Towards Kinase Inhibitor Therapies for Fragile X Syndrome: Tweaking Twists in the Autism Spectrum Kinase Signaling Network
Abstract
1. Introduction
2. The Fragile X Syndrome: A Systemic Overview of the Molecular Pathophysiology
3. The Fragile X Messenger Ribonucleoprotein (FMRP) Is an RNA-Binding Molecule, Which Is Tightly Regulated by the Actions of Protein Kinases and Phosphatases
4. Protein Kinases and Phosphatases Are the Main Drivers of Intracellular Signaling and Are Dysregulated in the FXS, Revealing New Strategies for Kinase Inhibitor Therapy
4.1. Serine-Threonine Protein Kinase B (Akt)
4.2. Adenosine Mono-Phosphate-Activated Protein Kinase (AMPK)
4.3. Calcium/Calmodulin-Dependent Protein Kinase Type II Subunit Alpha (CaMKIIα)
4.4. Cyclin-Dependent Kinase 4 (CDK4)
4.5. Diacylglycerol Kinase Kappa (DGKk)
4.6. Extracellular Signal-Regulated Kinases (ERKs)
4.7. Focal Adhesion Kinases (FAK)
4.8. Glycogen Synthase Kinase 3 (GSK3)
4.9. LIM Domain Kinase 1 (LIMK1)
4.10. MAPK Interacting Serine/Threonine Kinases (MNK)
4.11. Mechanistic Target of Rapamycin Kinase (mTOR)
4.12. p21 (RAC1) Activated Kinases (PAKs)
4.13. Phosphatidylinositol-4,5-Bisphosphate 3-Kinases (PI3Ks)
4.14. Protein Kinase cAMP-Activated Catalytic Subunit Alpha (PKA)
4.15. Protein Kinase C (PKC)
4.16. p90 Ribosomal Protein S6 Kinase (RSK)
4.17. p70 Ribosomal Protein S6 Kinases (S6Ks)
4.18. Tropomyosin-Related Kinase B (TrkB)
5. A Predictive Network Analysis Suggests Functional Associations between the Abnormally Regulated Protein Kinases in the FXS
6. The Aberrant Kinase-Signature in the Fragile X Syndrome Translates to Abnormalities of the Phosphoproteome
7. Concluding Remarks and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Richter, J.D.; Bassell, G.J.; Klann, E. Dysregulation and restoration of translational homeostasis in fragile X syndrome. Nat. Rev. Neurosci. 2015, 16, 595–605. [Google Scholar] [CrossRef] [PubMed]
- Levenga, J.; De Vrij, F.M.S.; Oostra, B.A.; Willemsen, R. Potential therapeutic interventions for fragile X syndrome. Trends Mol. Med. 2010, 16, 516–527. [Google Scholar] [CrossRef] [PubMed]
- Tsiouris, J.A.; Brown, W.T. Neuropsychiatric symptoms of fragile X syndrome: Pathophysiology and pharmacotherapy. CNS Drugs 2004, 18, 687–703. [Google Scholar] [CrossRef] [PubMed]
- Lovelace, J.W.; Rais, M.; Palacios, A.R.; Shuai, X.S.; Bishay, S.; Popa, O.; Pirbhoy, P.S.; Binder, D.K.; Nelson, D.L.; Ethell, I.M.; et al. Deletion of Fmr1 from Forebrain Excitatory Neurons Triggers Abnormal Cellular, EEG, and Behavioral Phenotypes in the Auditory Cortex of a Mouse Model of Fragile X Syndrome. Cereb. Cortex 2020, 30, 969–988. [Google Scholar] [CrossRef]
- Musumeci, S.A.; Hagerman, R.J.; Ferri, R.; Bosco, P.; Bernardina, B.D.; Tassinari, C.A.; Sarro, G.B.; Elia, M. Epilepsy and EEG Findings in Males with Fragile X Syndrome. Epilepsia 1999, 40, 1092–1099. [Google Scholar] [CrossRef]
- Santoro, M.R.; Bray, S.M.; Warren, S.T. Molecular mechanisms of fragile X syndrome: A twenty-year perspective. Annu. Rev. Pathol. Mech. Dis. 2012, 7, 219–245. [Google Scholar] [CrossRef]
- Lanni, S.; Goracci, M.; Borrelli, L.; Mancano, G.; Chiurazzi, P.; Moscato, U.; Ferrè, F.; Helmer-Citterich, M.; Tabolacci, E.; Neri, G.; et al. Role of CTCF Protein in Regulating FMR1 Locus Transcription. PLoS Genet. 2013, 9, e1003601. [Google Scholar] [CrossRef]
- Naumann, A.; Hochstein, N.; Weber, S.; Fanning, E.; Doerfler, W. A Distinct DNA-Methylation Boundary in the 5′- Upstream Sequence of the FMR1 Promoter Binds Nuclear Proteins and Is Lost in Fragile X Syndrome. Am. J. Hum. Genet. 2009, 85, 606–616. [Google Scholar] [CrossRef]
- Rooms, L.; Kooy, R.F. Advances in understanding fragile X syndrome and related disorders. Curr. Opin. Pediatr. 2011, 23, 601–606. [Google Scholar] [CrossRef]
- Darnell, J.C.; Klann, E. The translation of translational control by FMRP: Therapeutic targets for FXS. Nat. Neurosci. 2013, 16, 1530–1536. [Google Scholar] [CrossRef]
