 173486. [Google Scholar] [CrossRef]
  148. Zhou, J.; Luo, Y.-H.; Wang, J.-R.; Lu, B.-B.; Wang, K.-M.; Tian, Y. Gambogenic acid induction of apoptosis in a breast cancer cell line. Asian Pac. J. Cancer Prev. 2013, 14, 7601–7605. [Google Scholar] [CrossRef] [Green Version]
  149. Lee, P.N.H.; Ho, W.S. Antiproliferative activity of gambogic acid isolated from Garcinia hanburyi in Hep3B and Huh7 cancer cells. Oncol. Rep. 2013, 29, 1744–1750. [Google Scholar] [CrossRef] [Green Version]
  150. Pan, H.; Jansson, K.H.; Beshiri, M.L.; Yin, J.; Fang, L.; Agarwal, S.; Nguyen, H.; Corey, E.; Zhang, Y.; Liu, J. Gambogic acid inhibits thioredoxin activity and induces ROS-mediated cell death in castration-resistant prostate cancer. Oncotarget 2017, 8, 77181. [Google Scholar] [CrossRef]
  151. Zhang, H.; Lei, Y.; Yuan, P.; Li, L.; Luo, C.; Gao, R.; Tian, J.; Feng, Z.; Nice, E.C.; Sun, J. ROS-mediated autophagy induced by dysregulation of lipid metabolism plays a protective role in colorectal cancer cells treated with gambogic acid. PLoS ONE 2014, 9, e96418. [Google Scholar] [CrossRef]
  152. Lin, D.; Lin, X.; He, T.; Xie, G. Gambogic Acid Inhibits the Progression of Gastric Cancer via circRNA_ASAP2/miR-33a-5p/CDK7 Axis. Cancer Manag. Res. 2020, 12, 9221. [Google Scholar] [CrossRef]
  153. Zhang, Q.; Bao, J.; Yang, J. Genistein-triggered anticancer activity against liver cancer cell line HepG2 involves ROS generation, mitochondrial apoptosis, G2/M cell cycle arrest and inhibition of cell migration. Arch. Med. Sci. 2019, 15, 1001. [Google Scholar] [CrossRef] [PubMed]
  154. Qin, J.; Chen, J.X.; Zhu, Z.; Teng, J.A. Genistein inhibits human colorectal cancer growth and suppresses miR-95, Akt and SGK1. Cell. Physiol. Biochem. 2015, 35, 2069–2077. [Google Scholar] [CrossRef] [PubMed]
  155. Pavese, J.M.; Krishna, S.N.; Bergan, R.C. Genistein inhibits human prostate cancer cell detachment, invasion, and metastasis. Am. J. Clin. Nutr. 2014, 100, 431S–436S. [Google Scholar] [CrossRef] [PubMed]
  156. Fu, Z.; Cao, X.; Liu, L.; Cao, X.; Cui, Y.; Li, X.; Quan, M.; Ren, K.; Chen, A.; Xu, C. Genistein inhibits lung cancer cell stem-like characteristics by modulating MnSOD and FoxM1 expression. Oncol. Lett. 2020, 20, 2506–2515. [Google Scholar] [CrossRef]
  157. Sp, N.; Kang, D.Y.; Lee, J.-M.; Bae, S.W.; Jang, K.-J. Potential antitumor effects of 6-gingerol in p53-dependent mitochondrial apoptosis and inhibition of tumor sphere formation in breast cancer cells. Int. J. Mol. Sci. 2021, 22, 4660. [Google Scholar] [CrossRef]
  158. Kapoor, V.; Aggarwal, S.; Das, S.N. 6-Gingerol mediates its anti tumor activities in human oral and cervical cancer cell lines through apoptosis and cell cycle arrest. Phytother. Res. 2016, 30, 588–595. [Google Scholar] [CrossRef]
  159. Tsai, Y.; Xia, C.; Sun, Z. The Inhibitory Effect of 6-Gingerol on Ubiquitin-Specific Peptidase 14 Enhances Autophagy-Dependent Ferroptosis and Anti-Tumor In Vivo and In Vitro. Front. Pharmacol. 2020, 11, 1792. [Google Scholar] [CrossRef]
  160. Park, Y.J.; Wen, J.; Bang, S.; Park, S.W.; Song, S.Y. [6]-Gingerol induces cell cycle arrest and cell death of mutant p53-expressing pancreatic cancer cells. Yonsei Med. J. 2006, 47, 688–697. [Google Scholar] [CrossRef] [Green Version]
  161. Park, Y.; Woo, S.H.; Seo, S.K.; Kim, H.; Noh, W.C.; Lee, J.K.; Kwon, B.M.; Min, K.N.; Choe, T.B.; Park, I.C. Ginkgetin induces cell death in breast cancer cells via downregulation of the estrogen receptor. Oncol. Lett. 2017, 14, 5027–5033. [Google Scholar] [CrossRef] [Green Version]
  162. Lou, J.-S.; Bi, W.-C.; Chan, G.K.; Jin, Y.; Wong, C.-W.; Zhou, Z.-Y.; Wang, H.-Y.; Yao, P.; Dong, T.T.; Tsim, K.W. Ginkgetin induces autophagic cell death through p62/SQSTM1-mediated autolysosome formation and redox setting in non-small cell lung cancer. Oncotarget 2017, 8, 93131. [Google Scholar] [CrossRef]
  163. Jeon, Y.J.; Jung, S.N.; Yun, J.; Lee, C.W.; Choi, J.; Lee, Y.J.; Han, D.C.; Kwon, B.M. Ginkgetin inhibits the growth of DU− 145 prostate cancer cells through inhibition of signal transducer and activator of transcription 3 activity. Cancer Sci. 2015, 106, 413–420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  164. Xiong, M.; Wang, L.; Yu, H.L.; Han, H.; Mao, D.; Chen, J.; Zeng, Y.; He, N.; Liu, Z.G.; Wang, Z.Y. Ginkgetin exerts growth inhibitory and apoptotic effects on osteosarcoma cells through inhibition of STAT3 and activation of caspase-3/9. Oncol. Rep. 2016, 35, 1034–1040. [Google Scholar] [CrossRef] [PubMed]
  165. Su, Y.; Sun, C.-M.; Chuang, H.-H.; Chang, P.-T. Studies on the cytotoxic mechanisms of ginkgetin in a human ovarian adenocarcinoma cell line. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2000, 362, 82–90. [Google Scholar] [CrossRef] [PubMed]
  166. Ren, Y.; Huang, S.S.; Wang, X.; Lou, Z.G.; Yao, X.P.; Weng, G.B. Ginkgetin induces apoptosis in 786-O cell line via suppression of JAK2-STAT3 pathway. Iran. J. Basic Med. Sci. 2016, 19, 1245. [Google Scholar]
  167. Lin, S.-C.; Chu, P.-Y.; Liao, W.-T.; Wu, M.-Y.; Tsui, K.-H.; Lin, L.-T.; Huang, C.-H.; Chen, L.-L.; Li, C.-J. Glycyrrhizic acid induces human MDA-MB-231 breast cancer cell death and autophagy via the ROS-mitochondrial pathway. Oncol. Rep. 2018, 39, 703–710. [Google Scholar] [CrossRef] [Green Version]
  168. Wang, H.; Ge, X.; Qu, H.; Wang, N.; Zhou, J.; Xu, W.; Xie, J.; Zhou, Y.; Shi, L.; Qin, Z. Glycyrrhizic Acid Inhibits Proliferation of Gastric Cancer Cells by Inducing Cell Cycle Arrest and Apoptosis. Cancer Manag. Res. 2020, 12, 2853. [Google Scholar] [CrossRef] [Green Version]
  169. Thirugnanam, S.; Xu, L.; Ramaswamy, K.; Gnanasekar, M. Glycyrrhizin induces apoptosis in prostate cancer cell lines DU-145 and LNCaP. Oncol. Rep. 2008, 20, 1387–1392. [Google Scholar]
  170. Haghshenas, V.; Fakhari, S.; Mirzaie, S.; Rahmani, M.; Farhadifar, F.; Pirzadeh, S.; Jalili, A. Glycyrrhetinic Acid inhibits cell growth and induces apoptosis in ovarian cancer a2780 cells. Adv. Pharm. Bull. 2014, 4, 437. [Google Scholar]
  171. Cao, H.; Sethumadhavan, K.; Cao, F.; Wang, T.T. Gossypol decreased cell viability and down-regulated the expression of a number of genes in human colon cancer cells. Sci. Rep. 2021, 11, 1–16. [Google Scholar] [CrossRef]
  172. Messeha, S.S.; Zarmouh, N.O.; Mendonca, P.; Cotton, C.; Soliman, K.F. Molecular mechanism of gossypol mediating CCL2 and IL-8 attenuation in triple-negative breast cancer cells. Mol. Med. Rep. 2020, 22, 1213–1226. [Google Scholar] [CrossRef]
  173. Wang, Y.; Lai, H.; Fan, X.; Luo, L.; Duan, F.; Jiang, Z.; Wang, Q.; Leung, E.L.H.; Liu, L.; Yao, X. Gossypol inhibits non-small cell lung cancer cells proliferation by targeting EGFRL858R/T790M. Front. Pharmacol. 2018, 9, 728. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  174. Volate, S.R.; Kawasaki, B.T.; Hurt, E.M.; Milner, J.A.; Kim, Y.S.; White, J.; Farrar, W.L. Gossypol Induces Apoptosis by Activating p53 in Prostate Cancer Cells and Prostate Tumor–Initiating Cells. Mol. Cancer Ther. 2010, 9, 461–470. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  175. Wang, J.; Jin, L.; Li, X.; Deng, H.; Chen, Y.; Lian, Q.; Ge, R.; Deng, H. Gossypol induces apoptosis in ovarian cancer cells through oxidative stress. Mol. Biosyst. 2013, 9, 1489–1497. [Google Scholar] [CrossRef] [PubMed]
  176. Hsieh, Y.-S.; Chu, S.-C.; Huang, S.-C.; Kao, S.-H.; Lin, M.-S.; Chen, P.-N. Gossypol Reduces Metastasis and Epithelial-Mesenchymal Transition by Targeting Protease in Human Cervical Cancer. Am. J. Chin. Med. 2021, 49, 181–198. [Google Scholar] [CrossRef]
  177. Wolter, K.G.; Wang, S.J.; Henson, B.S.; Wang, S.; Griffith, K.A.; Kumar, B.; Chen, J.; Carey, T.E.; Bradford, C.R.; D’Silva, N.J. (−)-gossypol inhibits growth and promotes apoptosis of human head and neck squamous cell carcinoma In Vivo. Neoplasia 2006, 8, 163–172. [Google Scholar] [CrossRef] [Green Version]
  178. Haasler, L.; Kondadi, A.K.; Tsigaras, T.; von Montfort, C.; Graf, P.; Stahl, W.; Brenneisen, P. The BH3 mimetic (±) gossypol induces ROS-independent apoptosis and mitochondrial dysfunction in human A375 melanoma cells In Vitro. Arch. Toxicol. 2021, 95, 1349–1365. [Google Scholar] [CrossRef]
  179. Ding, Y.; He, J.; Huang, J.; Yu, T.; Shi, X.; Zhang, T.; Yan, G.; Chen, S.; Peng, C. Harmine induces anticancer activity in breast cancer cells via targeting TAZ. Int. J. Oncol. 2019, 54, 1995–2004. [Google Scholar] [CrossRef] [Green Version]
  180. Ruan, S.; Jia, F.; Li, J. Potential antitumor effect of harmine in the treatment of thyroid cancer. Evid. Based Complement. Alternat. Med. 2017, 2017. [Google Scholar] [CrossRef] [Green Version]
  181. Li, C.; Wang, Y.; Wang, C.; Yi, X.; Li, M.; He, X. Anticancer activities of harmine by inducing a pro-death autophagy and apoptosis in human gastric cancer cells. Phytomedicine 2017, 28, 10–18. [Google Scholar] [CrossRef]
  182. Wu, L.-W.; Zhang, J.-K.; Rao, M.; Zhang, Z.-Y.; Zhu, H.-J.; Zhang, C. Harmine suppresses the proliferation of pancreatic cancer cells and sensitizes pancreatic cancer to gemcitabine treatment. Onco Targets Ther. 2019, 12, 4585. [Google Scholar] [CrossRef] [Green Version]
  183. Gao, J.; Zhu, H.; Wan, H.; Zou, X.; Ma, X.; Gao, G. Harmine suppresses the proliferation and migration of human ovarian cancer cells through inhibiting ERK/CREB pathway. Oncol. Rep. 2017, 38, 2927–2934. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  184. Zhang, X.-F.; Sun, R.Q.; Jia, Y.F.; Chen, Q.; Tu, R.-F.; Li, K.K.; Zhang, X.-D.; Du, R.-L.; Cao, R.H. Synthesis and mechanisms of action of novel harmine derivatives as potential antitumor agents. Sci. Rep. 2016, 6, 1–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  185. Cincin, Z.B.; Unlu, M.; Kiran, B.; Bireller, E.S.; Baran, Y.; Cakmakoglu, B. Anti-proliferative, apoptotic and signal transduction effects of hesperidin in non-small cell lung cancer cells. Cell. Oncol. 2015, 38, 195–204. [Google Scholar] [CrossRef] [Green Version]
  186. Banjerdpongchai, R.; Wudtiwai, B.; Khaw-On, P.; Rachakhom, W.; Duangnil, N.; Kongtawelert, P. Hesperidin from Citrus seed induces human hepatocellular carcinoma HepG2 cell apoptosis via both mitochondrial and death receptor pathways. Tumor Biol. 2016, 37, 227–237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  187. Zhao, W.; Chen, Y.; Zhang, X. Hesperidin-triggered necrosis-like cell death in skin cancer cell line A431 might be prompted by ROS mediated alterations in mitochondrial membrane potential. Int. J. Clin. Exp. Med. 2018, 11, 1948–1954. [Google Scholar]
  188. Ning, L.; Zhao, W.; Gao, H.; Wu, Y. Hesperidin induces anticancer effects on human prostate cancer cells via ROS-mediated necrosis like cell death. J. BUON 2020, 25, 2629–2634. [Google Scholar]
  189. Kongtawelert, P.; Wudtiwai, B.; Shwe, T.H.; Pothacharoen, P.; Phitak, T. Inhibitory effect of Hesperidin on the expression of programmed death ligand (PD-L1) in breast Cancer. Molecules 2020, 25, 252. [Google Scholar] [CrossRef] [Green Version]
  190. Lv, L.; Zhang, W.; Li, T.; Jiang, L.; Lu, X.; Lin, J. Hispidulin exhibits potent anticancer activity In Vitro and In Vivo through activating ER stress in non-small-cell lung cancer cells. Oncol. Rep. 2020, 43, 1995–2003. [Google Scholar] [CrossRef] [Green Version]
  191. Han, M.; Gao, H.; Ju, P.; Gao, M.Q.; Yuan, Y.P.; Chen, X.H.; Liu, K.L.; Han, Y.T.; Han, Z.W. Hispidulin inhibits hepatocellular carcinoma growth and metastasis through AMPK and ERK signaling mediated activation of PPARγ. Biomed. Pharmacother. 2018, 103, 272–283. [Google Scholar] [CrossRef]
  192. Gao, H.; Gao, M.Q.; Peng, J.J.; Han, M.; Liu, K.L.; Han, Y.T. Hispidulin mediates apoptosis in human renal cell carcinoma by inducing ceramide accumulation. Acta Pharmacol. Sin. 2017, 38, 1618–1631. [Google Scholar] [CrossRef] [Green Version]
  193. Yu, C.Y.; Su, K.-Y.; Lee, P.-L.; Jhan, J.-Y.; Tsao, P.-H.; Chan, D.-C.; Chen, Y.-L.S. Potential therapeutic role of hispidulin in gastric cancer through induction of apoptosis via NAG-1 signaling. Evid. Based Complement. Alternat. Med. 2013, 2013, 518301. [Google Scholar] [CrossRef] [PubMed]
  194. Zhu, L.; Xue, L. Kaempferol suppresses proliferation and induces cell cycle arrest, apoptosis, and DNA damage in breast cancer cells. Oncol. Res. 2019, 27, 629. [Google Scholar] [CrossRef] [PubMed]
  195. Han, B.; Yu, Y.-Q.; Yang, Q.-L.; Shen, C.-Y.; Wang, X.-J. Kaempferol induces autophagic cell death of hepatocellular carcinoma cells via activating AMPK signaling. Oncotarget 2017, 8, 86227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  196. Hung, T.-W.; Chen, P.-N.; Wu, H.-C.; Wu, S.-W.; Tsai, P.-Y.; Hsieh, Y.-S.; Chang, H.-R. Kaempferol inhibits the invasion and migration of renal cancer cells through the downregulation of AKT and FAK pathways. Int. J. Med. Sci. 2017, 14, 984. [Google Scholar] [CrossRef] [Green Version]
  197. Tu, L.Y.; Bai, H.H.; Cai, J.Y.; Deng, S.P. The mechanism of kaempferol induced apoptosis and inhibited proliferation in human cervical cancer SiHa cell: From macro to nano. Scanning 2016, 38, 644–653. [Google Scholar] [CrossRef] [Green Version]
  198. Wang, F.; Wang, L.; Qu, C.; Chen, L.; Geng, Y.; Cheng, C.; Yu, S.; Wang, D.; Yang, L.; Meng, Z. Kaempferol induces ROS-dependent apoptosis in pancreatic cancer cells via TGM2-mediated Akt/mTOR signaling. BMC Cancer 2021, 21, 1–11. [Google Scholar] [CrossRef]
  199. Li, W.; Du, B.; Wang, T.; Wang, S.; Zhang, J. Kaempferol induces apoptosis in human HCT116 colon cancer cells via the Ataxia-Telangiectasia Mutated-p53 pathway with the involvement of p53 Upregulated Modulator of Apoptosis. Chem. Biol. Interact. 2009, 177, 121–127. [Google Scholar] [CrossRef]
  200. Yang, J.; Chen, H.; Wang, Q.; Deng, S.; Huang, M.; Ma, X.; Song, P.; Du, J.; Huang, Y.; Wen, Y. Inhibitory effect of kurarinone on growth of human non-small cell lung cancer: An experimental study both In Vitro and In Vivo studies. Front. Pharmacol. 2018, 9, 252. [Google Scholar] [CrossRef]
  201. Zhou, W.; Cao, A.; Wang, L.; Wu, D. Kurarinone synergizes TRAIL-induced apoptosis in gastric cancer cells. Cell Biochem. Biophys. 2015, 72, 241–249. [Google Scholar] [CrossRef]
  202. De Naeyer, A.; Vanden Berghe, W.; Pocock, V.; Milligan, S.; Haegeman, G.; De Keukeleire, D. Estrogenic and Anticarcinogenic Properties of Kurarinone, a Lavandulyl Flavanone from the Roots of Sophora f lavescens. J. Nat. Prod. 2004, 67, 1829–1832. [Google Scholar] [CrossRef]
  203. Qu, D.; Zhang, X.; Sang, C.; Zhou, Y.; Ma, J.; Hui, L. Lappaconitine sulfate induces apoptosis in human colon cancer HT-29 cells and down-regulates PI3K/AKT/GSK3β signaling pathway. Med. Chem. Res. 2019, 28, 907–916. [Google Scholar] [CrossRef]
  204. Sheng, L.-H.; Xu, M.; Xu, L.-Q.; Xiong, F. Cytotoxic effect of lappaconitine on non-small cell lung cancer In Vitro and its molecular mechanism. J. Chin. Med. Mater. 2014, 37, 840–843. [Google Scholar]
  205. Song, N.; Ma, J.; Zhang, X.; Qu, D.; Hui, L.; Sang, C.; Li, H. Lappaconitine hydrochloride induces apoptosis and S phase cell cycle arrest through MAPK signaling pathway in human liver cancer HepG2 cells. Pharmacogn. Mag. 2021, 17, 334. [Google Scholar]
  206. Xue, L.; Zhang, W.J.; Fan, Q.X.; Wang, L.X. Licochalcone A inhibits PI3K/Akt/mTOR signaling pathway activation and promotes autophagy in breast cancer cells. Oncol. Lett. 2018, 15, 1869–1873. [Google Scholar] [CrossRef] [PubMed]
  207. Yuan, X.; Li, D.; Zhao, H.; Jiang, J.; Wang, P.; Ma, X.; Sun, X.; Zheng, Q. Licochalcone A-induced human bladder cancer T24 cells apoptosis triggered by mitochondria dysfunction and endoplasmic reticulum stress. Biomed Res. Int. 2013, 2013, 911–919. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  208. Luo, W.; Sun, R.; Chen, X.; Li, J.; Jiang, J.; He, Y.; Shi, S.; Wen, H. ERK activation-mediated autophagy induction resists licochalcone A-induced anticancer activities in lung cancer cells In Vitro. Onco Targets Ther. 2020, 13, 13437. [Google Scholar] [CrossRef]
  209. Tsai, J.-P.; Hsiao, P.-C.; Yang, S.-F.; Hsieh, S.-C.; Bau, D.-T.; Ling, C.-L.; Pai, C.-L.; Hsieh, Y.-H. Licochalcone A suppresses migration and invasion of human hepatocellular carcinoma cells through downregulation of MKK4/JNK via NF-κB mediated urokinase plasminogen activator expression. PLoS ONE 2014, 9, e86537. [Google Scholar] [CrossRef]
  210. Li, Z.H.; Gao, J.; Hu, P.H.; Xiong, J.P. Anticancer effects of liriodenine on the cell growth and apoptosis of human breast cancer MCF-7 cells through the upregulation of p53 expression. Oncol. Lett. 2017, 14, 1979–1984. [Google Scholar] [CrossRef] [Green Version]
  211. Chang, H.-C.; Chang, F.-R.; Wu, Y.-C.; Lai, Y.-H. Anti-cancer effect of liriodenine on human lung cancer cells. Kaohsiung J. Med. Sci. 2004, 20, 365–371. [Google Scholar] [CrossRef] [Green Version]
  212. Nordin, N.; Majid, N.A.; Hashim, N.M.; Abd Rahman, M.; Hassan, Z.; Ali, H.M. Liriodenine, an aporphine alkaloid from Enicosanthellum pulchrum, inhibits proliferation of human ovarian cancer cells through induction of apoptosis via the mitochondrial signaling pathway and blocking cell cycle progression. Drug Des. Devel. Ther. 2015, 9, 1437. [Google Scholar]
  213. Cao, Z.; Zhang, H.; Cai, X.; Fang, W.; Chai, D.; Wen, Y.; Chen, H.; Chu, F.; Zhang, Y. Luteolin promotes cell apoptosis by inducing autophagy in hepatocellular carcinoma. Cell. Physiol. Biochem. 2017, 43, 1803–1812. [Google Scholar] [CrossRef] [PubMed]
  214. Kang, K.A.; Piao, M.J.; Hyun, Y.J.; Zhen, A.X.; Cho, S.J.; Ahn, M.J.; Yi, J.M.; Hyun, J.W. Luteolin promotes apoptotic cell death via upregulation of Nrf2 expression by DNA demethylase and the interaction of Nrf2 with p53 in human colon cancer cells. Exp. Mol. Med. 2019, 51, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  215. Song, S.; Su, Z.; Xu, H.; Niu, M.; Chen, X.; Min, H.; Zhang, B.; Sun, G.; Xie, S.; Wang, H. Correction: Luteolin selectively kills STAT3 highly activated gastric cancer cells through enhancing the binding of STAT3 to SHP-1. Cell Death Dis. 2018, 9, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  216. Park, B.-S.; Kil, J.-J.; Kang, H.-M.; Yu, S.-B.; Park, D.-B.; Park, J.-A.; Kim, I.-R. Luteolin Induces Apoptosis via Mitochondrial Pathway and Inhibits Invasion and Migration of Oral Squamous Cell Carcinoma by Suppressing Epithelial-Mesenchymal Transition Induced Transcription Factors. Int. J. Oral Biol. 2018, 43, 69–76. [Google Scholar] [CrossRef]
  217. Huang, L.; Jin, K.; Lan, H. Luteolin inhibits cell cycle progression and induces apoptosis of breast cancer cells through downregulation of human telomerase reverse transcriptase. Oncol. Lett. 2019, 17, 3842–3850. [Google Scholar] [CrossRef] [Green Version]
  218. Cai, X.; Lu, W.; Ye, T.; Lu, M.; Wang, J.; Huo, J.; Qian, S.; Wang, X.; Cao, P. The molecular mechanism of luteolin-induced apoptosis is potentially related to inhibition of angiogenesis in human pancreatic carcinoma cells. Oncol. Rep. 2012, 28, 1353–1361. [Google Scholar] [CrossRef]
  219. Masraksa, W.; Tanasawet, S.; Hutamekalin, P.; Wongtawatchai, T.; Sukketsiri, W. Luteolin attenuates migration and invasion of lung cancer cells via suppressing focal adhesion kinase and non-receptor tyrosine kinase signaling pathway. Nutr. Res. Pract. 2020, 14, 127–133. [Google Scholar] [CrossRef]
  220. Takeshima, M.; Ono, M.; Higuchi, T.; Chen, C.; Hara, T.; Nakano, S. Anti-proliferative and apoptosis-inducing activity of lycopene against three subtypes of human breast cancer cell lines. Cancer Sci. 2014, 105, 252–257. [Google Scholar] [CrossRef] [Green Version]
  221. Jiang, L.-N.; Liu, Y.-B.; Li, B.-H. Lycopene exerts anti-inflammatory effect to inhibit prostate cancer progression. Asian J. Androl. 2019, 21, 80. [Google Scholar]
  222. Cha, J.H.; Kim, W.K.; Ha, A.W.; Kim, M.H.; Chang, M.J. Anti-inflammatory effect of lycopene in SW480 human colorectal cancer cells. Nutr. Res. Pract. 2017, 11, 90–96. [Google Scholar] [CrossRef] [Green Version]
  223. Jeong, Y.; Lim, J.W.; Kim, H. Lycopene inhibits reactive oxygen species-mediated NF-κB signaling and induces apoptosis in pancreatic cancer cells. Nutrients 2019, 11, 762. [Google Scholar] [CrossRef] [Green Version]
  224. Cheng, J.; Miller, B.; Balbuena, E.; Eroglu, A. Lycopene protects against smoking-induced lung cancer by inducing base excision repair. Antioxidants 2020, 9, 643. [Google Scholar] [CrossRef] [PubMed]
  225. Luo, C.; Wu, X.-G. Lycopene enhances antioxidant enzyme activities and immunity function in N-Methyl-N′-nitro-N-nitrosoguanidine–induced gastric cancer rats. Int. J. Mol. Sci. 2011, 12, 3340–3351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  226. Aktepe, O.H.; Şahin, T.K.; Güner, G.; Arik, Z.; Yalçin, Ş. Lycopene sensitizes the cervical cancer cells to cisplatin via targeting nuclear factor NF-kappa B. Turk. J. Med. Sci. 2021, 51, 368–374. [Google Scholar] [CrossRef] [PubMed]
  227. Zhou, X.; Burke, K.E.; Wang, Y.; Wei, H. Dietary lycopene protects SkH-1 mice against ultraviolet B-induced photocarcinogenesis. J. Drugs Dermatol. 2019, 18, 1244–1254. [Google Scholar]
  228. Czarnik-Kwaśniak, J.; Kwaśniak, K.; Kwasek, P.; Świerzowska, E.; Strojewska, A.; Tabarkiewicz, J. The influence of lycopene,[6]-gingerol, and silymarin on the apoptosis on U-118MG glioblastoma cells In Vitro model. Nutrients 2020, 12, 96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  229. Holzapfel, N.P.; Shokoohmand, A.; Wagner, F.; Landgraf, M.; Champ, S.; Holzapfel, B.M.; Clements, J.A.; Hutmacher, D.W.; Loessner, D. Lycopene reduces ovarian tumor growth and intraperitoneal metastatic load. Am. J. Cancer Res. 2017, 7, 1322. [Google Scholar]
  230. Wang, J.; Xu, J.; Xing, G. Lycorine inhibits the growth and metastasis of breast cancer through the blockage of STAT3 signaling pathway. Acta Biochim. Biophys. Sin. 2017, 49, 771–779. [Google Scholar] [CrossRef] [Green Version]
  231. Hu, M.; Peng, S.; He, Y.; Qin, M.; Cong, X.; Xing, Y.; Liu, M.; Yi, Z. Lycorine is a novel inhibitor of the growth and metastasis of hormone-refractory prostate cancer. Oncotarget 2015, 6, 15348. [Google Scholar] [CrossRef] [Green Version]
  232. Sun, Y.; Wu, P.; Sun, Y.; Sharopov, F.S.; Yang, Q.; Chen, F.; Wang, P.; Liang, Z. Lycorine possesses notable anticancer potentials in on-small cell lung carcinoma cells via blocking Wnt/β-catenin signaling and epithelial-mesenchymal transition (EMT). Biochem. Biophys. Res. Commun. 2018, 495, 911–921. [Google Scholar] [CrossRef]
  233. Liu, W.; Zhang, Q.; Tang, Q.; Hu, C.; Huang, J.; Liu, Y.; Lu, Y.; Wang, Q.; Li, G.; Zhang, R. [Corrigendum] Lycorine inhibits cell proliferation and migration by inhibiting ROCK1/cofilin-induced actin dynamics in HepG2 hepatoblastoma cells. Oncol. Rep. 2019, 42, 2856. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  234. Shen, J.; Ma, H.; Zhang, T.; Liu, H.; Yu, L.; Li, G.; Li, H.; Hu, M. Magnolol inhibits the growth of non-small cell lung cancer via inhibiting microtubule polymerization. Cell. Physiol. Biochem. 2017, 42, 1789–1801. [Google Scholar] [CrossRef] [PubMed]
  235. Li, M.; Zhang, F.; Wang, X.A.; Wu, X.; Zhang, B.; Zhang, N.; Wu, W.; Wang, Z.; Weng, H.; Liu, S. Magnolol inhibits growth of gallbladder cancer cells through the p53 pathway. Cancer Sci. 2015, 106, 1341–1350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  236. Kuan, L.-Y.; Chen, W.-L.; Chen, J.-H.; Hsu, F.-T.; Liu, T.-T.; Chen, W.-T.; Wang, K.-L.; Chen, W.-C.; Liu, Y.-C.; Wang, W.-S. Magnolol induces apoptosis and inhibits ERK-modulated metastatic potential in hepatocellular carcinoma cells. Vivo 2018, 32, 1361–1368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  237. Hwang, E.-S.; Park, K.-K. Magnolol suppresses metastasis via inhibition of invasion, migration, and matrix metalloproteinase-2/-9 activities in PC-3 human prostate carcinoma cells. Biosci. Biotechnol. Biochem. 2010, 74, 961–967. [Google Scholar] [CrossRef] [Green Version]
  238. Chen, Y.; Huang, K.; Ding, X.; Tang, H.; Xu, Z. Magnolol inhibits growth and induces apoptosis in esophagus cancer KYSE-150 cell lines via the MAP kinase pathway. J. Thorac. Dis. 2019, 11, 3030. [Google Scholar] [CrossRef]
  239. Huang, H.; Wang, Q.; Du, T.; Lin, C.; Lai, Y.; Zhu, D.; Wu, W.; Ma, X.; Bai, S.; Li, Z. Matrine inhibits the progression of prostate cancer by promoting expression of GADD45B. Prostate 2018, 78, 327–335. [Google Scholar] [CrossRef]
  240. Zhang, X.; Hou, G.; Liu, A.; Xu, H.; Guan, Y.; Wu, Y.; Deng, J.; Cao, X. Matrine inhibits the development and progression of ovarian cancer by repressing cancer associated phosphorylation signaling pathways. Cell Death Dis. 2019, 10, 1–17. [Google Scholar] [CrossRef] [Green Version]
  241. Chang, C.; Liu, S.P.; Fang, C.H.; He, R.S.; Wang, Z.; Zhu, Y.Q.; Jiang, S.W. Effects of matrine on the proliferation of HT29 human colon cancer cells and its antitumor mechanism. Oncol. Lett. 2013, 6, 699–704. [Google Scholar] [CrossRef] [Green Version]
  242. Lin, S.; Zhuang, J.; Zhu, L.; Jiang, Z. Matrine inhibits cell growth, migration, invasion and promotes autophagy in hepatocellular carcinoma by regulation of circ_0027345/miR-345-5p/HOXD3 axis. Cancer Cell Int. 2020, 20, 1–12. [Google Scholar] [CrossRef]
  243. Pu, J.; Tang, X.; Zhuang, X.; Hu, Z.; He, K.; Wu, Y.; Dai, T. Matrine induces apoptosis via targeting CCR7 and enhances the effect of anticancer drugs in non-small cell lung cancer In Vitro. Innate Immun. 2018, 24, 394–399. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  244. Ha, T.K.; Jung, I.; Kim, M.E.; Bae, S.K.; Lee, J.S. Anti-cancer activity of myricetin against human papillary thyroid cancer cells involves mitochondrial dysfunction–mediated apoptosis. Biomed. Pharmacother. 2017, 91, 378–384. [Google Scholar] [CrossRef] [PubMed]
  245. Sun, F.; Zheng, X.Y.; Ye, J.; Wu, T.T.; Wang, J.l.; Chen, W. Potential anticancer activity of myricetin in human T24 bladder cancer cells both In Vitro and In Vivo. Nutr. Cancer 2012, 64, 599–606. [Google Scholar] [CrossRef] [PubMed]
  246. Kim, M.E.; Ha, T.K.; Yoon, J.H.; Lee, J.S. Myricetin induces cell death of human colon cancer cells via BAX/BCL2-dependent pathway. Anticancer Res. 2014, 34, 701–706. [Google Scholar]
  247. Ye, C.; Zhang, C.; Huang, H.; Yang, B.; Xiao, G.; Kong, D.; Tian, Q.; Song, Q.; Song, Y.; Tan, H. The natural compound myricetin effectively represses the malignant progression of prostate cancer by inhibiting PIM1 and disrupting the PIM1/CXCR4 interaction. Cell. Physiol. Biochem. 2018, 48, 1230–1244. [Google Scholar] [CrossRef]
  248. Knickle, A.; Fernando, W.; Greenshields, A.L.; Rupasinghe, H.V.; Hoskin, D.W. Myricetin-induced apoptosis of triple-negative breast cancer cells is mediated by the iron-dependent generation of reactive oxygen species from hydrogen peroxide. Food Chem. Toxicol. 2018, 118, 154–167. [Google Scholar] [CrossRef]
  249. Kang, H.R.; Moon, J.Y.; Ediriweera, M.K.; Song, Y.W.; Cho, M.; Kasiviswanathan, D.; Cho, S.K. Dietary flavonoid myricetin inhibits invasion and migration of radioresistant lung cancer cells (A549-IR) by suppressing MMP-2 and MMP-9 expressions through inhibition of the FAK-ERK signaling pathway. Food Sci. Nutr. 2020, 8, 2059–2067. [Google Scholar] [CrossRef]
  250. Subramani, R.; Gonzalez, E.; Arumugam, A.; Nandy, S.; Gonzalez, V.; Medel, J.; Camacho, F.; Ortega, A.; Bonkoungou, S.; Narayan, M. Nimbolide inhibits pancreatic cancer growth and metastasis through ROS-mediated apoptosis and inhibition of epithelial-to-mesenchymal transition. Sci. Rep. 2016, 6, 1–12. [Google Scholar] [CrossRef]
  251. Gupta, S.C.; Prasad, S.; Sethumadhavan, D.R.; Nair, M.S.; Mo, Y.-Y.; Aggarwal, B.B. Nimbolide, a limonoid triterpene, inhibits growth of human colorectal cancer xenografts by suppressing the proinflammatory microenvironment. Clin. Cancer Res. 2013, 19, 4465–4476. [Google Scholar] [CrossRef] [Green Version]
  252. Shin, S.-S.; Hwang, B.; Muhammad, K.; Gho, Y.; Song, J.-H.; Kim, W.-J.; Kim, G.; Moon, S.-K. Nimbolide represses the proliferation, migration, and invasion of bladder carcinoma cells via Chk2-mediated G2/M phase cell cycle arrest, altered signaling pathways, and reduced transcription factors-associated MMP-9 expression. Evid. Based Complement. Alternat. Med. 2019, 2019, 3753587. [Google Scholar] [CrossRef] [Green Version]
  253. Tian, X.; Liu, M.; Huang, X.; Zhu, Q.; Liu, W.; Chen, W.; Zou, Y.; Cai, Y.; Huang, S.; Chen, A. Noscapine induces apoptosis in human colon cancer cells by regulating mitochondrial damage and warburg effect via PTEN/PI3K/mTOR signaling pathway. Onco Targets Ther. 2020, 13, 5419. [Google Scholar] [CrossRef]
  254. Quisbert-Valenzuela, E.O.; Calaf, G.M. Apoptotic effect of noscapine in breast cancer cell lines. Int. J. Oncol. 2016, 48, 2666–2674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  255. Jackson, T.; Chougule, M.B.; Ichite, N.; Patlolla, R.R.; Singh, M. Antitumor activity of noscapine in human non-small cell lung cancer xenograft model. Cancer Chemother. Pharmacol. 2008, 63, 117–126. [Google Scholar] [CrossRef] [PubMed]
  256. Barken, I.; Geller, J.; Rogosnitzky, M. Prophylactic noscapine therapy inhibits human prostate cancer progression and metastasis in a mouse model. Anticancer Res. 2010, 30, 399–401. [Google Scholar] [PubMed]
  257. Yao, Z.; Xie, F.; Li, M.; Liang, Z.; Xu, W.; Yang, J.; Liu, C.; Li, H.; Zhou, H.; Qu, L.-H. Oridonin induces autophagy via inhibition of glucose metabolism in p53-mutated colorectal cancer cells. Cell Death Dis. 2017, 8, e2633. [Google Scholar] [CrossRef] [PubMed]
  258. Li, X.; Chen, W.; Liu, K.; Zhang, S.; Yang, R.; Liu, K.; Li, D.; Huang, Y. Oridonin sensitizes hepatocellular carcinoma to the anticancer effect of sorafenib by targeting the Akt pathway. Cancer Manag. Res. 2020, 12, 8081. [Google Scholar] [CrossRef]
  259. Wang, Y.; Zhu, Z. Oridonin inhibits metastasis of human ovarian cancer cells by suppressing the mTOR pathway. Arch. Med. Sci. 2019, 15, 1017. [Google Scholar] [CrossRef]
  260. Che, X.; Zhan, J.; Zhao, F.; Zhong, Z.; Chen, M.; Han, R.; Wang, Y. Oridonin Promotes Apoptosis and Restrains the Viability and Migration of Bladder Cancer by Impeding TRPM7 Expression via the ERK and AKT Signaling Pathways. Biomed Res. Int. 2021, 2021, 4340950. [Google Scholar] [CrossRef]