- Bagni, C.; Zukin, R.S. A Synaptic Perspective of Fragile X Syndrome and Autism Spectrum Disorders. Neuron 2019, 101, 1070–1088. [Google Scholar] [CrossRef] [PubMed]
- Braat, S.; Kooy, R.F. The GABA A Receptor as a Therapeutic Target for Neurodevelopmental Disorders. Neuron 2015, 86, 1119–1130. [Google Scholar] [CrossRef] [PubMed]
- Dölen, G.; Bear, M.F. Role for metabotropic glutamate receptor 5 (mGluR5) in the pathogenesis of fragile X syndrome. J. Physiol. 2008, 586, 1503–1508. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Sun, D. GABA receptors in brain development, function, and injury. Metab. Brain Dis. 2015, 30, 367–379. [Google Scholar] [CrossRef]
- Bagni, C.; Tassone, F.; Neri, G.; Hagerman, R. Fragile X syndrome: Causes, diagnosis, mechanisms, and therapeutics. J. Clin. Investig. 2012, 122, 4314–4322. [Google Scholar] [CrossRef]
- Janusz, A.; Miłek, J.; Perycz, M.; Pacini, L.; Bagni, C.; Kaczmarek, L.; Dziembowska, M. The Fragile X Mental Retardation Protein Regulates Matrix Metalloproteinase 9 mRNA at Synapses. J. Neurosci. 2013, 33, 18234–18241. [Google Scholar] [CrossRef]
- Kondratiuk, I.; Łęski, S.; Urbańska, M.; Biecek, P.; Devijver, H.; Lechat, B.; Van Leuven, F.; Kaczmarek, L.; Jaworski, T. GSK-3β and MMP-9 Cooperate in the Control of Dendritic Spine Morphology. Mol. Neurobiol. 2017, 54, 200–211. [Google Scholar] [CrossRef]
- Westmark, C.J.; Malter, J.S. FMRP Mediates mGluR5-Dependent Translation of Amyloid Precursor Protein. PLoS Biol. 2007, 5, e52. [Google Scholar] [CrossRef]
- Willemsen, R.; Kooy, F.R. Fragile X Syndrome-From Genetics to Targeted Treatment; Elsevier: Rotterdam, The Netherlands, 2016. [Google Scholar]
- Psychiatry, D.K.S. Autism, Alzheimer Disease, and Fragile X APP, FMRP, and mGluR5 Are Molecular Links Supplemental Data at www.neurology.org VIEWS & REVIEWS. Neurology 2011, 76, 1344–1352. [Google Scholar]
- Hagerman, R.; Lauterborn, J.; Au, J.; Berry-Kravis, E. Fragile X syndrome and targeted treatment trials. Results Probl. Cell Differ. 2012, 54, 297–335. [Google Scholar] [CrossRef]
- Hamilton, T.A. Protein Kinases. In Encyclopedia of Immunology; Elsevier: Amsterdam, The Netherlands, 1998; pp. 2028–2033. [Google Scholar]
- Ardito, F.; Giuliani, M.; Perrone, D.; Troiano, G.; Lo Muzio, L. The crucial role of protein phosphorylation in cell signalingand its use as targeted therapy (Review). Int. J. Mol. Med. 2017, 40, 271–280. [Google Scholar] [CrossRef]
- Stultz, C.M.; Levin, A.D.; Edelman, E.R. Phosphorylation-induced conformational changes in a mitogen-activated protein kinase substrate: Implications for tyrosine hydroxylase activation. J. Biol. Chem. 2002, 277, 47653–47661. [Google Scholar] [CrossRef]
- Rabiller, M.; Getlik, M.; Klüter, S.; Richters, A.; Tückmantel, S.; Simard, J.R.; Rauh, D. Review Proteus in the World of Proteins: Conformational Changes in Protein Kinases. Arch. Pharm. Chem. Life Sci. 2010, 343, 193–206. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Xie, Z.; Zhu, H.; Qian, J. Understanding protein phosphorylation on a systems level. Brief. Funct. Genom. 2010, 9, 32–42. [Google Scholar] [CrossRef] [PubMed]
- Cohen, P. Protein kinases-the major drug targets of the twenty-first century? Nat. Rev. Drug Discov. 2002, 1, 309–315. [Google Scholar] [CrossRef] [PubMed]
- Zafarullah, M.; Tassone, F. Molecular biomarkers in fragile x syndrome. Brain Sci. 2019, 9, 96. [Google Scholar] [CrossRef]
- Sharma, A.; Hoeffer, C.A.; Takayasu, Y.; Miyawaki, T.; McBride, S.M.; Klann, E.; Zukin, R.S. Dysregulation of mTOR Signaling in Fragile X Syndrome. J. Neurosci. 2010, 30, 694–702. [Google Scholar] [CrossRef]
- Shchemelinin, L.I.; Šefc, E.N. Protein Kinases, Their Function and Implication in Cancer and Other Diseases. Folia Biol. 2006, 52, 81–101. [Google Scholar]