  261. Song, M.; Liu, X.; Liu, K.; Zhao, R.; Huang, H.; Shi, Y.; Zhang, M.; Zhou, S.; Xie, H.; Chen, H. Targeting AKT with oridonin inhibits growth of esophageal squamous cell carcinoma In Vitro and patient-derived xenografts In Vivo. Mol. Cancer Ther. 2018, 17, 1540–1553. [Google Scholar] [CrossRef] [Green Version]
  262. Wang, S.; Zhong, Z.; Wan, J.; Tan, W.; Wu, G.; Chen, M.; Wang, Y. Oridonin induces apoptosis, inhibits migration and invasion on highly-metastatic human breast cancer cells. Am. J. Chin. Med. 2013, 41, 177–196. [Google Scholar] [CrossRef]
  263. Lu, Y.; Sun, Y.; Zhu, J.; Yu, L.; Jiang, X.; Zhang, J.; Dong, X.; Ma, B.; Zhang, Q. Oridonin exerts anticancer effect on osteosarcoma by activating PPAR-γ and inhibiting Nrf2 pathway. Cell Death Dis. 2018, 9, 1–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  264. Zhou, Y.J.; Guo, Y.J.; Yang, X.L.; Ou, Z.L. Anti-cervical cancer role of matrine, oxymatrine and sophora flavescens alkaloid gels and its mechanism. J. Cancer 2018, 9, 1357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  265. Guo, L.; Yang, T. Oxymatrine inhibits the proliferation and invasion of breast cancer cells via the PI3K pathway. Cancer Manag. Res. 2019, 11, 10499. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  266. Ling, Q.; Xu, X.; Wei, X.; Wang, W.; Zhou, B.; Wang, B.; Zheng, S. Oxymatrine induces human pancreatic cancer PANC-1 cells apoptosis via regulating expression of Bcl-2 and IAP families, and releasing of cytochrome c. J. Exp. Clin. Cancer Res. 2011, 30, 66. [Google Scholar] [CrossRef] [Green Version]
  267. Wu, C.; Huang, W.; Guo, Y.; Xia, P.; Sun, X.; Pan, X.; Hu, W. Oxymatrine inhibits the proliferation of prostate cancer cells In Vitro and In Vivo. Mol. Med. Rep. 2015, 11, 4129–4134. [Google Scholar] [CrossRef] [Green Version]
  268. Zhao, X.; Huang, L.; Xu, W.; Chen, X.; Shen, Y.; Zeng, W.; Chen, X. Physapubescin B inhibits tumorgenesis and circumvents taxol resistance of ovarian cancer cells through STAT3 signaling. Oncotarget 2017, 8, 70130. [Google Scholar] [CrossRef]
  269. Chen, L.; Xia, G.; Qiu, F.; Wu, C.; Denmon, A.P.; Zi, X. Physapubescin selectively induces apoptosis in VHL-null renal cell carcinoma cells through down-regulation of HIF-2α and inhibits tumor growth. Sci. Rep. 2016, 6, 1–12. [Google Scholar] [CrossRef]
  270. Jaudan, A.; Sharma, S.; Malek, S.N.A.; Dixit, A. Induction of apoptosis by pinostrobin in human cervical cancer cells: Possible mechanism of action. PLoS ONE 2018, 13, e0191523. [Google Scholar] [CrossRef] [Green Version]
  271. Jones, A.A.; Gehler, S. Acacetin and pinostrobin inhibit malignant breast epithelial cell adhesion and focal adhesion formation to attenuate cell migration. Integr. Cancer Ther. 2020, 19, 1534735420918945. [Google Scholar] [CrossRef]
  272. Roman, W.A.; Gomes, D.B.; Zanchet, B.; Schönell, A.P.; Diel, K.A.; Banzato, T.P.; Ruiz, A.L.; Carvalho, J.E.; Neppel, A.; Barison, A. Antiproliferative effects of pinostrobin and 5, 6-dehydrokavain isolated from leaves of Alpinia zerumbet. Rev. Bras. Farmacogn. 2017, 27, 592–598. [Google Scholar]
  273. Haddad, A.; Venkateswaran, V.; Viswanathan, L.; Teahan, S.; Fleshner, N.; Klotz, L. Novel antiproliferative flavonoids induce cell cycle arrest in human prostate cancer cell lines. Prostate Cancer Prostatic Dis. 2006, 9, 68–76. [Google Scholar] [CrossRef] [PubMed]
  274. de Almeida, G.C.; Oliveira, L.F.; Predes, D.; Fokoue, H.H.; Kuster, R.M.; Oliveira, F.L.; Mendes, F.A.; Abreu, J.G. Piperine suppresses the Wnt/β-catenin pathway and has anti-cancer effects on colorectal cancer cells. Sci. Rep. 2020, 10, 1–12. [Google Scholar] [CrossRef] [PubMed]
  275. Lin, Y.; Xu, J.; Liao, H.; Li, L.; Pan, L. Piperine induces apoptosis of lung cancer A549 cells via p53-dependent mitochondrial signaling pathway. Tumor Biol. 2014, 35, 3305–3310. [Google Scholar] [CrossRef] [PubMed]
  276. Lai, L.H.; Fu, Q.H.; Liu, Y.; Jiang, K.; Guo, Q.M.; Chen, Q.Y.; Yan, B.; Wang, Q.Q.; Shen, J.G. Piperine suppresses tumor growth and metastasis In Vitro and In Vivo in a 4T1 murine breast cancer model. Acta Pharmacol. Sin. 2012, 33, 523–530. [Google Scholar] [CrossRef]
  277. Ouyang, D.-Y.; Zeng, L.H.; Pan, H.; Xu, L.H.; Wang, Y.; Liu, K.P.; He, X.H. Piperine inhibits the proliferation of human prostate cancer cells via induction of cell cycle arrest and autophagy. Food Chem. Toxicol. 2013, 60, 424–430. [Google Scholar] [CrossRef]
  278. Zhang, C.; He, L.-J.; Zhu, Y.-B.; Fan, Q.-Z.; Miao, D.-D.; Zhang, S.-P.; Zhao, W.-Y.; Liu, X.-P. Piperlongumine inhibits Akt phosphorylation to reverse resistance to cisplatin in human non-small cell lung cancer cells via ROS regulation. Front. Pharmacol. 2019, 10, 1178. [Google Scholar] [CrossRef] [Green Version]
  279. Zhang, D.F.; Yang, Z.C.; Chen, J.Q.; Jin, X.X.; Chen, X.J.; Shi, H.Y.; Liu, Z.G.; Wang, M.S.; Liang, G.; Zheng, X.H. Piperlongumine inhibits migration and proliferation of castration-resistant prostate cancer cells via triggering persistent DNA damage. BMC Complement. Med. Ther. 2021, 21, 1–15. [Google Scholar] [CrossRef]
  280. Machado, F.D.S.; Munari, F.M.; Scariot, F.J.; Echeverrigaray, S.; Aguzzoli, C.; Pich, C.T.; Kato, M.J.; Yamaguchi, L.; Moura, S.; Henriques, J.A.P. Piperlongumine induces apoptosis in colorectal cancer HCT 116 cells independent of Bax, p21 and p53 status. Anticancer Res. 2018, 38, 6231–6236. [Google Scholar] [CrossRef]
  281. Zhang, X.; Yang, C.; Rao, X.; Xiong, J. Plumbagin shows anti-cancer activity in human breast cancer cells by the upregulation of p53 and p21 and suppression of G1 cell cycle regulators. Eur. J. Gynaecol. Oncol. 2016, 37, 30–35. [Google Scholar]
  282. Eldhose, B.; GUNAwAN, M.; Rahman, M.; Latha, M.S.; Notario, V. Plumbagin reduces human colon cancer cell survival by inducing cell cycle arrest and mitochondria-mediated apoptosis. Int. J. Oncol. 2014, 45, 1913–1920. [Google Scholar] [CrossRef] [Green Version]
  283. Li, T.; Lv, M.; Chen, X.; Yu, Y.; Zang, G.; Tang, Z. Plumbagin inhibits proliferation and induces apoptosis of hepatocellular carcinoma by downregulating the expression of SIVA. Drug Des. Devel. Ther. 2019, 13, 1289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  284. Huang, H.; Xie, H.; Pan, Y.; Zheng, K.; Xia, Y.; Chen, W. Plumbagin triggers ER stress-mediated apoptosis in prostate cancer cells via induction of ROS. Cell. Physiol. Biochem. 2018, 45, 267–280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  285. Tripathi, S.K.; Rengasamy, K.R.; Biswal, B.K. Plumbagin engenders apoptosis in lung cancer cells via caspase-9 activation and targeting mitochondrial-mediated ROS induction. Arch. Pharm. Res. 2020, 43, 242–256. [Google Scholar] [CrossRef] [PubMed]
  286. Cao, Y.-Y.; Yu, J.; Liu, T.-T.; Yang, K.-X.; Yang, L.-Y.; Chen, Q.; Shi, F.; Hao, J.-J.; Cai, Y.; Wang, M.-R. Plumbagin inhibits the proliferation and survival of esophageal cancer cells by blocking STAT3-PLK1-AKT signaling. Cell Death Dis. 2018, 9, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  287. Yan, C.-H.; Li, F.; Ma, Y.-C. Plumbagin shows anticancer activity in human osteosarcoma (MG-63) cells via the inhibition of S-Phase checkpoints and down-regulation of c-myc. Int. J. Clin. Exp. Med. 2015, 8, 14432. [Google Scholar] [PubMed]
  288. Jaiswal, A.; Sabarwal, A.; Mishra, J.P.N.; Singh, R.P. Plumbagin induces ROS-mediated apoptosis and cell cycle arrest and inhibits EMT in human cervical carcinoma cells. RSC Adv. 2018, 8, 32022–32037. [Google Scholar] [CrossRef] [Green Version]
  289. Seo, H.W.; Park, J.-H.; Lee, J.Y.; Park, H.-J.; Kim, J.-K. Pristimerin, a Naturally Occurring Triterpenoid, Exerts Potent Anticancer Effect in Colon Cancer Cells. Biomed. Sci. 2018, 24, 15–22. [Google Scholar] [CrossRef] [Green Version]
  290. Wu, H.; Li, L.; Ai, Z.; Yin, J.; Chen, L. Pristimerin induces apoptosis of oral squamous cell carcinoma cells via G1 phase arrest and MAPK/Erk1/2 and Akt signaling inhibition. Oncol. Lett. 2019, 17, 3017–3025. [Google Scholar] [CrossRef] [Green Version]
  291. Lee, S.-O.; Kim, J.-S.; Lee, M.-S.; Lee, H.-J. Anti-cancer effect of pristimerin by inhibition of HIF-1α involves the SPHK-1 pathway in hypoxic prostate cancer cells. BMC Cancer 2016, 16, 1–10. [Google Scholar] [CrossRef] [Green Version]
  292. Li, J.; Guo, Q.; Lei, X.; Zhang, L.; Su, C.; Liu, Y.; Zhou, W.; Chen, H.; Wang, H.; Wang, F. Pristimerin induces apoptosis and inhibits proliferation, migration in H1299 Lung Cancer Cells. J. Cancer 2020, 11, 6348. [Google Scholar] [CrossRef]
  293. Deeb, D.; Gao, X.; Liu, Y.B.; Pindolia, K.; Gautam, S.C. Pristimerin, a quinonemethide triterpenoid, induces apoptosis in pancreatic cancer cells through the inhibition of pro-survival Akt/NF-κB/mTOR signaling proteins and anti-apoptotic Bcl-2. Int. J. Oncol. 2014, 44, 1707–1715. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  294. Pei, H.L.; Mu, D.M.; Zhang, B. Anticancer activity of pterostilbene in human ovarian cancer cell lines. Med. Sci. Monit. Basic Res. 2017, 23, 3192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  295. Ma, Z.; Yang, Y.; Di, S.; Feng, X.; Liu, D.; Jiang, S.; Hu, W.; Qin, Z.; Li, Y.; Lv, J. Pterostilbene exerts anticancer activity on non-small-cell lung cancer via activating endoplasmic reticulum stress. Sci. Rep. 2017, 7, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  296. Wakimoto, R.; Ono, M.; Takeshima, M.; Higuchi, T.; Nakano, S. Differential anticancer activity of pterostilbene against three subtypes of human breast cancer cells. Anticancer Res. 2017, 37, 6153–6159. [Google Scholar]
  297. Zhang, Y.; Li, Y.; Sun, C.; Chen, X.; Han, L.; Wang, T.; Liu, J.; Chen, X.; Zhao, D. Effect of Pterostilbene, a Natural Derivative of Resveratrol, in the Treatment of Colorectal Cancer through Top1/Tdp1-Mediated DNA Repair Pathway. Cancers 2021, 13, 4002. [Google Scholar] [CrossRef]
  298. Yu, Z.; Li, W. Induction of apoptosis by puerarin in colon cancer HT-29 cells. Cancer Lett. 2006, 238, 53–60. [Google Scholar] [CrossRef]
  299. Li, J.; Xiong, C.; Xu, P.; Luo, Q.; Zhang, R. Puerarin induces apoptosis in prostate cancer cells via inactivation of the Keap1/Nrf2/ARE signaling pathway. Bioengineered 2021, 12, 402–413. [Google Scholar] [CrossRef]
  300. Hu, Y.; Li, X.; Lin, L.; Liang, S.; Yan, J. Puerarin inhibits non-small cell lung cancer cell growth via the induction of apoptosis. Oncol. Rep. 2018, 39, 1731–1738. [Google Scholar] [CrossRef]
  301. Zhang, W.-G.; Yin, X.-C.; Liu, X.-F.; Meng, K.-W.; Tang, K.; Huang, F.-L.; Xu, G.; Gao, J. Puerarin induces hepatocellular carcinoma cell apoptosis modulated by MAPK signaling pathways in a dose-dependent manner. Anticancer Res. 2017, 37, 4425–4431. [Google Scholar]
  302. Yang, J.-A.; Li, J.-Q.; Shao, L.-M.; Yang, Q.; Liu, B.-H.; Wu, T.-F.; Wu, P.; Yi, W.; Chen, Q.-X. Puerarin inhibits proliferation and induces apoptosis in human glioblastoma cell lines. Int. J. Clin. Exp. Med. 2015, 8, 10132. [Google Scholar]
  303. Hong, Y.; Lee, J.; Moon, H.; Ryu, C.H.; Seok, J.; Jung, Y.; Ryu, J.; Baek, S.J. Quercetin Induces Anticancer Activity by Upregulating Pro-NAG-1/GDF15 in Differentiated Thyroid Cancer Cells. Cancers 2021, 13, 3022. [Google Scholar] [CrossRef] [PubMed]
  304. Mohammed, H.A.; Sulaiman, G.M.; Anwar, S.S.; Tawfeeq, A.T.; Khan, R.A.; Mohammed, S.A.; Al-Omar, M.S.; Alsharidah, M.; Rugaie, O.A.; Al-Amiery, A.A. Quercetin against MCF7 and CAL51 breast cancer cell lines: Apoptosis, gene expression and cytotoxicity of nano-quercetin. Nanomedicine 2021, 16, 1937–1961. [Google Scholar] [CrossRef] [PubMed]
  305. Hisaka, T.; Sakai, H.; Sato, T.; Goto, Y.; Nomura, Y.; Fukutomi, S.; Fujita, F.; Mizobe, T.; Nakashima, O.; Tanigawa, M. Quercetin suppresses proliferation of liver cancer cell lines In Vitro. Anticancer Res. 2020, 40, 4695–4700. [Google Scholar] [CrossRef] [PubMed]
  306. Nair, H.K.; Rao, K.V.; Aalinkeel, R.; Mahajan, S.; Chawda, R.; Schwartz, S.A. Inhibition of prostate cancer cell colony formation by the flavonoid quercetin correlates with modulation of specific regulatory genes. Clin. Vaccine Immunol. 2004, 11, 63–69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  307. Youn, H.; Jeong, J.-C.; Jeong, Y.S.; Kim, E.-J.; Um, S.-J. Quercetin potentiates apoptosis by inhibiting nuclear factor-kappaB signaling in H460 lung cancer cells. Biol. Pharm. Bull. 2013, 36, 944–951. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  308. Zeng, Y.-H.; Zhou, L.-Y.; Chen, Q.-Z.; Li, Y.; Shao, Y.; Ren, W.-Y.; Liao, Y.-P.; Wang, H.; Zhu, J.-H.; Huang, M. Resveratrol inactivates PI3K/Akt signaling through upregulating BMP7 in human colon cancer cells. Oncol. Rep. 2017, 38, 456–464. [Google Scholar] [CrossRef] [Green Version]
  309. Miksits, M.; Wlcek, K.; Svoboda, M.; Kunert, O.; Haslinger, E.; Thalhammer, T.; Szekeres, T.; Jäger, W. Antitumor activity of resveratrol and its sulfated metabolites against human breast cancer cells. Planta Med. 2009, 75, 1227–1230. [Google Scholar] [CrossRef]
  310. Zhong, L.; Zhang, Y.; Wu, M.; Liu, Y.; Zhang, P.; Chen, X.; Kong, Q.; Liu, J.; Li, H. Resveratrol and STAT inhibitor enhance autophagy in ovarian cancer cells. Cell Death Discov. 2016, 2, 1–8. [Google Scholar] [CrossRef]
  311. Cheng, L.; Yan, B.; Chen, K.; Jiang, Z.; Zhou, C.; Cao, J.; Qian, W.; Li, J.; Sun, L.; Ma, J. Resveratrol-induced downregulation of NAF-1 enhances the sensitivity of pancreatic cancer cells to gemcitabine via the ROS/Nrf2 signaling pathways. Oxid. Med. Cell. Longev. 2018, 2018. [Google Scholar] [CrossRef]
  312. Wu, X.; Xu, Y.; Zhu, B.; Liu, Q.; Yao, Q.; Zhao, G. Resveratrol induces apoptosis in SGC-7901 gastric cancer cells. Oncol. Lett. 2018, 16, 2949–2956. [Google Scholar] [CrossRef]
  313. Yousef, M.; Vlachogiannis, I.A.; Tsiani, E. Effects of resveratrol against lung cancer: In vitro and In Vivo studies. Nutrients 2017, 9, 1231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  314. Chao, S.-C.; Chen, Y.-J.; Huang, K.-H.; Kuo, K.-L.; Yang, T.-H.; Huang, K.-Y.; Wang, C.-C.; Tang, C.-H.; Yang, R.-S.; Liu, S.-H. Induction of sirtuin-1 signaling by resveratrol induces human chondrosarcoma cell apoptosis and exhibits antitumor activity. Sci. Rep. 2017, 7, 1–11. [Google Scholar] [CrossRef] [PubMed]
  315. Jayameena, P.; Sivakumari, K.; Ashok, K.; Rajesh, S. Rutin: A potential anticancer drug against human colon cancer (HCT116) cells. Int. J. Biol. Pharm. Allied Sci. 2018, 7, 1731–1745. [Google Scholar]
  316. Pinzaru, I.; Chioibas, R.; Marcovici, I.; Coricovac, D.; Susan, R.; Predut, D.; Georgescu, D.; Dehelean, C. Rutin Exerts Cytotoxic and Senescence-Inducing Properties in Human Melanoma Cells. Toxics 2021, 9, 226. [Google Scholar] [CrossRef] [PubMed]
  317. Elsayed, H.E.; Ebrahim, H.Y.; Mohyeldin, M.M.; Siddique, A.B.; Kamal, A.M.; Haggag, E.G.; El Sayed, K.A. Rutin as a novel c-Met inhibitory lead for the control of triple negative breast malignancies. Nutr. Cancer 2017, 69, 1256–1271. [Google Scholar] [CrossRef]
  318. Zhang, Y.; Zhao, Y.; Guo, J.; Cui, H.; Liu, S. Anticancer activity of safranal against colon carcinoma is due to induction of apoptosis and G2/M cell cycle arrest mediated by suppression of mTOR/PI3K/Akt pathway. JBU ON 2018, 23, 574–578. [Google Scholar]
  319. Chaiboonchoe, A.; Khraiwesh, B.; Murali, C.; Baig, B.; El-Awady, R.; Tarazi, H.; Alzahmi, A.; Nelson, D.R.; Greish, Y.E.; Ramadan, W. Safranal induces DNA double-strand breakage and ER-stress-mediated cell death in hepatocellular carcinoma cells. Sci. Rep. 2018, 8, 1–15. [Google Scholar]
  320. Jiang, X.; Li, Y.; Feng, J.L.; Nik Nabil, W.N.; Wu, R.; Lu, Y.; Liu, H.; Xi, Z.C.; Xu, H.X. Safrana l prevents prostate cancer recurrence by blocking the Re-activation of quiescent cancer cells via downregulation of S-phase kinase-associated protein 2. Front. Cell Dev. Biol. 2020, 8, 1553. [Google Scholar] [CrossRef]
  321. Chryssanthi, D.G.; Lamari, F.N.; Iatrou, G.; Pylara, A.; Karamanos, N.K.; Cordopatis, P. Inhibition of breast cancer cell proliferation by style constituents of different Crocus species. Anticancer Res. 2007, 27, 357–362. [Google Scholar]
  322. Sha, L.; Lv, Z.; Liu, Y.; Zhang, Y.; Sui, X.; Wang, T.; Zhang, H. Shikonin inhibits the Warburg effect, cell proliferation, invasion and migration by downregulating PFKFB2 expression in lung cancer. Mol. Med. Rep. 2021, 24, 1–10. [Google Scholar] [CrossRef]
  323. Chandimali, N.; Sun, H.-N.; Kong, L.-Z.; Zhen, X.; Liu, R.; Kwon, T.; Lee, D.-S. Shikonin-induced apoptosis of colon cancer cells is reduced by peroxiredoxin V expression. Anticancer Res. 2019, 39, 6115–6123. [Google Scholar] [CrossRef] [PubMed]
  324. Markowitsch, S.D.; Juetter, K.M.; Schupp, P.; Hauschulte, K.; Vakhrusheva, O.; Slade, K.S.; Thomas, A.; Tsaur, I.; Cinatl, J.; Michaelis, M. Shikonin Reduces Growth of Docetaxel-Resistant Prostate Cancer Cells Mainly through Necroptosis. Cancers 2021, 13, 882. [Google Scholar] [CrossRef] [PubMed]
  325. Liu, T.; Li, S.; Wu, L.; Yu, Q.; Li, J.; Feng, J.; Zhang, J.; Chen, J.; Zhou, Y.; Ji, J. Experimental study of hepatocellular carcinoma treatment by shikonin through regulating PKM2. J. Hepatocell. Carcinoma 2020, 7, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  326. Shilnikova, K.; Piao, M.J.; Kang, K.A.; Ryu, Y.S.; Park, J.E.; Hyun, Y.J.; Zhen, A.X.; Jeong, Y.J.; Jung, U.; Kim, I.G. Shikonin induces mitochondria-mediated apoptosis and attenuates epithelial-mesenchymal transition in cisplatin-resistant human ovarian cancer cells. Oncol. Lett. 2018, 15, 5417–5424. [Google Scholar] [CrossRef] [Green Version]
  327. Lee, J.H.; Han, S.H.; Kim, Y.M.; Kim, S.H.; Yoo, E.S.; Woo, J.S.; Jung, G.H.; Jung, S.H.; Kim, B.S.; Jung, J.Y. Shikonin inhibits proliferation of melanoma cells by MAPK pathway-mediated induction of apoptosis. Biosci. Rep. 2021, 41, BSR20203834. [Google Scholar] [CrossRef]
  328. Thonsri, U.; Seubwai, W.; Waraasawapati, S.; Wongkham, S.; Boonmars, T.; Cha’on, U.; Wongkham, C. Antitumor Effect of Shikonin, a PKM2 Inhibitor, in Cholangiocarcinoma Cell Lines. Anticancer Res. 2020, 40, 5115–5124. [Google Scholar] [CrossRef]
  329. Hou, Y.; Guo, T.; Wu, C.; He, X.; Zhao, M. Effect of shikonin on human breast cancer cells proliferation and apoptosis In Vitro. Yakugaku Zasshi 2006, 126, 1383–1386. [Google Scholar] [CrossRef] [Green Version]
  330. Bawadood, A.S.; Al-Abbasi, F.A.; Anwar, F.; El-Halawany, A.M.; Al-Abd, A.M. 6-Shogaol suppresses the growth of breast cancer cells by inducing apoptosis and suppressing autophagy via targeting notch signaling pathway. Biomed. Pharmacother. 2020, 128, 110302. [Google Scholar] [CrossRef]
  331. Saha, A.; Blando, J.; Silver, E.; Beltran, L.; Sessler, J.; DiGiovanni, J. 6-Shogaol from dried ginger inhibits growth of prostate cancer cells both In Vitro and In Vivo through inhibition of STAT3 and NF-κB signaling. Cancer Prev. Res. 2014, 7, 627–638. [Google Scholar] [CrossRef] [Green Version]
  332. Hsu, Y.-L.; Hung, J.-Y.; Tsai, Y.-M.; Tsai, E.-M.; Huang, M.-S.; Hou, M.-F.; Kuo, P.-L. 6-shogaol, an active constituent of dietary ginger, impairs cancer development and lung metastasis by inhibiting the secretion of CC-chemokine ligand 2 (CCL2) in tumor-associated dendritic cells. J. Agric. Food Chem. 2015, 63, 1730–1738. [Google Scholar] [CrossRef]
  333. Liu, Q.; Peng, Y.-B.; Qi, L.-W.; Cheng, X.-L.; Xu, X.J.; Liu, L.-L.; Liu, E.-H.; Li, P. The cytotoxicity mechanism of 6-shogaol-treated HeLa human cervical cancer cells revealed by label-free shotgun proteomics and bioinformatics analysis. Evid. Based Complement. Alternat. Med. 2012, 2012, 278652. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  334. Kil, W.H.; Kim, S.M.; Lee, J.E.; Park, K.S.; Nam, S.J. Anticancer effect of silibinin on the xenograft model using MDA-MB-468 breast cancer cells. Ann. Surg. Treat. Res. 2014, 87, 167–173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  335. Hou, X.; Du, H.; Quan, X.; Shi, L.; Zhang, Q.; Wu, Y.; Liu, Y.; Xiao, J.; Li, Y.; Lu, L. Silibinin inhibits NSCLC metastasis by targeting the EGFR/LOX pathway. Front. Pharmacol. 2018, 9, 21. [Google Scholar] [CrossRef] [PubMed]
  336. Cho, H.J.; Suh, D.S.; Moon, S.H.; Song, Y.J.; Yoon, M.S.; Park, D.Y.; Choi, K.U.; Kim, Y.K.; Kim, K.H. Silibinin inhibits tumor growth through downregulation of extracellular signal-regulated kinase and Akt In Vitro and In Vivo in human ovarian cancer cells. J. Agric. Food Chem. 2013, 61, 4089–4096. [Google Scholar] [CrossRef]
  337. Deep, G.; Singh, R.; Agarwal, C.; Kroll, D.; Agarwal, R. Silymarin and silibinin cause G1 and G2–M cell cycle arrest via distinct circuitries in human prostate cancer PC3 cells: A comparison of flavanone silibinin with flavanolignan mixture silymarin. Oncogene 2006, 25, 1053–1069. [Google Scholar] [CrossRef] [Green Version]
  338. Sati, J.; Mohanty, B.P.; Garg, M.L.; Koul, A. Pro-oxidant role of silibinin in DMBA/TPA induced skin cancer: 1H NMR metabolomic and biochemical study. PLoS ONE 2016, 11, e0158955. [Google Scholar] [CrossRef] [Green Version]
  339. Sameri, S.; Mohammadi, C.; Mehrabani, M.; Najafi, R. Targeting the hallmarks of cancer: The effects of silibinin on proliferation, cell death, angiogenesis, and migration in colorectal cancer. BMC Complement. Med. Ther. 2021, 21, 1–9. [Google Scholar] [CrossRef]
  340. Wang, Y.-X.; Cai, H.; Jiang, G.; Zhou, T.-B.; Wu, H. Silibinin inhibits proliferation, induces apoptosis and causes cell cycle arrest in human gastric cancer MGC803 cells via STAT3 pathway inhibition. Asian Pac. J. Cancer Prev. 2014, 15, 6791–6798. [Google Scholar] [CrossRef] [Green Version]
  341. Kim, S.H.; Choo, G.S.; Yoo, E.S.; Woo, J.S.; Han, S.H.; Lee, J.H.; Jung, J.Y. Silymarin induces inhibition of growth and apoptosis through modulation of the MAPK signaling pathway in AGS human gastric cancer cells. Oncol. Rep. 2019, 42, 1904–1914. [Google Scholar] [CrossRef] [Green Version]
  342. Kim, S.-H.; Choo, G.-S.; Yoo, E.-S.; Woo, J.-S.; Lee, J.-H.; Han, S.-H.; Jung, S.-H.; Kim, H.-J.; Jung, J.-Y. Silymarin inhibits proliferation of human breast cancer cells via regulation of the MAPK signaling pathway and induction of apoptosis. Oncol. Lett. 2021, 21, 1–10. [Google Scholar] [CrossRef]
  343. Wu, Y.-F.; Fu, S.-L.; Kao, C.-H.; Yang, C.-W.; Lin, C.-H.; Hsu, M.-T.; Tsai, T.-F. Chemopreventive effect of silymarin on liver pathology in HBV X protein transgenic mice. Cancer Res. 2008, 68, 2033–2042. [Google Scholar] [CrossRef] [Green Version]
  344. Fu, R.; Wang, X.; Hu, Y.; Du, H.; Dong, B.; Ao, S.; Zhang, L.; Sun, Z.; Zhang, L.; Lv, G. Solamargine inhibits gastric cancer progression by regulating the expression of lncNEAT1_2 via the MAPK signaling pathway. Int. J. Oncol. 2019, 54, 1545–1554. [Google Scholar] [CrossRef]
  345. Al Sinani, S.S.; Eltayeb, E.A.; Coomber, B.L.; Adham, S.A. Solamargine triggers cellular necrosis selectively in different types of human melanoma cancer cells through extrinsic lysosomal mitochondrial death pathway. Cancer Cell Int. 2016, 16, 1–12. [Google Scholar] [CrossRef] [Green Version]
  346. Liu, J.; Wang, Z.; Xu, C.; Qi, Y.; Zhang, Q. Solamargine inhibits proliferation and promotes apoptosis of CM-319 human chordoma cells through suppression of notch pathway. Transl. Cancer Res. 2019, 8, 509–519. [Google Scholar] [CrossRef]
  347. Fekry, M.I.; Ezzat, S.M.; Salama, M.M.; Alshehri, O.Y.; Al-Abd, A.M. Bioactive glycoalkaloides isolated from Solanum melongena fruit peels with potential anticancer properties against hepatocellular carcinoma cells. Sci. Rep. 2019, 9, 1–11. [Google Scholar] [CrossRef] [Green Version]
  348. Xiang, S.; Zhang, Q.; Tang, Q.; Zheng, F.; Wu, J.; Yang, L.; Hann, S.S. Activation of AMPKα mediates additive effects of solamargine and metformin on suppressing MUC1 expression in castration-resistant prostate cancer cells. Sci. Rep. 2016, 6, 1–14. [Google Scholar] [CrossRef] [Green Version]
  349. Wang, M.; Shu, Z.-J.; Wang, Y.; Peng, W. Stachydrine hydrochloride inhibits proliferation and induces apoptosis of breast cancer cells via inhibition of Akt and ERK pathways. Am. J. Transl. Res. 2017, 9, 1834. [Google Scholar]
  350. Rathee, P.; Rathee, D.; Rathee, D.; Rathee, S. In vitro anticancer activity of stachydrine isolated from Capparis decidua on prostate cancer cell lines. Nat. Prod. Res. 2012, 26, 1737–1740. [Google Scholar] [CrossRef]
  351. Wang, Y.; Shi, L.-Y.; Qi, W.-H.; Yang, J.; Qi, Y. Anticancer activity of sugiol against ovarian cancer cell line SKOV3 involves mitochondrial apoptosis, cell cycle arrest and blocking of the RAF/MEK/ERK signalling pathway. Arch. Med. Sci. 2020, 16, 428. [Google Scholar] [CrossRef] [Green Version]
  352. Jung, S.-N.; Shin, D.-S.; Kim, H.-N.; Jeon, Y.J.; Yun, J.; Lee, Y.-J.; Kang, J.S.; Han, D.C.; Kwon, B.-M. Sugiol inhibits STAT3 activity via regulation of transketolase and ROS-mediated ERK activation in DU145 prostate carcinoma cells. Biochem. Pharmacol. 2015, 97, 38–50. [Google Scholar] [CrossRef]
  353. Hao, C.; Zhang, X.; Zhang, H.; Shang, H.; Bao, J.; Wang, H.; Li, Z. Sugiol (12-hydroxyabieta-8, 11, 13-trien-7-one) targets hu-man pancreatic carcinoma cells (Mia-PaCa2) by inducing ap-optosis, G2/M cell cycle arrest, ROS production and inhibi-tion of cancer cell migration. J. BUON 2018, 23, 205–210. [Google Scholar] [PubMed]
  354. Zhao, H.; Zhang, X. Sugiol suppresses the growth, migration, and invasion of human endometrial cancer cells via induction of apoptosis and autophagy. 3 Biotech 2021, 11, 1–9. [Google Scholar] [CrossRef] [PubMed]
  355. Lee, C.-Y.; Sher, H.-F.; Chen, H.-W.; Liu, C.-C.; Chen, C.-H.; Lin, C.-S.; Yang, P.-C.; Tsay, H.-S.; Chen, J.J. Anticancer effects of tanshinone I in human non-small cell lung cancer. Mol. Cancer Ther. 2008, 7, 3527–3538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  356. Zhang, Y.; Guo, S.; Fang, J.; Peng, B.; Zhang, Y.; Cao, T. Tanshinone IIA inhibits cell proliferation and tumor growth by downregulating STAT3 in human gastric cancer. Exp. Ther. Med. 2018, 16, 2931–2937. [Google Scholar] [CrossRef] [Green Version]
  357. Li, G.; Shan, C.; Liu, L.; Zhou, T.; Zhou, J.; Hu, X.; Chen, Y.; Cui, H.; Gao, N. Tanshinone IIA inhibits HIF-1α and VEGF expression in breast cancer cells via mTOR/p70S6K/RPS6/4E-BP1 signaling pathway. PLoS ONE 2015, 10, e0117440. [Google Scholar] [CrossRef] [Green Version]
  358. Zhou, J.; Jiang, Y.-Y.; Wang, X.-X.; Wang, H.-P.; Chen, H.; Wu, Y.-C.; Wang, L.; Pu, X.; Yue, G.-Z.; Zhang, L. Tanshinone IIA suppresses ovarian cancer growth through inhibiting malignant properties and angiogenesis. Ann. Transl. Med. 2020, 8, 1295. [Google Scholar] [CrossRef]
  359. Chiu, S.-C.; Huang, S.-Y.; Chang, S.-F.; Chen, S.-P.; Chen, C.-C.; Lin, T.-H.; Liu, H.-H.; Tsai, T.-H.; Lee, S.-S.; Pang, C.-Y. Potential therapeutic roles of tanshinone IIA in human bladder cancer cells. Int. J. Mol. Sci. 2014, 15, 15622–15637. [Google Scholar] [CrossRef] [Green Version]
  360. Li, M.; Wang, G.; Zhang, R.; Duan, S.; Chen, J. Tanshinone IIA inhibits proliferation and activates apoptosis in C4-1 cervical carcinoma cells In Vitro. Biotechnol. Biotechnol. Equip. 2019, 33, 1599–1607. [Google Scholar] [CrossRef] [Green Version]
  361. Park, M.H.; Hong, J.E.; Park, E.S.; Yoon, H.S.; Seo, D.W.; Hyun, B.K.; Han, S.-B.; Ham, Y.W.; Hwang, B.Y.; Hong, J.T. Anticancer effect of tectochrysin in colon cancer cell via suppression of NF-kappaB activity and enhancement of death receptor expression. Mol. Cancer 2015, 14, 1–12. [Google Scholar] [CrossRef] [Green Version]
  362. Wang, Y.; Ke, R.-J.; Jiang, P.-R.; Ying, J.-H.; Lou, E.-Z.; Chen, J.-Y. The effects of tectochrysin on prostate cancer cells apoptosis and its mechanism. Chin. J. Appl. Physiol. 2019, 35, 283. [Google Scholar]
  363. Oh, S.-B.; Hwang, C.J.; Song, S.-Y.; Jung, Y.Y.; Yun, H.-M.; Sok, C.H.; Sung, H.C.; Yi, J.-M.; Park, D.H.; Ham, Y.W. Anti-cancer effect of tectochrysin in NSCLC cells through overexpression of death receptor and inactivation of STAT3. Cancer Lett. 2014, 353, 95–103. [Google Scholar] [CrossRef]
  364. Zhang, H.; Xie, B.; Zhang, Z.; Sheng, X.; Zhang, S. Tetrandrine suppresses cervical cancer growth by inducing apoptosis In Vitro and In Vivo. Drug Des. Devel. Ther. 2019, 13, 119. [Google Scholar] [CrossRef] [Green Version]
  365. Wang, C.H.; Yang, J.M.; Guo, Y.B.; Shen, J.; Pei, X.H. Anticancer activity of tetrandrine by inducing apoptosis in human breast cancer cell line MDA-MB-231 In Vivo. Evid. Based Complement. Alternat. Med. 2020, 2020, 6823520. [Google Scholar] [CrossRef]
  366. Qin, R.; Shen, H.; Cao, Y.; Fang, Y.; Li, H.; Chen, Q.; Xu, W. Tetrandrine induces mitochondria-mediated apoptosis in human gastric cancer BGC-823 cells. PLoS ONE 2013, 8, e76486. [Google Scholar] [CrossRef] [Green Version]
  367. Tsai, S.-C.; Wu, W.-C.; Yang, J.-S. Tetrandrine Inhibits Epithelial-Mesenchymal Transition in IL-6-Induced HCT116 Human Colorectal Cancer Cells. Onco Targets Ther. 2021, 14, 4523. [Google Scholar] [CrossRef]
  368. Shishodia, G.; Koul, S.; Dong, Q.; Koul, H.K. Tetrandrine (TET) induces death receptors Apo Trail R1 (DR4) and Apo Trail R2 (DR5) and sensitizes prostate cancer cells to TRAIL-induced apoptosis. Mol. Cancer Ther. 2018, 17, 1217–1228. [Google Scholar] [CrossRef] [Green Version]
  369. Wang, N.; Yang, S.; Tan, T.; Huang, Y.; Chen, Y.; Dong, C.; Chen, J.; Luo, X. Tetrandrine suppresses the growth of human osteosarcoma cells by regulating multiple signaling pathways. Bioengineered 2021, 12, 5870–5882. [Google Scholar] [CrossRef]
  370. Elbe, H.; Yigitturk, G.; Cavusoglu, T.; Uyanikgil, Y.; Ozturk, F. Apoptotic effects of thymol, a novel monoterpene phenol, on different types of cancer. Bratisl. Lek. Listy 2020, 121, 122–128. [Google Scholar] [CrossRef] [Green Version]
  371. Zeng, Q.; Che, Y.; Zhang, Y.; Chen, M.; Guo, Q.; Zhang, W. Thymol Isolated from Thymus vulgaris L. inhibits colorectal cancer cell growth and metastasis by suppressing the Wnt/β-catenin pathway. Drug Des. Devel. Ther. 2020, 14, 2535. [Google Scholar] [CrossRef]