- Tabolacci, E.; Palumbo, F.; Nobile, V.; Neri, G. Transcriptional Reactivation of the FMR1 Gene. A Possible Approach to the Treatment of the Fragile X Syndrome †. Genes 2016, 7, 49. [Google Scholar] [CrossRef]
- Crawford, D.C.; Acuña, J.M.; Sherman, S.L. FMR1 and the fragile X syndrome: Human genome epidemiology review. Genet. Med. 2001, 3, 359–371. [Google Scholar] [CrossRef]
- Deelen, W.; Bakker, C.; Halley, D.J.J.; Oostra, B.A. Conservation of CGG region in FMR1 gene in mammals. Am. J. Med. Genet. 1994, 51, 513–516. [Google Scholar] [CrossRef] [PubMed]
- Hinds, H.L.; Ashley, C.T.; Sutcliffe, J.S.; Nelson, D.L.; Warren, S.T.; Housman, D.E.; Schalling, M. Tissue specific expression of FMR–1 provides evidence for a functional role in fragile X syndrome. Nat. Genet. 1993, 3, 36–43. [Google Scholar] [CrossRef] [PubMed]
- Zalfa, F.; Bagni, C. FMRP Dysfunction and Mental Retardation 73 Molecular Insights into Mental Retardation: Multiple Functions for the Fragile X Mental Retardation Protein? Curr. Issues Mol. Biol. 2004, 6, 73–88. [Google Scholar] [PubMed]
- Hagerman, R.J.; Berry-Kravis, E.; Hazlett, H.C.; Bailey, D.B.; Moine, H.; Kooy, R.F.; Tassone, F.; Gantois, I.; Sonenberg, N.; Mandel, J.L.; et al. Fragile X syndrome. Nat. Rev. Dis. Prim. 2017, 3, 17065. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, A.K.; Crawford, D.C.; Scott, E.H.; Leslie, M.L.; Sherman, S.L. Paternally transmitted FMR1 alleles are less stable than maternally transmitted alleles in the common and intermediate size range. Am. J. Hum. Genet. 2002, 70, 1532–1544. [Google Scholar] [CrossRef]
- Moutou, C.; Vincent, M.-C.; Biancalana, V.; Mandel, J.-L. Transition from premutation to full mutation in fragile X syndrome is likely to be prezygotic. Hum. Mol. Genet. 1997, 6, 971–979. [Google Scholar] [CrossRef][Green Version]
- Schneider, A.; Winarni, T.I.; Cabal-Herrera, A.M.; Bacalman, S.; Gane, L.; Hagerman, P.; Tassone, F.; Hagerman, R. Elevated FMR1-mRNA and lowered FMRP–A double-hit mechanism for psychiatric features in men with FMR1 premutations. Transl. Psychiatry 2020, 10, 205. [Google Scholar] [CrossRef]
- Hecht, M.; Tabib, A.; Kahan, T.; Orlanski, S.; Gropp, M.; Tabach, Y.; Yanuka, O.; Benvenisty, N.; Keshet, I.; Cedar, H. Epigenetic mechanism of FMR1 inactivation in Fragile X syndrome. Int. J. Dev. Biol. 2017, 61, 285–292. [Google Scholar] [CrossRef]
- Dean, D.D.; Muthuswamy, S.; Agarwal, S. Fragile X syndrome: Current insight. Egypt. J. Med. Hum. Genet. 2016, 17, 303–309. [Google Scholar] [CrossRef][Green Version]
- Maurin, T.; Melko, M.; Abekhoukh, S.; Khalfallah, O.; Davidovic, L.; Jarjat, M.; D’Antoni, S.; Catania, M.V.; Moine, H.; Bechara, E.; et al. The FMRP/GRK4 mRNA interaction uncovers a new mode of binding of the Fragile X mental retardation protein in cerebellum. Nucleic Acids Res. 2015, 43, 8540–8550. [Google Scholar] [CrossRef]
- Myrick, L.K.; Hashimoto, H.; Cheng, X.; Warren, S.T. Human FMRP contains an integral tandem Agenet (Tudor) and KH motif in the amino terminal domain. Hum. Mol. Genet. 2015, 24, 1733–1740. [Google Scholar] [CrossRef] [PubMed]
- Deng, P.Y.; Rotman, Z.; Blundon, J.A.; Cho, Y.; Cui, J.; Cavalli, V.; Zakharenko, S.S.; Klyachko, V.A. FMRP Regulates Neurotransmitter Release and Synaptic Information Transmission by Modulating Action Potential Duration via BK Channels. Neuron 2013, 77, 696–711. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Kang, Y.; Wang, M.; Li, Y.; Xu, T.; Yang, W.; Song, H.; Wu, H.; Shu, Q.; Jin, P. Fragile X mental retardation protein modulates the stability of its m6A-marked messenger RNA targets. Hum. Mol. Genet. 2018, 27, 3936–3950. [Google Scholar] [CrossRef] [PubMed]
- Edens, B.M.; Vissers, C.; Su, J.; Arumugam, S.; Xu, Z.; Shi, H.; Miller, N.; Rojas Ringeling, F.; Ming, G.L.; He, C.; et al. FMRP Modulates Neural Differentiation through m 6 A-Dependent mRNA Nuclear Export. Cell Rep. 2019, 28, 845–854.e5. [Google Scholar] [CrossRef] [PubMed]