  372. Kang, S.-H.; Kim, Y.-S.; Kim, E.-K.; Hwang, J.-W.; Jeong, J.-H.; Dong, X.; Lee, J.-W.; Moon, S.-H.; Jeon, B.-T.; Park, P.-J. Anticancer effect of thymol on AGS human gastric carcinoma cells. J. Microbiol. Biotechnol. 2016, 26, 28–37. [Google Scholar] [CrossRef]
  373. Dera, A.; Rajagopalan, P. Thymoquinone attenuates phosphorylation of AKT to inhibit kidney cancer cell proliferation. J. Food Biochem. 2019, 43, e12793. [Google Scholar] [CrossRef]
  374. Woo, C.C.; Hsu, A.; Kumar, A.P.; Sethi, G.; Tan, K.H.B. Thymoquinone inhibits tumor growth and induces apoptosis in a breast cancer xenograft mouse model: The role of p38 MAPK and ROS. PLoS ONE 2013, 8, e75356. [Google Scholar] [CrossRef] [Green Version]
  375. Iskender, B.; Izgi, K.; Hizar, E.; Jauch, J.; Arslanhan, A.; Yuksek, E.H.; Canatan, H. Inhibition of epithelial-mesenchymal transition in bladder cancer cells via modulation of mTOR signalling. Tumor Biol. 2016, 37, 8281–8291. [Google Scholar] [CrossRef]
  376. Kundu, J.; Choi, B.Y.; Jeong, C.-H.; Kundu, J.K.; Chun, K.-S. Thymoquinone induces apoptosis in human colon cancer HCT116 cells through inactivation of STAT3 by blocking JAK2-and Src-mediated phosphorylation of EGF receptor tyrosine kinase. Oncol. Rep. 2014, 32, 821–828. [Google Scholar] [CrossRef] [Green Version]
  377. Zhu, W.-Q.; Wang, J.; Guo, X.-F.; Liu, Z.; Dong, W.-G. Thymoquinone inhibits proliferation in gastric cancer via the STAT3 pathway In Vivo and In Vitro. World J. Gastroenterol. 2016, 22, 4149. [Google Scholar] [CrossRef]
  378. Ashour, A.E.; Abd-Allah, A.R.; Korashy, H.M.; Attia, S.M.; Alzahrani, A.Z.; Saquib, Q.; Bakheet, S.A.; Abdel-Hamied, H.E.; Jamal, S.; Rishi, A.K. Thymoquinone suppression of the human hepatocellular carcinoma cell growth involves inhibition of IL-8 expression, elevated levels of TRAIL receptors, oxidative stress and apoptosis. Mol. Cell. Biochem. 2014, 389, 85–98. [Google Scholar] [CrossRef]
  379. Yang, J.; Kuang, X.R.; Lv, P.T.; Yan, X.X. Thymoquinone inhibits proliferation and invasion of human nonsmall-cell lung cancer cells via ERK pathway. Tumor Biol. 2015, 36, 259–269. [Google Scholar] [CrossRef]
  380. Abdelfadil, E.; Cheng, Y.-H.; Bau, D.-T.; Ting, W.-J.; Chen, L.-M.; Hsu, H.-H.; Lin, Y.-M.; Chen, R.-J.; Tsai, F.-J.; Tsai, C.-H. Thymoquinone induces apoptosis in oral cancer cells through p38β inhibition. Am. J. Chin. Med. 2013, 41, 683–696. [Google Scholar] [CrossRef]
  381. Torres, M.P.; Ponnusamy, M.P.; Chakraborty, S.; Smith, L.M.; Das, S.; Arafat, H.A.; Batra, S.K. Effects of thymoquinone in the expression of mucin 4 in pancreatic cancer cells: Implications for the development of novel cancer therapies. Mol. Cancer Ther. 2010, 9, 1419–1431. [Google Scholar] [CrossRef] [Green Version]
  382. Lin, W.; Ye, H. Anticancer activity of ursolic acid on human ovarian cancer cells via ROS and MMP mediated apoptosis, cell cycle arrest and downregulation of PI3K/AKT pathway. J. BUON 2020, 25, 750–756. [Google Scholar]
  383. Chen, C.-J.; Shih, Y.-L.; Yeh, M.-Y.; Liao, N.-C.; Chung, H.-Y.; Liu, K.-L.; Lee, M.-H.; Chou, P.-Y.; Hou, H.-Y.; Chou, J.-S. Ursolic acid induces apoptotic cell death through AIF and endo G release through a mitochondria-dependent pathway in NCI-H292 human lung cancer cells In Vitro. In Vivo 2019, 33, 383–391. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  384. Wang, W.; Zhao, C.; Jou, D.; Lü, J.; Zhang, C.; Lin, L.; Lin, J. Ursolic acid inhibits the growth of colon cancer-initiating cells by targeting STAT3. Anticancer Res. 2013, 33, 4279–4284. [Google Scholar] [PubMed]
  385. Zhang, X.; Li, T.; Gong, E.S.; Liu, R.H. Antiproliferative activity of ursolic acid in MDA-MB-231 human breast cancer cells through Nrf2 pathway regulation. J. Agric. Food Chem. 2020, 68, 7404–7415. [Google Scholar] [CrossRef] [PubMed]
  386. Prasad, S.; Yadav, V.R.; Sung, B.; Gupta, S.C.; Tyagi, A.K.; Aggarwal, B.B. Ursolic acid inhibits the growth of human pancreatic cancer and enhances the antitumor potential of gemcitabine in an orthotopic mouse model through suppression of the inflammatory microenvironment. Oncotarget 2016, 7, 13182. [Google Scholar] [CrossRef]
  387. Weng, H.; Tan, Z.-J.; Hu, Y.-P.; Shu, Y.-J.; Bao, R.-F.; Jiang, L.; Wu, X.-S.; Li, M.-L.; Ding, Q.; Wang, X.-a. Ursolic acid induces cell cycle arrest and apoptosis of gallbladder carcinoma cells. Cancer Cell Int. 2014, 14, 1–10. [Google Scholar] [CrossRef] [Green Version]
  388. Zúñiga, R.; Concha, G.; Cayo, A.; Cikutović-Molina, R.; Arevalo, B.; González, W.; Catalán, M.A.; Zúñiga, L. Withaferin A suppresses breast cancer cell proliferation by inhibition of the two-pore domain potassium (K2P9) channel TASK-3. Biomed. Pharmacother. 2020, 129, 110383. [Google Scholar] [CrossRef]
  389. Yang, I.-H.; Kim, L.-H.; Shin, J.-A.; Cho, S.-D. Chemotherapeutic effect of withaferin A in human oral cancer cells. J. Cancer Ther. 2015, 6, 735. [Google Scholar] [CrossRef] [Green Version]
  390. Nagy, Z.; Cheung, B.B.; Tsang, W.; Tan, O.; Herath, M.; Ciampa, O.C.; Shadma, F.; Carter, D.R.; Marshall, G.M. Withaferin A activates TRIM16 for its anti-cancer activity in melanoma. Sci. Rep. 2020, 10, 1–9. [Google Scholar] [CrossRef]
  391. Chen, Y.; Han, X.Z.; Wang, W.; Zhao, R.T.; Li, X. Withaferin A inhibits osteosarcoma cells through inactivation of Notch-1 signaling. Bangladesh J. Pharmacol. 2014, 9, 364–370. [Google Scholar] [CrossRef] [Green Version]
  392. Choi, B.Y.; Kim, B.-W. Withaferin-A inhibits colon cancer cell growth by blocking STAT3 transcriptional activity. J. Cancer Prev. 2015, 20, 185. [Google Scholar] [CrossRef] [Green Version]
  393. Feng, Q.; Wang, H.; Pang, J.; Ji, L.; Han, J.; Wang, Y.; Qi, X.; Liu, Z.; Lu, L. Prevention of wogonin on colorectal cancer tumorigenesis by regulating p53 nuclear translocation. Front. Pharmacol. 2018, 9, 1356. [Google Scholar] [CrossRef]
  394. Yang, L.; Zhang, H.W.; Hu, R.; Yang, Y.; Qi, Q.; Lu, N.; Liu, W.; Chu, Y.Y.; You, Q.D.; Guo, Q.L. Wogonin induces G1 phase arrest through inhibiting Cdk4 and cyclin D1 concomitant with an elevation in p21Cip1 in human cervical carcinoma HeLa cells. Biochem. Cell Biol. 2009, 87, 933–942. [Google Scholar] [CrossRef]
  395. Shi, G.; Wang, Q.; Zhou, X.; Li, J.; Liu, H.; Gu, J.; Wang, H.; Wu, Y.; Ding, L.; Ni, S. Response of human non-small-cell lung cancer cells to the influence of Wogonin with SGK1 dynamics. Acta Biochim. Biophys. Sin. 2017, 49, 302–310. [Google Scholar] [CrossRef] [Green Version]
  396. Koh, H.; Sun, H.-N.; Xing, Z.; Liu, R.; Chandimali, N.; Kwon, T.; Lee, D.-S. Wogonin Influences Osteosarcoma Stem Cell Stemness Through ROS-dependent Signaling. Vivo 2020, 34, 1077–1084. [Google Scholar] [CrossRef]
  397. Yu, J.S.; Kim, A.K. Wogonin induces apoptosis by activation of ERK and p38 MAPKs signaling pathways and generation of reactive oxygen species in human breast cancer cells. Mol. Cells 2011, 31, 327–335. [Google Scholar] [CrossRef] [Green Version]
  398. Ruibin, J.; Bo, J.; Danying, W.; Chihong, Z.; Jianguo, F.; Linhui, G. Therapy effects of wogonin on ovarian cancer cells. BioMed Res. Int. 2017, 2017, 9381513. [Google Scholar] [CrossRef] [Green Version]
  399. Li, W.D.; Wu, Y.; Zhang, L.; Yan, L.G.; Yin, F.Z.; Ruan, J.S.; Chen, Z.P.; Yang, G.M.; Yan, C.P.; Zhao, D. Characterization of xanthatin: Anticancer properties and mechanisms of inhibited murine melanoma In Vitro and In Vivo. Phytomedicine 2013, 20, 865–873. [Google Scholar] [CrossRef]
  400. Tao, L.; Sheng, X.; Zhang, L.; Li, W.; Wei, Z.; Zhu, P.; Zhang, F.; Wang, A.; Woodgett, J.R.; Lu, Y. Xanthatin anti-tumor cytotoxicity is mediated via glycogen synthase kinase-3β and β-catenin. Biochem. Pharmacol. 2016, 115, 18–27. [Google Scholar] [CrossRef]
  401. Yu, Y.; Yu, J.; Pei, C.G.; Li, Y.Y.; Tu, P.; Gao, G.P.; Shao, Y. Xanthatin, a novel potent inhibitor of VEGFR2 signaling, inhibits angiogenesis and tumor growth in breast cancer cells. Int. J. Clin. Exp. Pathol. 2015, 8, 10355. [Google Scholar]
  402. Li, L.; Liu, P.; Xie, Y.; Liu, Y.; Chen, Z.; Geng, Y.; Zhang, L. Xanthatin inhibits human colon cancer cells progression via mTOR signaling mediated energy metabolism alteration. Drug Dev. Res. 2021, 83, 119–130. [Google Scholar] [CrossRef]
  403. Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs from 1981 to 2014. J. Nat. Prod. 2016, 79, 629–661. [Google Scholar] [CrossRef] [Green Version]
  404. Vallianou, N.G.; Evangelopoulos, A.; Schizas, N.; Kazazis, C. Potential anticancer properties and mechanisms of action of curcumin. Anticancer Res. 2015, 35, 645–651. [Google Scholar]
  405. Zheng, B.; McClements, D.J. Formulation of more efficacious curcumin delivery systems using colloid science: Enhanced solubility, stability, and bioavailability. Molecules 2020, 25, 2791. [Google Scholar] [CrossRef]
  406. Venkatesan, P.; Rao, M. Structure-activity relationships for the inhibition of lipid peroxidation and the scavenging of free radicals by synthetic symmetrical curcumin analogues. J. Pharm. Pharmacol. 2000, 52, 1123–1128. [Google Scholar] [CrossRef]
  407. Youssef, K.M.; El-Sherbeny, M.A.; El-Shafie, F.S.; Farag, H.A.; Al-Deeb, O.A.; Awadalla, S.A.A. Synthesis of curcumin analogues as potential antioxidant, cancer chemopreventive agents. Arch. Pharm. 2004, 337, 42–54. [Google Scholar] [CrossRef]
  408. Ohtsu, H.; Itokawa, H.; Xiao, Z.; Su, C.-Y.; Shih, C.C.-Y.; Chiang, T.; Chang, E.; Lee, Y.; Chiu, S.-Y.; Chang, C. Antitumor agents 222. Synthesis and anti-androgen activity of new diarylheptanoids. Biorg. Med. Chem. 2003, 11, 5083–5090. [Google Scholar] [CrossRef]
  409. Ohtsu, H.; Xiao, Z.; Ishida, J.; Nagai, M.; Wang, H.-K.; Itokawa, H.; Su, C.-Y.; Shih, C.; Chiang, T.; Chang, E. Antitumor agents. 217. Curcumin analogues as novel androgen receptor antagonists with potential as anti-prostate cancer agents. J. Med. Chem. 2002, 45, 5037–5042. [Google Scholar] [CrossRef]
  410. Itokawa, H.; Shi, Q.; Akiyama, T.; Morris-Natschke, S.L.; Lee, K.H. Recent advances in the investigation of curcuminoids. Chin. Med. 2008, 3, 1–13. [Google Scholar] [CrossRef] [Green Version]
  411. Lin, L.; Lee, K.-H. Structure-activity relationships of curcumin and its analogs with different biological activities. Stud. Nat. Prod. Chem. 2006, 33, 785–812. [Google Scholar]
  412. Morris, J.; Moseley, V.R.; Cabang, A.B.; Coleman, K.; Wei, W.; Garrett-Mayer, E.; Wargovich, M.J. Reduction in promotor methylation utilizing EGCG (epigallocatechin-3-gallate) restores RXRα expression in human colon cancer cells. Oncotarget 2016, 7, 35313. [Google Scholar] [CrossRef]
  413. Lambert, J.D.; Elias, R.J. The antioxidant and pro-oxidant activities of green tea polyphenols: A role in cancer prevention. Arch. Biochem. Biophys. 2010, 501, 65–72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  414. Min, K.-j.; Kwon, T.K. Anticancer effects and molecular mechanisms of epigallocatechin-3-gallate. Integr. Med. Res. 2014, 3, 16–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  415. Landis-Piwowar, K.R.; Kuhn, D.J.; Wan, S.B.; Chen, D.; Chan, T.H.; Dou, Q.P. Evaluation of proteasome-inhibitory and apoptosis-inducing potencies of novel (-)-EGCG analogs and their prodrugs. Int. J. Mol. Med. 2005, 15, 735–742. [Google Scholar] [CrossRef]
  416. Khandelwal, A.; Hall, J.A.; Blagg, B.S. Synthesis and structure–activity relationships of EGCG analogues, a recently identified Hsp90 inhibitor. J. Org. Chem. 2013, 78, 7859–7884. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  417. Matsubara, S.; Shibata, H.; Ishikawa, F.; Yokokura, T.; Takahashi, M.; Sugimura, T.; Wakabayashi, K. Suppression of Helicobacter pylori-induced gastritis by green tea extract in Mongolian gerbils. Biochem. Biophys. Res. Commun. 2003, 310, 715–719. [Google Scholar] [CrossRef] [PubMed]
  418. Iqbal, J.; Abbasi, B.A.; Mahmood, T.; Kanwal, S.; Ali, B.; Shah, S.A.; Khalil, A.T. Plant-derived anticancer agents: A green anticancer approach. Asian Pac. J. Trop. Biomed. 2017, 7, 1129–1150. [Google Scholar] [CrossRef]
  419. Yang, Z.; Kulkarni, K.; Zhu, W.; Hu, M. Bioavailability and pharmacokinetics of genistein: Mechanistic studies on its. Anticancer Agents Med. Chem. 2012, 12, 1264–1280. [Google Scholar] [CrossRef]
  420. Papaj, K.; Kasprzycka, A.; Góra, A.; Grajoszek, A.; Rzepecka, G.; Stojko, J.; Barski, J.-J.; Szeja, W.; Rusin, A. Structure–bioavailability relationship study of genistein derivatives with antiproliferative activity on human cancer cell. J. Pharm. Biomed. Anal. 2020, 185, 113216. [Google Scholar] [CrossRef]
  421. Byczek, A.; Zawisza-Puchalka, J.; Gruca, A.; Papaj, K.; Grynkiewicz, G.; Rusin, M.; Szeja, W.; Rusin, A. Genistein derivatives regioisomerically substituted at 7-O-and 4′-O-have different effect on the cell cycle. J. Chem. 2013, 2013, 191563. [Google Scholar] [CrossRef]
  422. Szeja, W.; Grynkiewicz, G.; Bieg, T.; Swierk, P.; Byczek, A.; Papaj, K.; Kitel, R.; Rusin, A. Synthesis and cytotoxicity of 2, 3-enopyranosyl C-linked conjugates of genistein. Molecules 2014, 19, 7072–7093. [Google Scholar] [CrossRef] [Green Version]
  423. Nahum, A.; Hirsch, K.; Danilenko, M.; Watts, C.K.; Prall, O.W.; Levy, J.; Sharoni, Y. Lycopene inhibition of cell cycle progression in breast and endometrial cancer cells is associated with reduction in cyclin D levels and retention of p27 Kip1 in the cyclin E–cdk2 complexes. Oncogene 2001, 20, 3428–3436. [Google Scholar] [CrossRef] [Green Version]
  424. Carini, F.; David, S.; Tomasello, G.; Mazzola, M.; Damiani, P.; Rappa, F.; Battaglia, L.; Cappello, F.; Jurjus, A.; Geagea, A.G. Colorectal cancer: An update on the effects of lycopene on tumor progression and cell proliferation. J. Biol. Regul. Homeost. Agents 2017, 31, 769–774. [Google Scholar] [PubMed]
  425. Ben-Dor, A.; Steiner, M.; Gheber, L.; Danilenko, M.; Dubi, N.; Linnewiel, K.; Zick, A.; Sharoni, Y.; Levy, J. Carotenoids activate the antioxidant response element transcription system. Mol. Cancer Ther. 2005, 4, 177–186. [Google Scholar]
  426. Linnewiel, K.; Ernst, H.; Caris-Veyrat, C.; Ben-Dor, A.; Kampf, A.; Salman, H.; Danilenko, M.; Levy, J.; Sharoni, Y. Structure activity relationship of carotenoid derivatives in activation of the electrophile/antioxidant response element transcription system. Free Radic. Biol. Med. 2009, 47, 659–667. [Google Scholar] [CrossRef]
  427. Yang, Y.; Zhang, G.; Li, C.; Wang, S.; Zhu, M.; Wang, J.; Yue, H.; Ma, X.; Zhen, Y.; Shu, X. Metabolic profile and structure–activity relationship of resveratrol and its analogs in human bladder cancer cells. Cancer Manag. Res. 2019, 11, 4631. [Google Scholar] [CrossRef] [Green Version]
  428. Herath, W.; Khan, S.I.; Khan, I.A. Microbial metabolism. Part 14. Isolation and bioactivity evaluation of microbial metabolites of resveratrol. Nat. Prod. Res. 2013, 27, 1437–1444. [Google Scholar] [CrossRef]
Figure 1. Incidence and mortality rates of different cancer types in 2020. Percent increases in incidence and mortality rates of different cancers are shown, with breast, lung, prostate, colorectal, and stomach cancers having the highest incidence and mortality rates. Cancers with low percent incidence and mortality rates are combined as miscellaneous cancers.