- Siomi, H.; Ishizuka, A.; Siomi, M.C. RNA Interference: A New Mechanism by which FMRP Acts in the Normal Brain? What Can Drosophila Teach Us? Ment. Retard. Dev. Disabil. Res. Rev. 2004, 10, 68–74. [Google Scholar] [CrossRef] [PubMed]
- Bassell, G.J.; Gross, C. Reducing glutamate signaling pays off in fragile X. Nat. Med. 2008, 14, 249–250. [Google Scholar] [CrossRef]
- Clifton, N.E.; Thomas, K.L.; Wilkinson, L.S.; Hall, J.; Trent, S. FMRP and CYFIP1 at the Synapse and Their Role in Psychiatric Vulnerability. Complex Psychiatry 2020, 6, 5. [Google Scholar] [CrossRef]
- Ceman, S.; O’Donnell, W.T.; Reed, M.; Patton, S.; Pohl, J.; Warren, S.T. Phosphorylation influences the translation state of FMRP-associated polyribosomes. Hum. Mol. Genet. 2003, 12, 3295–3305. [Google Scholar] [CrossRef]
- De Rubeis, S.; Bagni, C. Regulation of molecular pathways in the Fragile X Syndrome: Insights into Autism Spectrum Disorders. J. Neurodev. Disord. 2011, 3, 257–269. [Google Scholar] [CrossRef]
- Gareau, C.; Martel, D.; Coudert, L.; Mellaoui, S.; Mazroui, R. Characterization of Fragile X Mental Retardation Protein granules formation and dynamics in Drosophila. Biol. Open 2013, 2, 68. [Google Scholar] [CrossRef][Green Version]
- Narayanan, U.; Nalavadi, V.; Nakamoto, M.; Pallas, D.C.; Ceman, S.; Bassell, G.J.; Warren, S.T. Neurobiology of Disease FMRP Phosphorylation Reveals an Immediate-Early Signaling Pathway Triggered by Group I mGluR and Mediated by PP2A. J. Neurosci. 2007, 27, 14349–14357. [Google Scholar] [CrossRef] [PubMed]
- Bartley, C.M.; O’keefe, R.A.; Lique Bordey, A. FMRP S499 Is Phosphorylated Independent of mTORC1-S6K1 Activity. PLoS ONE 2014, 9, e96956. [Google Scholar] [CrossRef] [PubMed]
- Cheever, A.; Ceman, S. Phosphorylation of FMRP inhibits association with Dicer. RNA 2009, 15, 362–366. [Google Scholar] [CrossRef] [PubMed]
- Tsang, B.; Arsenault, J.; Vernon, R.M.; Lin, H.; Sonenberg, N.; Wang, L.Y.; Bah, A.; Forman-Kay, J.D. Phosphoregulated FMRP phase separation models activity-dependent translation through bidirectional control of mRNA granule formation. Proc. Natl. Acad. Sci. USA 2019, 116, 4218–4227. [Google Scholar] [CrossRef]
- Lisman, J.E. A mechanism for memory storage insensitive to molecular turnover: A bistable autophosphorylating kinase. Proc. Natl. Acad. Sci. USA 1985, 82, 3055–3057. [Google Scholar] [CrossRef]
- Ubersax, J.A.; Ferrell, J.E., Jr. Mechanisms of specificity in protein phosphorylation. Nat. Rev. Mol. Cell Biol. 2007, 8, 530–541. [Google Scholar] [CrossRef]
- Matt, L.; Kim, K.; Chowdhury, D.; Hell, J.W. Role of Palmitoylation of Postsynaptic Proteins in Promoting Synaptic Plasticity. Front. Mol. Neurosci. 2019, 8. [Google Scholar] [CrossRef]
- Hoffman, L.; Jensen, C.C.; Yoshigi, M.; Beckerle, M. Mechanical signals activate p38 MAPK pathway-dependent reinforcement of actin via mechanosensitive HspB1. Mol. Biol. Cell 2017, 28, 2661–2675. [Google Scholar] [CrossRef]
- Berry-Kravis, E.; Hessl, D.; Abbeduto, L.; Reiss, A.L.; Beckel-Mitchener, A.; Urv, T.K.; Measures, O.; Groups, W.; Aman, M.; Clapp, K.; et al. Outcome Measures for Clinical Trials in Fragile X Syndrome. J. Dev. Behav. Pediatr. 2013, 34, 508–522. [Google Scholar] [CrossRef]
- Kandel, E.S.; Hay, N. The regulation and activities of the multifunctional serine/threonine kinase Akt/PKB. Exp. Cell Res. 1999, 253, 210–229. [Google Scholar] [CrossRef]
- Alessi, D.R.; Andjelkovic, M.; Caudwell, B.; Cron, P.; Morrice, N.; Cohen, P.; Hemmings, B.A. Mechanism of activation of protein kinase B by insulin and IGF-1. EMBO J. 1996, 15, 6541. [Google Scholar] [CrossRef]
- Fayard, E.; Tintignac, L.A.; Baudry, A.; Hemmings, B.A. Protein kinase B/Akt at a glance. J. Cell Sci. 2005, 118, 5675–5678. [Google Scholar] [CrossRef] [PubMed]
- Alessi, D.R.; James, S.R.; Downes, C.; Holmes, A.B.; Gaffney, P.R.; Reese, C.B.; Cohen, P. Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Balpha. Curr. Biol. 1997, 7, 261–269. [Google Scholar] [CrossRef]
- Manning, B.D.; Cantley, L.C. AKT/PKB signaling: Navigating downstream. Cell 2007, 129, 1261–1274. [Google Scholar] [CrossRef] [PubMed]
- Rajala, R.V. Phosphoinositide 3-kinase signaling in the vertebrate retina. J. Lipid Res. 2010, 51, 4–22. [Google Scholar] [CrossRef]
- Hresko, R.C.; Mueckler, M. mTOR.RICTOR is the Ser473 kinase for Akt/protein kinase B in 3T3-L1 adipocytes. J. Biol. Chem. 2005, 280, 40406–40416. [Google Scholar] [CrossRef]
- Alessi, D.; Kozlowski, M.T.; Weng, Q.-P.; Morrice, N.; Avruch, J. 3-Phosphoinositide-dependent protein kinase 1 (PDK1) phosphorylates and activates the p70 S6 kinase in vivo and in vitro. Curr. Biol. 1998, 8, 69–81. [Google Scholar] [CrossRef]
- Parcellier, A.; Tintignac, L.A.; Zhuravleva, E.; Hemmings, B.A. PKB and the mitochondria: AKTing on apoptosis. Cell. Signal. 2008, 20, 21–30. [Google Scholar] [CrossRef]
- New, D.C.; Wu, K.; Kwok, A.W.S.; Wong, Y.H. G protein-coupled receptor-induced Akt activity in cellular proliferation and apoptosis. FEBS J. 2007, 274, 6025–6036. [Google Scholar] [CrossRef]
- Hu, H.; Qin, Y.; Bochorishvili, G.; Zhu, Y.; van Aelst, L.; Zhu, J.J. Ras Signaling Mechanisms Underlying Impaired GluR1-Dependent Plasticity Associated with Fragile X Syndrome. J. Neurosci. 2008, 28, 7847–7862. [Google Scholar] [CrossRef]
- Liu, Z.-H.; Huang, T.; Smith, C.B. Lithium reverses increased rates of cerebral protein synthesis in a mouse model of fragile X syndrome. Neurobiol. Dis. 2012, 45, 1145–1152. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Lim, C.-S.; Hoang, E.T.; Viar, K.E.; Stornetta, R.L.; Scott, M.M.; Zhu, J.J. Pharmacological rescue of Ras signaling, GluA1-dependent synaptic plasticity, and learning deficits in a fragile X model. Genes Dev. 2014, 28, 273. [Google Scholar] [CrossRef]
- Sidhu, H.; Dansie, L.E.; Hickmott, P.W.; Ethell, D.; Ethell, I.M. Genetic removal of matrix metalloproteinase 9 rescues the symptoms of fragile X syndrome in a mouse model. J. Neurosci. 2014, 34, 9867–9879. [Google Scholar] [CrossRef] [PubMed]
- Pellerin, D.; Çaku, A.; Fradet, M.; Bouvier, P.; Dubé, J.; Corbin, F. Lovastatin corrects ERK pathway hyperactivation in fragile X syndrome: Potential of platelet’s signaling cascades as new outcome measures in clinical trials. Biomarkers 2016, 21, 497–508. [Google Scholar] [CrossRef] [PubMed]
- Sawicka, K.; Pyronneau, A.; Chao, M.; Bennett, M.V.L.; Zukin, R.S. Elevated ERK/p90 ribosomal S6 kinase activity underlies audiogenic seizure susceptibility in fragile X mice. Proc. Natl. Acad. Sci. USA 2016, 113, E6290–E6297. [Google Scholar] [CrossRef]
- Ding, Q.; Zhang, F.; Feng, Y.; Wang, H. Carbamazepine Restores Neuronal Signaling, Protein Synthesis, and Cognitive Function in a Mouse Model of Fragile X Syndrome. Int. J. Mol. Sci. 2020, 21, 9327. [Google Scholar] [CrossRef]
- Herzig, S.; Shaw, R.J. AMPK: Guardian of metabolism and mitochondrial homeostasis HHS Public Access. Nat. Rev. Mol. Cell Biol. 2018, 19, 121–135. [Google Scholar] [CrossRef]
- Hudson, E.R.; Pan, D.A.; James, J.; Lucocq, J.; Hawley, S.A.; Green, K.A.; Baba, O.; Terashima, T.; Hardie, D. A novel domain in AMP-activated protein kinase causes glycogen storage bodies similar to those seen in hereditary cardiac arrhythmias. Curr. Biol. 2003, 13, 861–866. [Google Scholar] [CrossRef]
- BXiao, B.; Sanders, M.J.; Carmena, D.; Bright, N.J.; Haire, L.F.; Underwood, E.; Patel, B.R.; Heath, R.B.; Walker, P.A.; Hallen, S.; et al. Structural basis of AMPK regulation by small molecule activators. Nat. Commun. 2013, 4, 3017. [Google Scholar] [CrossRef]
- Monyak, R.E.; Emerson, D.; Schoenfeld, B.P.; Zheng, X.; Chambers, D.B.; Rosenfelt, C.; Langer, S.; Hinchey, P.; Choi, C.H.; McDonald, T.V.; et al. Insulin signaling misregulation underlies circadian and cognitive deficits in a Drosophila fragile X model. Mol. Psychiatry 2016, 22, 1140–1148. [Google Scholar] [CrossRef]