Figure 1. Incidence and mortality rates of different cancer types in 2020. Percent increases in incidence and mortality rates of different cancers are shown, with breast, lung, prostate, colorectal, and stomach cancers having the highest incidence and mortality rates. Cancers with low percent incidence and mortality rates are combined as miscellaneous cancers.
Cells 11 01326 g001
Figure 2. Important cellular mechanisms involved in cancer and mechanisms of action of phytochemical drugs. Growth factors, such as vascular endothelial growth factor and fibroblast growth factor, bind with their respective receptors, resulting in their phosphorylation, followed by the activation of downstream signaling pathways, such as the PI3K/Akt, PLCγ, and STAT pathways. Akt activates IKK, which is responsible for the activation of the NF-κB signaling and mTOR pathway; IKK exerts its effect on cells by regulating the hypoxia-induced factor. ROS activates the Akt and AMP-activated protein kinase (AMPK) pathways by inducing endoplasmic reticulum stress. AMPK activates the tumor suppressor transcription factor (FOX O) and inhibits the action of mTOR. Wnt proteins suppress glycogen synthase kinase-3β (GSK-3β) by binding to frizzled receptors, disrupting the β-catenin complex (destructive complex). β-catenin accumulates in the cytoplasm, translocates to the nucleus, and induces cell proliferation, which promotes cancer by activating Wnt-regulated genes. Different phytochemicals act on different targets to exhibit anticancer activity.
Figure 2. Important cellular mechanisms involved in cancer and mechanisms of action of phytochemical drugs. Growth factors, such as vascular endothelial growth factor and fibroblast growth factor, bind with their respective receptors, resulting in their phosphorylation, followed by the activation of downstream signaling pathways, such as the PI3K/Akt, PLCγ, and STAT pathways. Akt activates IKK, which is responsible for the activation of the NF-κB signaling and mTOR pathway; IKK exerts its effect on cells by regulating the hypoxia-induced factor. ROS activates the Akt and AMP-activated protein kinase (AMPK) pathways by inducing endoplasmic reticulum stress. AMPK activates the tumor suppressor transcription factor (FOX O) and inhibits the action of mTOR. Wnt proteins suppress glycogen synthase kinase-3β (GSK-3β) by binding to frizzled receptors, disrupting the β-catenin complex (destructive complex). β-catenin accumulates in the cytoplasm, translocates to the nucleus, and induces cell proliferation, which promotes cancer by activating Wnt-regulated genes. Different phytochemicals act on different targets to exhibit anticancer activity.
Cells 11 01326 g002
Figure 3. Numbers and percentages of anticancer phytochemicals belonging to different phytochemical classes. In this review, most phytochemicals were found to be constituted of alkaloids followed by flavonoids, terpenes, flavones, and phenols. The phytochemicals classes that have less than two phytochemicals are included in the miscellaneous class.
Figure 3. Numbers and percentages of anticancer phytochemicals belonging to different phytochemical classes. In this review, most phytochemicals were found to be constituted of alkaloids followed by flavonoids, terpenes, flavones, and phenols. The phytochemicals classes that have less than two phytochemicals are included in the miscellaneous class.
Cells 11 01326 g003
Figure 4. Structures of anticancer phytochemicals approved by FDA or in clinical trials.
Figure 4. Structures of anticancer phytochemicals approved by FDA or in clinical trials.
Cells 11 01326 g004
Table 1. Estimated worldwide incidence and mortality rates (per 100,000 people) of all cancer types in 2020.
Table 1. Estimated worldwide incidence and mortality rates (per 100,000 people) of all cancer types in 2020.
Continents Incidence Rank Mortality Rank
Worldwide 247.5127.8
Asia 204.8125.2
Japan 813.3 1 332.2 3
China 315.6 57 207.5 42
India 96 121 61.5 122
South Korea 449.2 42 172.8 56
Europe 587.4261.1
Germany 750.2 4 300.9 10
France 716.9 9 284.4 17
Italy686.8 13 289.0 15
North America693.2189.6
USA689.312185.0 54
Canada726.9 7 229.7 33
South America224.8109.1
Brazil278.6 63122.3 72
Argentina289.6 60155.0 63
Colombia222.5 75108.1 81
Africa82.753.1
South Africa182.4 8395.8 87
Morocco 160.8 9395.5 88
Ethiopia 67.3 15845.1 155
Australia784.4 2 189.2 51
New Zealand745.2 5 217.9 38
Table 2. Plant-derived phytochemicals with potential anticancer properties, and their mechanisms of action.
Table 2. Plant-derived phytochemicals with potential anticancer properties, and their mechanisms of action.
Sr #PhytochemicalsChemical
Nature
Plant’s Source/Origin Chemical
Structure
M: Weight (g/mol)Cancer TypeStudy TypeTargets and Mechanisms
1Allicin ThioesterAllium sativumC6H10OS2162.3Lung cancerIn vitroDownregulation of VEGF expression [12]
Gastric cancerIn vitro Enhanced expression of p38 and cleavage caspase-3 [13]
Oral cancerIn vitroUpregulation of and cleaved caspase-3 [14]
Brain cancerIn vitroElevation in Fas/FasL expression [15]
2AloperineAlkaloidSophora
alopecuroides
C15H24N2232.36Ovarian cancerIn vitroReactive oxygen species activation [16]
Thyroid cancerIn vitroSuppression of Akt pathway and downstream B-cell lymphoma (Bcl-2) expression [17]
Prostate cancerIn vitro, in vivoInhibition of Akt and ERK phosphorylation [18]
Bladder cancerIn vitroDownregulation of Ras, p-Raf1 and p-Erk1/2 expression [19]
Colon cancerIn vitroInhibition of JAK/Stat3 and PI3K/Akt pathways [20]
Bones cancerIn vitro Suppression of PI3K/AKT signaling [21]
3AlpinumisoflavoneIsoflavoneDerris eriocarpaC20H16O5336.3Colon cancerIn vitro Blockage of DNA repairing [22]
Esophageal cancerIn vitro, in vivo, ex-vivo Upregulation of miR-370 and suppression of PIM1 signaling [23]
Brain cancerIn vitroSuppression of glycolysis and cyclin D1 expression and activation of caspase-9 [24]
4AmygdalinDiglucosideRosaceae kernelsC20H27NO11 457.4Bladder cancerIn vitro Modulation of β1 or β4 integrin expression [25]
Breast cancerIn vitro Downregulation of Bcl-2, upregulation of Bax and p38 MAPK signaling pathways [26]
Prostate cancerIn vitro Activation of caspase-3 through downregulation of Bcl-2 and up-regulation of Bax [27]
Cervical cancerIn vitro Downregulation of Bcl-2 and upregulation of Bax protein [28]
5AndrographolideDiterpenoidAndrographis
paniculata
C20H30O5350.4Colon cancerIn vitro Increase intracellular ROS level [29]
Skin cancerIn vitro Activation of JNK and p38 signaling pathway [30]
Breast cancerIn vitro, in vivo Suppressing of COX-2 and VEGF pathway [31]
Prostate cancerIn vitro, in vivo Facilitate DNA damage [32]
Bile duct cancerIn vitro Suppression of Claudin-1 via p-38 pathway [33]
Ovarian cancerIn vitro Upregulation of TIMP1 expression [34]
6ApigeninFlavonoidMatricaria
chamomilla
C15H10O5270.24Colon cancerIn vitro, in vivo Inhibition of the Mcl-1, AKT, and ERK pro-survival regulators [35]
Lung cancerIn vitro, in vivoInhibition of NF-κB, AKT and ERK pathway [36]
Liver cancerIn vitro, in vivoInhibition of PI3K/Akt/mTOR signaling [37]
Pancreatic cancerIn vitro Through G2/M cell cycle arrest [38]
Breast cancerIn vitro Inhibition of YAP/TAZ activity [39]
Prostate cancerIn vitro, in vivo Suppression of NF-κB/p65 expression [40]
Bone cancerIn vitro Suppression of Wnt/β-catenin signaling [41]
7 ArtemisininAlkaloidArtemisia annuaC15H22O5282.33Colon cancerIn vitro and in vivoIncrease in ROS production [42]
Kidney cancerIn vitro, in vivo Inhibition of AKT signaling [43]
Ovarian cancerIn vitro, in vivo Suppression of AKT/ERK/mTOR pathway [44]
Gallbladder cancerIn vitro, in vivo Inhibition of ERK1/2 pathway [45]
8Baicalein FlavonoidScutellaria
baicalensis
C15H10O5270.24Lung cancerIn vitro, in vivo Suppression of VEGF, FGFR-2, and RB-1 pathways [46]
Colon cancerIn vitro Activation of caspase-3 [47]
Bladder cancerIn vitro, in vivo Inhibition of cyclin B1, MMP-2 and MMP-9 mRNA expressions [48]
Pancreatic cancerIn vitro, in vivo Increase caspase-3 and Bax, while decrease survivin and Bcl-2 expressions [49]
Liver cancerIn vitro Suppression of PI3K/Akt pathway [50]
Prostate cancerIn vitro Inhibition of caveolin-1/AKT/mTOR pathway [51]
Breast cancerIn vitro, in vivo Activation of PAX8-AS1-N activation [52]
Ovarian cancerIn vitro, in vivo Inhibition of YAP and RASSF6 expressions [53]
Skin cancerIn vitro, in vivo Inhibition of glucose uptake and metabolism of tumor cells [54]
9BerbamineAlkaloidBerberis amurensisC37H40N2O6608.7Blood cancer In vitro Upregulation of caspase-3 and downregulation of MDR-1 gene expression [55]
Liver cancerIn vitro, in vivo, ex vivo Inhibition of Ca2+/Calmodulin-dependent protein Kinase II expression [56]
Ovarian cancerIn vitro, in vivoInhibition of Wnt/β-catenin signaling [57]
Colon cancerIn vitro Inhibition of MEK/ERK signaling [58]
Head & neck cancerIn vitro Inhibition of STAT3 activation [59]
10CapsaicinCapsaicinoidCapsicum annuumC18H27NO3 305.4Breast cancerIn vitro, in vivoDownregulation of FBI-1-mediated NF-κB pathway [60]
Lung cancerIn vivo Downregulation of MMP-2 and -9 levels [61]
Prostate cancerIn vitro Increases protein light chain 3-II (autophagy marker) and ROS levels [62]
Colon cancerIn vitro Stabilization and activation of p53 [63]
Esophageal cancerIn vitro Decrease hexokinase-2 (HK-2) expression [64]
Skin cancerIn vitro Downregulation of PI3-K/Akt/Rac1 pathway [65]
11CepharanthineAlkaloidStephania cepharanthaC37H38N2O6606.7Colon cancerIn vitro Upregulation of p21Waf1/Cip1 pathway [66]
Breast cancerIn vitro Inhibition of AKT/mTOR signaling [67]
Ovarian cancerIn vitro Increases expression of p21Waf1 and decreasing expression of cyclins A and D proteins [68]
Liver cancerIn vitro Activation of JNK1/2 signaling and downregulation of Akt pathway [69]
12Chlorogenic AcidEster Etlingera elatiorC16H18O9354.31Liver cancerIn vitro, in vivo Inhibition of DNMT1 expression [70]
Colon cancerIn vitro Activation of PARP-1, and caspase-9 [71]
Breast cancerIn vitro Upregulation of Bax and downregulation of Bcl-2 expressions [72]
13ColchicineAlkaloidColchicum
automnale
C22H25NO6399.4Gastric cancerIn vitro, in vivo Induce caspase-3-mediated mitochondrial apoptosis [73]
Hypopharyngeal cancerIn vitro, in vivo Inhibition of phosphorylated FAK/SRC complex and paxillin [74]
Breast cancerIn vitro Inhibition of MMP-2 expression [75]
Colon cancerIn vitro Decrease in AKT phosphorylation [76]
14Combretastatin A4StilbeneCombretum caffrumC18H20O5 316.3Lung cancerIn vitro, in vivo Disruption of microtubule assembly [77]
Bladder cancerIn vitro, in vivo Activation of caspase-3 and reduction in BubR1 and Bub3 expressions [78]
Bone cancerIn vitro Inhibition of NDRG1 [79]
15Corosolic acidTripernoidLagerstroemia
speciosa
C30H48O4472.7Lung cancerIn vitro, in vivo Inhibition of VEGFR2 kinase activity [33]
Colon cancerIn vitro, in vivo Inhibition of HER2/HER3 receptors’ heterodimerization [80]
Gastric cancerIn vitro Activation of AMPK pathway [81]
Liver cancerIn vitro, in vivo, ex vivo Inactivation of CDK19/YAP/O-GlcNAcylation pathway [82]
Prostate cancerIn vitro, in vivo Activation of IRE-1/JNK, PERK/CHOP and TRIB3 [83]
Cervical cancerIn vitro Downregulation of PI3K and Akt signaling [84]
Kidney cancerIn vitro Induction of lipid ROS [85]
Breast cancerIn vitro Increase in ROS production and decrease in VEGF concentration [86]
Bladder cancerIn vitro, in vivo Upregulation of SQSTM1/P62, NBR1, and UBB expression [87]
16CrocetinCarotenoidCrocus sativusC20H24O4328.4Prostate cancerIn vitro, in vivo Induce DNA damage and apoptosis [88]
Colon cancerIn vitro Upregulation FAS/FADD death receptor [89]
Pancreatic cancerIn vitro, in vivo Upregulation of Bax and downregulation of Bcl-2 protein [90]
Gastric cancerIn vitro, in vivo Upregulation of caspase-3, -8 and -9 [91]
17CucurbitacinTriterpeneCucumis sativusC32H46O8558.7Colon cancerIn vitro Inhibition of Hippo-YAP Signaling Pathway [92]
Gastric cancerIn vitro, in vivo Suppression of Akt expression [93]
Bile duct cancerIn vitro Downregulation of pRB, cyclin D1 and cyclin E expression [94]
Breast cancerIn vitro Inhibition of Stat3 and Akt signaling [95]
18CurcuminCurcuminoidsCurcuma longaC21H20O6368.38Breast cancerIn vitro Upregulation of PTEN/Akt signaling pathway [96]
Gastric cancerIn vitro Suppression of PI3K/Akt/mTOR signaling pathway [49]
Oral cancerIn vivo Suppression of NF-κB, and COX-2 expression [97]
Prostate cancerIn vitro Downregulation of NF-κB, and CXCL1 and -2 expressions [98]
Colon cancerIn vitro Inhibition of AMPK-induced NF-κB, uPA, and MMP9 activation [99]
Ovarian cancerIn vitro JAK/STAT3 pathway inhibition [100]
Lung cancerIn vitro Increase in FOXA2 expression [101]
19DiosgeninSaponinDioscorea villosaC27H42O3414.6Breast cancerIn vitro Downregulation of Skp2 [102]
Liver cancerIn vitro Inhibition of Akt and upregulation of p21 and p27 expression [103]
20D-limoneneTerpeneCitrus aurantiumC10H16136.23Colon cancerIn vitroInactivation of Akt pathway [104]
Lung cancerIn vitroUpregulation of Atg5 [105]
Prostate cancerIn vitroGeneration of ROS, and activation of caspase-3 and -9 [106]
21Emodin ResinRheum palmatumC15H10O5270.24Breast cancerIn vitro Activation of AhR-CYP1A1 signaling pathway [107]
Lung cancerIn vitro Suppression of HAS2-HA-CD44/RHAMM pathway [108]
Pancreatic cancerIn vitro, in vivo Downregulation of NF-κB, VEGF, MMP-2, and -9 [109]
Colon cancerIn vitro Suppression of PI3K/AKT signaling [110]
Prostate cancerIn vitro Downregulation of VEGF [111]
22Epigallocatechin gallate (EGCG)CatechinCamellia sinensisC22H18O11458.4Bile duct cancerIn vitro, in vivo Suppression of Notch1, MMP-2, and -9 signaling [112]
Lung cancerIn vitro Activation of AMPK signaling pathway [113]
Ovarian cancerIn vitro Induce DNA damage [114]
Prostate cancerIn vitro, in vivo Inhibition of HSP90 function [115]
Head & neck cancerIn vitro, in vivo Inhibition of beta-catenin expression [116]
Colon cancerIn vitro Induction of ER stress through PERK/p-eIF2α/ATF4 and IRE1α pathways activation [117]
23ErianinBisbenzylDendrobium
chrysotoxum
C18H22O5318.4Breast cancerIn vitro Activation PI3K/Akt pathway [118]
Lung cancerIn vitro, in vivo Induction of Ca2+/CaM-dependent ferroptosis [119]
Liver cancerIn vitro, in vivo Induction of oxidative stress-mediated mitochondrial apoptosis [73]
Oral cancerIn vitro Regulation of MAPK pathway [120]
Bladder cancerIn vitro, in vivo Increase in p-JNK level and induce c-Jun and Bcl-2 phosphorylation [121]
Bone cancer In vitro, in vivo Activation of ROS/JNK signaling [122]