- Gantois, I.; Khoutorsky, A.; Popic, J.; Aguilar-Valles, A.; Freemantle, E.; Cao, R.; Sharma, V.; Pooters, T.; Nagpal, A.; Skalecka, A.; et al. Metformin ameliorates core deficits in a mouse model of fragile X syndrome. Nat. Med. 2017, 23, 674–677. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.; Porch, M.W.; Court-Vazquez, B.; Bennett, M.V.L.; Zukin, R.S. Activation of autophagy rescues synaptic and cognitive deficits in fragile X mice. Proc. Natl. Acad. Sci. USA 2018, 115, E9707–E9716. [Google Scholar] [CrossRef] [PubMed]
- Coultrap, S.J.; Bayer, K.U. CaMKII regulation in information processing and storage. Trends Neurosci. 2012, 35, 607. [Google Scholar] [CrossRef]
- Lucchesi, W.; Mizuno, K.; Giese, K.P. Novel insights into CaMKII function and regulation during memory formation. Brain Res. Bull. 2011, 85, 2–8. [Google Scholar] [CrossRef]
- Wu, X.; McMurray, C.T. Calmodulin kinase II attenuation of gene transcription by preventing cAMP response element-binding protein (CREB) dimerization and binding of the CREB-binding protein. J. Biol. Chem. 2001, 276, 1735–1741. [Google Scholar] [CrossRef] [PubMed]
- Srinivasan, M.; Edman, C.F.; Schulman, H. Alternative splicing introduces a nuclear localization signal that targets multifunctional CaM kinase to the nucleus. J. Cell Biol. 1994, 126, 839. [Google Scholar] [CrossRef] [PubMed]
- Gaertner, T.R.; Kolodziej, S.J.; Wang, D.; Kobayashi, R.; Koomen, J.M.; Stoops, J.K.; Waxham, M.N. Comparative Analyses of the Three-dimensional Structures and Enzymatic Properties of α, β, γ, and δ Isoforms of Ca2+-Calmodulin-dependent Protein Kinase II *. J. Biol. Chem. 2004, 279, 12484–12494. [Google Scholar] [CrossRef]
- Schulman, H.; Heist, K.; Srinivasan, M. Decoding Ca2+ signals to the nucleus by multifunctional CaM kinase. Prog. Brain Res. 1995, 105, 95–104. [Google Scholar] [CrossRef] [PubMed]
- Bassell, G.J.; Warren, S.T. Fragile X Syndrome: Loss of Local mRNA Regulation Alters Synaptic Development and Function. Neuron 2008, 60, 201–214. [Google Scholar] [CrossRef]
- Guo, W.; Ceolin, L.; Collins, K.A.; Perroy, J.; Huber, K.M. Elevated CaMKIIα and Hyperphosphorylation of Homer Mediate Circuit Dysfunction in a Fragile X Syndrome Mouse Model. Cell Rep. 2015, 13, 2297–2311. [Google Scholar] [CrossRef]
- Hydbring, P.; Malumbres, M.; Sicinski, P.H.P. Non-canonical functions of cell cycle cyclins and cyclin-dependent kinases. Nat. Rev. Mol. Cell Biol. 2016, 17, 280–292. [Google Scholar] [CrossRef] [PubMed]
- Malumbres, M. Cyclin-dependent kinases. Genome Biol. 2014, 15, 122. [Google Scholar] [CrossRef] [PubMed]
- Colas, P. Cyclin-dependent kinases and rare developmental disorders. Orphanet J. Rare Dis. 2020, 15, 203. [Google Scholar] [CrossRef]
- Luo, Y.; Shan, G.; Guo, W.; Smrt, R.D.; Johnson, E.B.; Li, X.; Pfeiffer, R.; Szulwach, K.E.; Duan, R.; Barkho, B.Z.; et al. Fragile x mental retardation protein regulates proliferation and differentiation of adult neural stem/progenitor cells. PLoS Genet. 2010, 6, e1000898. [Google Scholar] [CrossRef] [PubMed]
- Sakane, F.; Imai, S.-I.; Kai, M.; Yasuda, S.; Kanoh, H. Diacylglycerol kinases: Why so many of them? Biochim. Biophys. Acta 2007, 1771, 793–806. [Google Scholar] [CrossRef] [PubMed]
- Rhee, S.G. Regulation of phosphoinositide-specific phospholipase C. Annu. Rev. Biochem. 2001, 70, 281–312. [Google Scholar] [CrossRef] [PubMed]
- Topham, M.K.; Epand, R.M. Mammalian Diacylglycerol Kinases: Molecular Interactions and Biological Functions of Selected Isoforms. Biochim. Biophys. Acta 2009, 1790, 416. [Google Scholar] [CrossRef]
- Tu-Sekine, B.; Raben, D.M. Regulation and roles of neuronal diacylglycerol kinases: A lipid perspective. Crit. Rev. Biochem. Mol. Biol. 2011, 46, 353–364. [Google Scholar] [CrossRef]
- Ishisaka, M.; Hara, H. The roles of diacylglycerol kinases in the central nervous system: Review of genetic studies in mice. J. Pharmacol. Sci. 2014, 124, 336–343. [Google Scholar] [CrossRef]
- Tabet, R.; Moutin, E.; Becker, J.A.J.; Heintz, D.; Fouillen, L.; Flatter, E.; Krężel, W.; Alunni, V.; Koebel, P.; Dembélé, D.; et al. Fragile X Mental Retardation Protein (FMRP) controls diacylglycerol kinase activity in neurons. Proc. Natl. Acad. Sci. USA 2016, 113, E3619–E3628. [Google Scholar] [CrossRef]
- Habbas, K.; Cakil, O.; Zambo, B.; Tabet, R.; Riet, F.; Dembele, D.; Mandel, J.-L.; Hocquemiller, M.; Laufer, R.; Piguet, F.; et al. AAV-delivery of diacylglycerol kinase kappa achieves long-term rescue of Fmr1-KO mouse model deficits of fragile X syndrome. bioRxiv 2021. [Google Scholar] [CrossRef]
- Geoffroy, A.; Habbas, K.; Zambo, B.; Schramm, L.; Duchon, A.; Flatter, E.; Fouillen, L.; Zumsteg, J.; Heintz, D.; Mandel, J.-L.; et al. Pioglitazone improves deficits of Fmr1-KO mouse model of Fragile X syndrome by interfering with excessive diacylglycerol signaling. bioRxiv 2020. [Google Scholar] [CrossRef]
- Boulton, T.G.; Nye, S.H.; Robbins, D.J.; Ip, N.Y.; Radzlejewska, E.; Morgenbesser, S.D.; DePinho, R.; Panayotatos, N.; Cobb, M.; Yancopoulos, G.D. ERKs: A family of protein-serine/threonine kinases that are activated and tyrosine phosphorylated in response to insulin and NGF. Cell 1991, 65, 663–675. [Google Scholar] [CrossRef]
- Boulton, T.G.; Yancopoulos, G.D.; Gregory, J.S.; Slaughter, C.; Moomaw, C.; Hsu, J.; Cobb, M.H. An insulin-stimulated protein kinase similar to yeast kinases involved in cell cycle control. Science 1990, 249, 64–67. [Google Scholar] [CrossRef] [PubMed]
- Cargnello, M.; Roux, P.P. Activation and Function of the MAPKs and Their Substrates, the MAPK-Activated Protein Kinases. Microbiol. Mol. Biol. Rev. 2011, 75, 50. [Google Scholar] [CrossRef]
- Lavoie, H.; Gagnon, J.; Therrien, M. ERK signalling: A master regulator of cell behaviour, life and fate. Nat. Rev. Mol. Cell Biol. 2020, 21, 607–632. [Google Scholar] [CrossRef]
- Roux, P.P.; Blenis, J. ERK and p38 MAPK-Activated Protein Kinases: A Family of Protein Kinases with Diverse Biological Functions. Microbiol. Mol. Biol. Rev. 2004, 68, 320–344. [Google Scholar] [CrossRef]
- Vithayathil, J.; Pucilowska, J.; Landreth, G.E. ERK/MAPK signaling and autism spectrum disorders. Prog. Brain Res. 2018, 241, 63–112. [Google Scholar] [CrossRef] [PubMed]
- Taylor, S.S.; Kornev, A.P. Protein kinases: Evolution of dynamic regulatory proteins. Trends Biochem. Sci. 2011, 36, 65–77. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, F.; Ebert, D.; Cobb, M.; Goldsmith, E.J. Activity of the MAP kinase ERK2 is controlled by a flexible surface loop. Structure 1995, 3, 299–307. [Google Scholar] [CrossRef]
- Harding, A.; Tian, T.; Westbury, E.; Frische, E.; Hancock, J.F. Subcellular localization determines MAP kinase signal output. Curr. Biol. 2005, 15, 869–873. [Google Scholar] [CrossRef] [PubMed]
- Casar, B.; Pinto, A.; Crespo, P. Essential role of ERK dimers in the activation of cytoplasmic but not nuclear substrates by ERK-scaffold complexes. Mol. Cell 2008, 31, 708–721. [Google Scholar] [CrossRef] [PubMed]
- Hou, L.; Antion, M.D.; Hu, D.; Spencer, C.M.; Paylor, R.; Klann, E. Dynamic translational and proteasomal regulation of fragile X mental retardation protein controls mGluR-dependent long-term depression. Neuron 2006, 51, 441–454. [Google Scholar] [CrossRef] [PubMed]
- Price, T.J.; Rashid, M.H.; Millecamps, M.; Sanoja, R.; Entrena, J.M.; Cervero, F. Decreased Nociceptive Sensitization in Mice Lacking the Fragile X Mental Retardation Protein: Role of mGluR1/5 and mTOR. J. Neurosci. 2007, 27, 13958. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.H.; Markham, J.A.; Weiler, I.J.; Greenough, W.T. Aberrant early-phase ERK inactivation impedes neuronal function in fragile X syndrome. Proc. Natl. Acad. Sci. USA 2008, 105, 4429–4434. [Google Scholar] [CrossRef]
- Gross, C.; Nakamoto, M.; Yao, X.; Chan, C.B.; Yim, S.Y.; Ye, K.; Warren, S.T.; Bassell, G.J. Excess phosphoinositide 3-kinase subunit synthesis and activity as a novel therapeutic target in fragile X syndrome. J. Neurosci. 2010, 30, 10624–10638. [Google Scholar] [CrossRef]