Colon cancerIn vitroActivation of JNK pathway [123]
Cervical cancerIn vitro Regulation of ERK1/2 signaling [124]
24EvodiamineAlkaloidEvodia rutaecarpaC19H17N3O303.4Lung cancerIn vitro, in vivo Elevation of CD8+ T cells and downregulation of MUC1-C/PD-L1 axis [125]
Thyroid cancerIn vitroThrough M phase cell cycle arrest and apoptosis’s induction [126]
Prostate cancerIn vitro Activation of caspase-3 and -9 [127]
Liver cancerIn vitro Deactivation of PI3K/AKT pathway [128]
Bladder cancerIn vitro Enhance activation of P38 and JNK signaling [129]
Colon cancerIn vitro, in vivo Inhibition of acetyl-NF-κB, p65 and MMP-9 expression [130]
Ovarian cancerIn vitro Elevation of p27 and p21, and inhibition of Cdc2 expression [131]
Pancreatic cancerIn vitro Inhibition of NF-κB, p65, and Bcl-2 expression, while activate Bax and cleaved caspase-3 [132]
25FlavopiridolFlavonoidsDysoxylum
binectariferum
C21H20ClNO541.8Breast cancerIn vitro Inhibition of cyclin-dependent kinases [133]
Thyroid cancerIn vitro, in vivo Reduction in Cyclin-dependent kinases (CDK) and MCL1 levels [134]
Bile duct cancerIn vitro, in vivo Suppression of cyclin-dependent kinase pathway [135]
Head & neck cancerIn vitro, in vivo Reduction in cyclin D1 expression [136]
Lung cancerIn vitro Reduction in E-cadherin level [137]
Esophageal cancerIn vitro, in vivo Decrease in c-Myc expression [138]
26Gallic AcidPhenolic acidGalanthus nivalisC7H6O5170.12Lung cancerIn vitro, in vivo Inhibition of PI3K/Akt pathway [139]
Liver cancerIn vitro Suppression of Wnt/β-catenin signaling [140]
Breast cancerIn vitro, in vivo Increases expression of cleaved caspase-7, -9, and p53, while reduces expression of Bcl-2, and PARP [141]
Colon cancerIn vitro, in vivoInhibition of SRC and EGFR phosphorylation [142]
Gastric cancerIn vitro Increases expression of caspase-3, -8, and P53 gene [143]
Prostate cancerIn vitro Generation of ROS [144]
Ovarian cancerIn vitro, in vivo Inhibition of carbonic anhydrase IX protein [145]
Pancreatic cancerIn vitro Downregulation of protein Bcl-,2 while increases in BAX expression [146]
27Gambogic acidResinGarcinia hanburyiC38H44O8628.7Lung cancerIn vitro, in vivo Downregulation of Bcl-2, and upregulation of Bax expression [147]
Breast cancerIn vitro, in vivo Increase the expression of Fas, cleaved caspase-3, -8, -9 and Bax proteins [148]
Liver cancerIn vitro Induces apoptosis through caspases 3, -7, -8 and -9 [149]
Prostate cancerIn vitro Induction of ROS production [150]
Colon cancerIn vitro, in vivo Inhibition of Akt-mTOR signaling [151]
Gastric cancerIn vitro, in vivo Downregulation of circ_ASAP2 and CDK7, while upregulation of miR-33a-5p expression [152]
28Genistein IsoflavonesGlycine maxC15H10O5270.24Liver cancerIn vitro Upregulation of Bax, cleaved caspase-3 and -9 and downregulation of Bcl-2 expression [153]
Colon cancerIn vitro, in vivo Suppression of MiR-95, Akt and SGK1 signaling [154]
Prostate cancerIn vitro, in vivo Decrease MMP-2 expression [155]
Lung cancerIn vitro Downregulation of FoxM1 [156]
29Gingerol PhenolZingiber officinaleC17H26O4294.4Breast cancerIn vitro Induction of p53-dependent intrinsic apoptosis [157]
Oral cancerIn vitro Activate caspases and increase Apaf-1 expression [158]
Cervical cancer
Lung cancerIn vitro, in vivo Reduction in ROS and iron accumulation and suppression of USP14 expression [159]
Pancreatic cancerIn vitro Inhibition of PI3K/AKT signaling [160]
30GinkgetinFlavonoidGinkgo bilobaC32H22O10566.5Breast cancerIn vitro Downregulation of estrogen receptor [161]
Lung cancerIn vitro, in vivoInhibition of p62/SQSTM1 signaling [162]
Prostate cancerIn vitro, in vivo Suppression of STAT3 expression [163]
Bone cancerIn vitro Inhibition of STAT3 and activation of caspase-3/9 [164]
Ovarian cancerIn vitro Induction of apoptosis by activation of caspase-3 [165]
Kidney cancerIn vitro Suppression of JAK2-STAT3 pathway [166]
31Glycyrrhizin TriterpenesGlycyrrhiza glabraC42H62O16822.9Breast cancerIn vitro, in vivo Induces ROS-mediated apoptosis [167]
Gastric cancerIn vitro Downregulation of PI3K/AKT pathway [168]
Prostate cancerIn vitro Induces DNA damage [169]
Ovarian cancerIn vitro Upregulation of Fas and FasL expression [170]
32GossypolPhenolGossypium
hirsutum
C30H30O8518.6Colon cancerIn vitro Suppression of genes coding expression for CLAUDIN1, FAS, IL2, and IL8 [171]
Breast cancerIn vitro Suppression of IKBKE, CCL2 and MAPK1 expression [172]
Lung cancerIn vitro Decrease EGFR phosphorylation and AKT/ERK signaling [173]
Prostate cancerIn vitro Activation of p53 protein [174]
Ovarian cancerIn vitroCause changes in thiol/redox states of proteins associated with glycolysis and stress responses [175]
Cervical cancerIn vitro, in vivo Inhibition of FAK signaling and reversing TGF-β1-induced EMT [176]
Head & neck cancerIn vivo Inhibition of Bcl-XL expression [177]
Skin cancerIn vitro Induces mitochondria-dependent apoptosis [178]
33HarmineAlkaloid Peganum
harmala
C13H12N2O212.25Breast cancerIn vitro, in vivoDownregulation of TAZ [179]
Thyroid cancerIn vitro, in vivoDownregulation of Bcl-2 and upregulation of Bax expression [180]
Gastric cancerIn vitro Inhibition of Akt/mTOR/p70S6K signaling [181]
Pancreatic cancerIn vitroSuppression of AKT/mTOR pathway [182]
Ovarian cancerIn vitroInhibition of ERK/CREB pathway [183]
Lung cancerIn vitro Suppression of AKT phosphorylation and enhances ROS generation [184]
34HesperidinFlavonoidCitrus limonC28H34O15610.6Lung cancerIn vitroDownregulation of FGF and NF-κB signal transduction pathways [185]
Gastric cancerIn vitro Increase in ROS levels and regulation of MAPK signaling [135]
Liver cancerIn vitro Downregulation of Bcl-xL and upregulation of Bax, Bak, and tBid proteins [186]
Skin cancerIn vitro Induces DNA damage [187]
Prostate cancerIn vitro Induces apoptosis triggered by ROS generation [188]
Breast cancerIn vitro Inhibition of PD-L1 expression via downregulation of Akt and NF-κB signaling [189]
35Hispidulin FlavoneSalvia involucrateC16H12O6300.26Lung cancerIn vitro, in vivo Induces ROS-mediated apoptosis via ER stress pathway [190]
Liver cancerIn vitro, in vivoUpregulation of PPARγ signaling [191]
Kidney cancerIn vitro, in vivoActivation of ROS/JNK signaling [192]
Gastric cancerIn vitro Activate ERK1/2 and NAG-1 signaling [193]
36KaempferolFlavonoidSpinacia oleraceaC15H10O6286.24Breast cancerIn vitroIncrease expression of H2AX, caspase-3, and -9 [194]
Liver cancerIn vitroActivation of AMPK signaling [195]
Kidney cancerIn vitroDownregulation of AKT and FAK pathways [196]
Cervical cancerIn vitroDisruption of mitochondrial membrane potential and intracellular free Ca2+ concentration [197]
Pancreatic cancerIn vitroInhibition of TGM2 expression [198]
Colon cancerIn vitroActivation of ATM and p53-Bax axis [199]
37KurarinoneFlavonoidSophora
flavescens
C26H30O6438.5Lung cancerIn vitro, in vivo Suppression of caspase-7 and -12, and AKT pathway [200]
Gastric cancerIn vitroInhibition of STAT3 signaling [201]
Breast cancerIn vitroInhibition of NF-κB activation [202]
38LappaconitineDiterpenoidAconitum
sinomontanum
C32H44N2O8 584.7Colon cancerIn vitroDownregulation of PI3K/AKT/GSK3β signaling [203]
Lung cancerIn vitroDownregulation of Cyclin E1 expression [204]
Liver cancer In vitroUpregulation of Bax, P53, and downregulation of Bcl-2 expressions [205]
39Licochalcone AChalconeGlycyrrhiza glabraC21H22O4338.4Breast cancerIn vitroInhibition of PI3K/Akt/mTOR pathway [206]
Bladder cancerIn vitroInduces ER stress-dependent apoptosis caused by activation of ER-specific caspase-12 [207]
Lung cancerIn vitroInduces ERK and p38 activation while suppresses JNK signaling [208]
Liver cancerIn vitroDownregulation of MKK4/JNK [209]
40LiriodenineAlkaloidEnicosanthellum pulchrumC17H9NO3275.26Breast cancerIn vitroUpregulation of p53 [210]
Lung cancerIn vitroLockage of cell cycle progression at the G2/M phase [211]
Ovarian cancerIn vitroInhibition of progression of CAOV-3 cell cycle in S phase [212]
41LuteolinFlavonoidReseda luteolaC15H10O6286.24Liver cancerIn vitroIncreases caspase-8 and decreases Bcl-2 expression [213]
Colon cancerIn vitroUpregulation of Nrf2 expression [214]
Gastric cancerIn vitroInhibition of STAT3 phosphorylation [215]
Oral cancerIn vitroSuppression of EMT-induced transcription factors [216]
Breast cancerIn vitroSuppression of NF-κB/c-Myc activation and hTERT transcription [217]
Pancreatic cancerIn vitroInhibition of VEGF expression [218]
Lung cancerIn vitroInhibition of FAK-Src signaling [219]
42LycopeneCarotenoid Solanum
lycopersicum
C40H56 536.9Breast cancerIn vitro Inhibition of Akt phosphorylation [220]
Prostate cancerIn vitro, in vivo Downregulation of IL1, IL6, IL8, and TNF-α levels [221]
Colon cancerIn vitro Suppression of NF-κB and JNK signaling [222]
Pancreatic cancerIn vitroInhibition of ROS-Mediated NF-κB Signaling [223]
Lung cancerIn vitro, in vivoInduction of RARβ expression [224]
Gastric cancerIn vivo Increase in SOD, and CAT, while decrease in MDA levels [225]
Cervical cancerIn vitro Upregulation of Bax, and downregulation of Bcl-2 expression [226]
Skin cancerIn vivo Inhibition of PCNA expression [227]
Brain cancerIn vitro Activation of caspase-3 pathway [228]
Ovarian cancerIn vitro, in vivoDecrease in integrin α5 expression and MAPK activation [229]
43LycorineAlkaloidCrinum asiaticumC16H17NO4287.31Breast cancerIn vitro, in vivoInhibition of STAT3 signaling pathway [230]
Gastric cancerIn vitro, in vivoEnhances FBXW7-MCL1 axis level [224]
Prostate cancerIn vitro, in vivoInhibition of JAK/STAT signaling [231]
Lung cancerIn vitro, in vivoInhibition of Wnt/β-catenin signaling [232]
Liver cancerIn vitro inhibition of ROCK1/cofilin-induced actin dynamics [233]
44MagnololLignanMagnolia officinalisC18H18O2 266.3Lung cancerIn vitro, in vivoDownregulation of Akt/mTOR pathway [234]
Gallbladder cancerIn vitro, in vivoIncrease in p53 expression [235]
Liver cancer In vitroInhibition of ERK-modulated metastatic process [236]
Prostate cancerIn vitroDownregulation of MMP-2 and MMP-9 expression [237]
Esophageal cancerIn vitroActivation of MAPK pathway [238]
45MatrineAlkaloidSophora flavescensC15H24N2O248.36Prostate cancerIn vitro Enhances expression of GADD45B, tumor suppresser gene or AKT/GSK3β/β-catenin [239]
Ovarian cancerIn vitro, in vivoSuppression of PI3K/AKT/mTOR pathway expression [240]
Colon cancerIn vitro Upregulation of Bax, downregulation of Bcl-2, and activation of caspase-3 and -9 [241]
Liver cancerIn vitro, in vivoUpregulation of miR-345-5p and downregulation of circ_0027345 and HOXD3 [242]
Lung cancerIn vitro Downregulation of C-C chemokine receptor type 7 (CCR7) [243]
46MyricetinFlavonoidMyrica nagi ThunbC15H10O8318.23Thyroid cancerIn vitro DNA damaging and inducing the release of apoptosis-inducing factor (AIF) [244]
Bladder cancerIn vitro, in vivo Activation of caspase-3, and inhibition of Akt and MMP-9 expression [245]
Colon cancerIn vitro Increases BAX/BCL2 ratio and AIF release [246]
Prostate cancerIn vitro Inhibition of PIM1 and disruption of PIM1/CXCR4 interaction [247]
Breast cancerIn vitro Enhances intracellular ROS production [248]
Lung cancerIn vitro Inhibition of FAK-ERK signaling pathway [249]
47NimbolideLimonoid
triterpene
Azadirachta indica C27H30O7466.5Pancreatic cancerIn vitro, in vivoReduction in PI3K/AKT/mTOR and ERK signaling [250]
Colon cancerIn vitro, in vivoInhibition of Bcl-x, CXCR4, VEGF, and NF-κB [251]
Bladder cancerIn vitro Stimulation of p38 MAPK and AKT phosphorylation [252]
48NoscapineAlkaloidPapaver
somniferum
C22H23NO7413.4Colon cancerIn vitro Inhibition of PI3K/AKT/mTOR pathway [253]
Breast cancerIn vitro Decreases NF-κB and increases IκBα expression [254]
Lung cancerIn vitro, in vivoUpregulation of PARP, Bax, and repression of Bcl2 expression [255]
Prostate cancerIn vivo Suppression of microtubule dynamics [256]
49OridoninDiterpenoidRabdosia rubescensC20H28O6364.4Colon cancerIn vitro, in vivo Downregulation of GLUT1 and induction of autophagy [257]
Liver cancerIn vitro, in vivoInhibition of Akt pathway [258]
Ovarian cancerIn vitro Suppression of mTOR pathway [259]
Bladder cancerIn vitro, in vivoInactivation of ERK and AKT signaling pathways [260]
Esophageal cancerIn vitro, in vivoSuppression of AKT signaling [261]
Breast cancerIn vitro Decrease in expression of MMPs and regulation of Integrin β1/FAK pathway [262]
Bone cancerIn vitro, in vivoActivation of PPAR-γ and inhibition of Nrf2 pathways [263]
50OxymatrineAlkaloidSophora flavescensC15H24N2O2264.36Cervical cancerIn vitro Suppression of AKT/mTOR [264]
Breast cancerIn vitro Suppress the PI3K/Akt [265]
Pancreatic cancerIon vitroDownregulation of Livin and Survivin expression and upregulation of Bax/Bcl-2 ratio [266]
Prostate cancerIn vitro, in vivoIncrease in expression of p53 and Bax, and decrease in Bcl-2 level [267]
51Physapubescin B SteroidPhysalis pubescensC30H42O8530.6Ovarian cancerIn vitro Suppress transcriptional activity of STAT3 [268]
Kidney cancerIn vitro, in vivo Decreases expression of HIF-2α and activation of caspase-3 and -8 [269]
52PinostrobinFlavonoidBoesenbergia
rotunda
C16H14O4270.28Cervical cancerIn vitroIncreases expressions of TRAIL, FADD and production of ROS [270]
Breast cancerIn vitroDownregulation of FAK and RhoA signaling [271]
Lung cancerIn vitroVia promoting apoptosis [272]
Prostate cancerIn vitroDecrease in cyclins B expression [273]
53PiperineAlkaloidPiper nigrumC17H19NO3285.34Colon cancerIn vitroSuppression of Wnt/β-catenin pathway [274]
Lung cancerIn vitroInduces p53-mediated cell cycle arrest and apoptosis via activation of caspase-3 and -9 cascades [275]
Breast cancerIn vitro, in vivoInduction of cell apoptosis and cell cycle blockage [276]
Prostate cancerIn vitro Downregulation of cyclin A & D1 [277]
54PiperlongumineAlkaloidPiper longumC17H19NO5317.34Lung cancerIn vitroInhibition of Akt phosphorylation [278]
Prostate cancerIn vitroInduces DNA damage [279]
Colon cancerIn vitroInduces DNA damage via increasing ROS production [280]
55PlumbaginAlkaloidPlumbago zeylinicaC11H8O3 188.18Breast cancerIn vitro Upregulation of p53 and p21 [281]
Colon cancerIn vitro Induction of ROS formation [282]
Liver cancerIn vitro, in vivo Downregulation of SIVA/mTOR signaling [283]
Prostate cancerIn vitro, in vivoInduction of ROS production, and activation of ER stress [284]
Lung cancerIn vitro Activation of caspase-9 and ROS production [285]
Esophageal cancerIn vitro, in vivo Inhibition of STAT3-PLK1-AKT signaling [286]
Bone cancerIn vitro Downregulation of c-Myc expression [287]