- Osterweil, E.K.; Krueger, D.D.; Reinhold, K.; Bear, M.F. Hypersensitivity to mGluR5 and ERK1/2 leads to excessive protein synthesis in the hippocampus of a mouse model of fragile X syndrome. J. Neurosci. 2010, 30, 15616–15627. [Google Scholar] [CrossRef]
- Bhattacharya, A.; Kaphzan, H.; Alvarez-Dieppa, A.C.; Murphy, J.P.; Pierre, P.; Klann, E. Genetic Removal of p70 S6 Kinase 1 Corrects Molecular, Synaptic, and Behavioral Phenotypes in Fragile X Syndrome Mice. Neuron 2012, 76, 325–337. [Google Scholar] [CrossRef]
- Hoeffer, C.A.; Sanchez, E.; Hagerman, R.J.; Mu, Y.; Nguyen, D.V.; Wong, H.; Whelan, A.M.; Zukin, R.S.; Klann, E.; Tassone, F. Altered mTOR signaling and enhanced CYFIP2 expression levels in subjects with fragile X syndrome. Genes Brain Behav. 2012, 11, 332–341. [Google Scholar] [CrossRef]
- Rubin, J.; Daniely, Y.; Manor, I.; Schumann, J.; Cogram, P.; Adler, L. Metadoxine In ADHD and fragile X syndrome: A novel mechanism of action. F1000Research 2014. [Google Scholar]
- Srikanth, K.D.; Meirson, T.; Sams, D.S.; Gil-Henn, H.; Srikanth, K.D.; Meirson, T.; Sams, D.S.; Gil-Henn, H. FAK family kinases in brain health and disease. J. Mol. Clin. Med. 2018, 1, 177–190. [Google Scholar] [CrossRef]
- Schaller, M.D. Cellular functions of FAK kinases: Insight into molecular mechanisms and novel functions. J. Cell Sci. 2010, 123, 1007–1013. [Google Scholar] [CrossRef] [PubMed]
- Armendáriz, B.G.; Masdeu, M.D.M.; Soriano, E.; Ureña, J.M.; Burgaya, F. The diverse roles and multiple forms of focal adhesion kinase in brain. Eur. J. Neurosci. 2014, 40, 3573–3590. [Google Scholar] [CrossRef] [PubMed]
- Park, S.-Y.; Avraham, H.; Avraham, S. RAFTK/Pyk2 activation is mediated by trans-acting autophosphorylation in a Src-independent manner. J. Biol. Chem. 2004, 279, 33315–33322. [Google Scholar] [CrossRef] [PubMed]
- Bilousova, T.V.; Dansie, L.; Ngo, M.; Aye, J.; Charles, J.R.; Ethell, D.W.; Ethell, I.M. Minocycline promotes dendritic spine maturation and improves behavioural performance in the fragile X mouse model. J. Med. Genet. 2009, 46, 94–102. [Google Scholar] [CrossRef]
- Parker, P.J.; Caudwell, F.B.; Cohen, P. Glycogen Synthase from Rabbit Skeletal Muscle; Effect of Insulin on the State of phosphorylation of the Seven Phosphoserine Residues in vivo. Eur. J. Biochem. 1983, 130, 227–234. [Google Scholar] [CrossRef]
- Cohen, P.; Frame, S. The renaissance of GSK3. Nat. Rev. Mol. Cell Biol. 2001, 2, 769–776. [Google Scholar] [CrossRef]
- Li, X.; Jope, R.S. Is Glycogen Synthase Kinase-3 a Central Modulator in Mood Regulation&quest. Neuropsychopharmacology 2010, 35, 2143–2154. [Google Scholar] [CrossRef]
- Salcedo-Tello, P.; Ortiz-Matamoros, A.; Arias, C. GSK3 Function in the Brain during Development, Neuronal Plasticity, and Neurodegeneration. Int. J. Alzheimers. Dis. 2011, 2011, 189728. [Google Scholar] [CrossRef]
- Min, W.W.; Yuskaitis, C.J.; Yan, Q.; Sikorski, C.; Chen, S.; Jope, R.S.; Bauchwitz, R.P. Elevated glycogen synthase kinase-3 activity in Fragile X mice: Key metabolic regulator with evidence for treatment potential. Neuropharmacology 2009, 56, 463–472. [Google Scholar] [CrossRef]
- Mines, M.A.; Yuskaitis, C.J.; King, M.K.; Beurel, E.; Jope, R.S. GSK3 Influences Social Preference and Anxiety-Related Behaviors during Social Interaction in a Mouse Model of Fragile X Syndrome and Autism. PLoS ONE 2010, 5, e9706. [Google Scholar] [CrossRef] [PubMed]
- Yuskaitis, C.J.; Mines, M.A.; King, M.K.; Sweatt, J.D.; Miller, C.A.; Jope, R.S. Lithium ameliorates altered glycogen synthase kinase-3 and behavior in a mouse model of fragile X syndrome. Biochem. Pharmacol. 2010, 79, 632–646. [Google Scholar] [CrossRef] [PubMed]
- Choi, C.H.; Schoenfeld, B.P.; Bell, A.J.; Hinchey, J.; Rosenfelt, C.; Gertner, M.J.; Campbell, S.R.; Emerson, D.; Hinchey, P.; Kollaros, M.