Cervical cancerIn vitro Downregulation of MMP 2, 9, β-catenin and N-cadherin, while upregulation of E-cadherin signaling [288]
56PristimerinTriterpenoidMortonia greggiiC30H40O4464.6Colon cancerIn vitroDecreases in AKT expression [289]
Oral cancerIn vitroInhibition of MAPK/Erk1/2 and Akt signaling [290]
Prostate cancerIn vitroInhibition of HIF-1α [291]
Lung cancerIn vitroDownregulation of integrin β1 and MMP2 expression [292]
Pancreatic cancerIn vitroInhibition of Akt/NF-κB/mTOR signaling [293]
57Pterostilbene StilbenoidPolygonum
cuspidatum
C16H16O3256.3Ovarian cancerIn vitro Decreases release of NF-κB p50, and NF-κB p65 [294]
Lung cancerIn vitro, in vivo Enhance ROS generation, caspase-3 activity and ER stress [295]
Breast cancerIn vitro Inactivate AKT and mTOR signaling pathways [296]
Colon cancerIn vitro, in vivo Facilitate DNA repairing mediated through Top1/Tdp1 pathway [297]
58PuerarinIsoflavonePueraria radixC21H20O9416.4Colon cancerIn vitro Increase Bax expression and caspase-3 activation [298]
Prostate cancerIn vitroInhibition of Keap1/Nrf2/ARE signaling pathways [299]
Lung cancerIn vitro, in vivo Inhibition of PI3K/Akt pathway [300]
Liver cancerIn vitro Modulation of MAPK signaling pathway [301]
Brain cancerIn vitro Suppression of p-Akt and Bcl-2, while enhancement of Bax and cleaved caspase-3 expression [302]
59QuercetinFlavonoidAllium cepaC15H10O7302.23Thyroid cancerIn vitro Upregulation of Pro-NAG-1/GDF15 [303]
Breast cancerIn vitro Inactivation of caspase-3 pathway [304]
Liver cancerIn vitroInhibition of PI3K/Akt and ERK pathways [305]
Prostate cancerIn vitroEnhances release of tumor suppressor genes i.e., PTEN, p53 and TSC [306]
Lung cancer In vitroInhibition of NF-κB Signaling [307]
60ResveratrolStilbenoidPolygonum
cuspidatum
C14H12O3228.24Colon cancerIn vitro Inactivates PI3K/Akt signaling [308]
Breast cancerIn vitroSuppression of Integrin αvβ3 expression [309]
Ovarian cancerIn vitro Inactivation of STAT3 signaling [310]
Pancreatic cancerIn vitro Suppression of NAF-1 expression, induces ROS
accumulation, and activation of Nrf2 signaling [311]
Gastric cancerIn vitro Upregulation of Bax, cleaved caspase-3 and -8 while suppression of NF-κB activation [312]
Lung cancerIn vitro, in vivo Decreases SIRT1-mediated NF-κB activation [313]
Skin cancerIn vitro, in vivoDeacetylation of SIRT1-activated NF-κB [314]
61RutinFlavonoidRuta graveolensC27H30O16610.5Colon cancerIn vitro Inhibition of caspase-3 expression [315]
Brain cancerIn vitro Upregulation of P53 expression [265]
Skin cancerIn vitro Suppression of PI3K/Akt and Wnt/β-catenin signaling [316]
Breast cancerIn vitro, in vivo Inhibition of tyrosine kinase c-Met receptor [317]
62SafranalAlkaloidCrocus sativusC10H14O150.22Colon cancerIn vitro Suppression of PI3K/Akt/ mTOR pathway [318]
Liver cancerIn vitro Activation of caspases-8 and -9 [319]
Prostate cancerIn vitro, in vivo Downregulation of AKT and NF-κB signaling [320]
Breast cancerIn vitro Inhibits DNA and RNA synthesis [321]
63ShikoninQuinoneLithospermum erythrorhizonC16H16O5 288.29Lung cancerIn vitro Downregulation of PFKFB2 expression [322]
Colon cancerIn vitro Reduction in peroxiredoxin V (PrxV) expression [323]
Prostate cancerIn vitro Induces necroptosis by decreasing caspase-8 and increasing pRIP1 and pRIP3 [324]
Liver cancerIn vitro, in vivo Inhibition of PKM2 expression [325]
Ovarian cancer In vitro Decreases Bcl-2 expression and increases BAX, caspase-3 and -9 expression [326]
Skin cancerIn vitro, in vivo Inhibition of MAPK pathway-mediated induction of apoptosis [327]
Bile duct cancerIn vitro Inhibitions of PKM2 expression [328]
Breast cancerIn vitro Inhibition of epidermal growth factor receptor signaling [329]
64ShogaolPhenolZingiber officinaleC17H24O3276.4Breast cancerIn vitro Inhibition Akt and STAT signaling pathway [330]
Prostate cancerIn vitro, in vivo Inhibition of STAT3 and NF-κB signaling [331]
Lung cancerIn vitro, in vivo Inhibits secretion of CCL2 [332]
Cervical cancerIn vitro Induces apoptosis and G2/M cell cycle arrest [333]
65SilibininFlavonolignanSilybum marianumC25H22O10 482.4Breast cancerIn vivo Inhibition of EGF–EGFR signaling pathway [334]
Lung cancerIn vitro, in vivo Activation of EGFR/LOX pathway [335]
Ovarian cancer In vitro, in vivoInhibition of ERK and Akt pathway [336]
Prostate cancerIn vitro Suppression of vimentin and MMP-2 expression [337]
Skin cancerIn vivo Via Pro-Oxidant activity [338]
Colon cancerIn vitro Downregulation of COX-2, VEGF, MMP-2, & -9, and CXCR-4 expression [339]
Gastric cancerIn vitro Inhibition of STAT3 pathway [340]
66SilymarinFlavonolignanSilybum marianumC25H22O10482.4Oral cancerIn vitro, in vivo Induction of DR5/caspase-8 apoptotic signaling [289]
Gastric cancerIn vitro Inhibition of p-ERK and activation of p-p38 and p-JNK pathways [341]
Colon cancerIn vitro Increases ATF3 transcription through activation of JNK and IκK-α [291]
Prostate cancerIn vitro Inhibition of cyclins (A, B1, D, E) and cyclin-dependent kinase pathway [337]
Breast cancerIn vitro, in vivo Regulation of MAPK signaling pathway [342]
Liver cancerIn vivoReduction in ROS levels [343]
67SolamargineAlkaloidSolanum nigrum L.C45H73NO15 868.1Gastric cancerIn vitro, in vivo Inhibition of Erk1/2 MAPK phosphorylation [344]
Skin cancerIn vitro Downregulation of hILP/XIAP [345]
Bone cancerIn vitroSuppression of notch pathway [346]
Liver cancerIn vitroInduction of apoptosis [347]
Prostate cancerIn vitro, in vivoSuppression of MUC1 expression [348]
68StachydrineAlkaloidHerba LeonuriC7H13NO2143.18Breast cancerIn vitroInhibition of Akt/ERK pathways [349]
Prostate cancerIn vitroInhibits CXCR3 and CXCR4 expressions [350]
69SugiolDiterpeneSalvia prionitisC20H28O2300.4Ovarian cancerIn vitroBlockage of RAF/MEK/ERK signaling pathway [351]
Prostate cancerIn vitro, in vivoInhibits STAT3 activity and increase ROS level [352]
Pancreatic cancerIn vitro Induces ROS-mediated alterations in MMP [353]
Uterine cancerIn vitro Increases Bax and decreases Bcl-2 expressions [354]
70TanshinoneTerpenoidsSalvia miltiorrhizaC18H12O3 276.3Lung cancerIn vitro, in vivo Suppression of IL-8 through NF-κB and AP-1
Pathways [355]
Gastric cancerIn vitro, in vivoDownregulation of STAT3 pathway [356]
Breast cancerIn vitro Suppression of HIF-1α and VEGF [357]
Ovarian cancerIn vitro, in vivoDownregulation of Bcl-2, VEGF, COX2 and upregulation of Bax expressions [358]
Bladder cancerIn vitro Activation of caspases 3 and -9 [359]
Cervical cancerIn vitro Decrease in Bcl-2, HPV 16 and E7 protein levels, while increase in Bax and caspase-3 expressions [360]
71TectochrysinFlavonoidsAlpinia oxyphyllaC16H12O4 268.26Colon cancerIn vitroInhibition of NF-κB signaling [361]
Prostate cancerIn vitroSuppression of PI3K/AKT pathway [362]
Lung cancerIn vitroInhibition of STAT3 signaling [363]
72TetrandrineAlkaloidStephania tetrandraC38H42N2O6622.7Cervical cancerIn vitro, in vivoDownregulation of MMP2 and MMP9 [364]
Breast cancer In vivo Upregulation of Caspase-3, Bax, and downregulation of Bcl-2, Survivin, and PARP signaling [365]
Gastric cancerIn vitro, in vivoActivation of caspase-3 and -9, and upregulation of apaf-1 [366]
Colon cancerIn vitroInhibition of EMT transition [367]
Prostate cancerIn vitro Induction of DR4 and DR5 expression, and TRAIL-mediated apoptosis [368]
Bone cancerIn vitro, in vivoInhibition of PTEN/Akt, MAPK/Erk and Wnt signaling pathways [369]
73Thymol PhenolThymus vulgarisC10H14O 150.22Lung cancer In vitroEnhances cytoplasmic membrane permeability and cell apoptosis [370]
Breast cancer
Prostate cancer
Colon cancerIn vitroSuppression of Wnt/β-Catenin pathway [371]
Gastric cancerIn vitroActivation of Bax, PARP, and caspase-8 proteins [372]
74Thymoquinone QuinoneNigella sativaC10H12O2164.2Kidney cancerIn vitro Inhibition of AKT phosphorylation [373]
Breast cancerIn vitro, in vivo Through phosphorylation of p38 via ROS generation [374]
Bladder cancerIn vitro Inhibition of mTOR signaling [375]
Colon cancerIn vitroInhibition of STAT3, JAK2- and EGF receptor
tyrosine kinase [376]
Gastric cancerIn vitro, in vivo Inhibition of STAT3 pathway [377]
Liver cancer In vitro Inhibition of IL-8 expression, and activation of TRAIL receptors [378]
Lung cancerIn vitro Reduction in ERK1/2 phosphorylation [379]
Oral cancerIn vitro Downregulation of p38β MAPK [380]
Pancreatic cancerIn vitro Downregulation of mucin 4 expression [381]
75Ursolic acid TriterpenoidsOldenlandia diffusaC30H48O3 456.7Ovarian cancerIn vitro Downregulation of PI3K/AKT pathway [382]
Lung cancerIn vitro Enhances apoptosis-inducing factor (AIF) and endonuclease G release [383]
Colon cancerIn vitro, in vivo Inhibition of IL-6-mediated STAT3 pathway [384]
Breast cancerIn vitro Downregulation of Nrf2 expression [385]
Pancreatic cancerIn vitro, in vivo Inhibition of NF-κB and STAT3 pathways [386]
Gallbladder cancerIn vitroActivation of caspase-3, -9 and PARP pathway [387]
76Withaferin-A steroidal
lactone
Withania somniferaC28H38O6470.6Breast cancerIn vitro Inhibition of TASK-3 expression [388]
Oral cancerIn vitro Upregulation of Bim and Bax expression [389]
Skin cancerIn vitro Activation of TRIM16 [390]
Bone cancerIn vitroInactivation of Notch-1 signaling [391]
Colon cancerIn vitro, in vivoInhibition of STAT3 Transcriptional activity [392]
77WogoninFlavonoidScutellaria
baicalensis
C16H12O5284.26Colon cancerIn vitroIncreases ER stress, and mediates p53 phosphorylation [393]
Cervical cancerIn vitroInhibition of Cdk4 and cyclin D1 [394]
Lung cancerIn vitroDownregulation of SGK1 protein levels [395]
Bone cancerIn vitroIncreases ROS level [396]
Breast cancerIn vitroActivation of ERK and p38 MAPKs pathways [397]
Ovarian cancerIn vitroIncrease in p53 and decrease in VEGF proteins expression [398]
78XanthatinSesquiterpene lactoneXanthium
strumarium
C15H18O3246.3Skin cancerIn vitro, in vivo Inhibition of Wnt/β-catenin pathway [399]
Lung cancerIn vitro, in vivoInhibition of GSK-3β signaling [400]
Breast cancerIn vitro, in vivoInhibition of VEGFR2 signaling [401]
Colon cancerIn vitro Inhibition of mTOR pathway [402]
Table 3. Number of effective phytochemicals against different types of cancer.
Table 3. Number of effective phytochemicals against different types of cancer.
Cancer TypeNumber of
Phytochemicals
Cancer TypeNumber of
Phytochemicals
Cancer TypeNumber of
Phytochemicals
Breast cancer55Pancreatic cancer18Esophageal cancer6
Colon cancer53Cervical cancer14Thyroid Cancer6
Lung cancer53Bladder cancer13Bile duct cancer5
Prostate cancer45Bladder cancer13Brain cancer5
Liver cancer30Skin cancer11Miscellaneous10
Ovarian Cancer27Oral cancer9NANA
Gastric cancer24Kidney cancer7NANA
Table 4. Phytochemicals with activity against different number of cancer types.
Table 4. Phytochemicals with activity against different number of cancer types.
Sr #PhytochemicalsEffective against Number of Cancer Types
1Lycopene10
2Baicalin, Corosolic acid, Plumbagin, Shikonin, Thymoquinone 9
3Erianin, Evodiamine, Gallic acid, Gossypol8
4Apigenin, Curcumin, Luteolin, Oridonin, Resveratrol, Silibinin7
5Other phytochemicals≤6
Table 5. List of phytochemicals approved by the FDA or in clinical trials for various types of cancer.
Table 5. List of phytochemicals approved by the FDA or in clinical trials for various types of cancer.
Sr #PhytochemicalsSourceCancer TypeDevelopment StageStatusTrade NameNCT Number
1VincristineCatharanthus roseusAcute leukemiaFDA approved1963OncovinNA
2PaclitaxelTaxus braciolaLate-stage pancreatic cancerFDA approved2013Abraxane®NA
Advanced non-small cell lung cancerFDA approved2012Abraxane®NA
Metastatic breast cancerFDA approved2005Abraxane®NA
3CurcuminCurcuma longaProstate cancerPhase 3Recruiting,
15 June 2021
Biocurcumax (BCM-95) ®NCT03769766
Cervical cancerPhase 2Not yet recruiting,
25 June 2021
Curcugreen (BCM-95) ®NCT04294836
Pancreatic cancerPhase 2Recruiting, 2020NANCT00094445
Gastric cancerPhase 2Not yet recruiting,
13 January 2022
Meriva®NCT02782949
Breast cancerPhase 1Recruiting,
23 February 2021
NA NCT03980509
4LycopeneSolanum lycopersicumProstate cancerPhase 3Completed,
23 January 2018
NA NCT01105338
5ResveratrolPolygonum
cuspidatum
Multiple myeloma cancerPhase 2Terminated (collecting more data) 27 February 2019SRT501NCT00920556
Colon cancerPhase 1Completed, 14 June 2017SRT501NCT00920803
Neuroendocrine cancerNACompleted, 18 November 2019NANCT01476592
6CapsaicinCapsicum annuumBreast cancerPhase 3Recruiting,
29 December 2021
Qutenza®NCT03794388
Head and neck cancerPhase 2Recruiting,
5 August 2021
Qutenza®NCT04704453
Prostate cancerPhase 2Not yet recruiting,
16 January 2014
CayenneNCT02037464
7Chlorogenic acidEtlingera elatiorLung cancerPhase 2Recruiting,
26 November 2018
NA NCT03751592
8ColchicineColchicum autumnaleLiver cancerPhase 2Recruiting, 11 February 2020ColchicineNCT04264260
9GenisteinGlycine maxProstate cancerPhase 2Temporarily
suspended,
4 December 2020
NA NCT02766478
Colorectal cancerPhase 2Completed,
10 May 2019
BonisteinNCT01985763
Prostate cancerPhase 2Completed,
6 August 2019
Novasoy 400NCT01036321
Bladder cancerPhase 2Completed,
10 June 2021
NA NCT00118040
10CamptothecinCamptotheca acuminataSolid tumorPhase 2Completed,
28 May 2020
CRLX101NCT00333502
Stomach and esophageal cancerPhase 2Completed,
1 February 2018
CRLX101NCT01612546
Advanced non-small cell lung cancerPhase 2Completed,
28 May 2020
CRLX101NCT01380769
11PiperinePiper nigrumProstate cancerPhase 2Not yet recruiting,
3 November 2021
NA NCT04731844
12SilibininSilybum marianumProstate cancerPhase 2Completed,
31 March 2014
Silibin-PhytosomeNCT00487721
13QuercetinAllium cepaSquamous cell carcinomaPhase 2Recruiting,
28 October 2021
NA NCT03476330
14 Epigallocatechin
gallate
Camellia sinensisColon cancerPhase 1Recruiting,
15 December 2021
TeavigoNCT02891538
Esophageal cancerPhase 1Recruiting,
10 September 2021
NA NCT05039983
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Khan, A.W.; Farooq, M.; Haseeb, M.; Choi, S. Role of Plant-Derived Active Constituents in Cancer Treatment and Their Mechanisms of Action. Cells 2022, 11, 1326. https://doi.org/10.3390/cells11081326

AMA Style

Khan AW, Farooq M, Haseeb M, Choi S. Role of Plant-Derived Active Constituents in Cancer Treatment and Their Mechanisms of Action. Cells. 2022; 11(8):1326. https://doi.org/10.3390/cells11081326

Chicago/Turabian Style

Khan, Abdul Waheed, Mariya Farooq, Muhammad Haseeb, and Sangdun Choi. 2022. "Role of Plant-Derived Active Constituents in Cancer Treatment and Their Mechanisms of Action" Cells 11, no. 8: 1326. https://doi.org/10.3390/cells11081326

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop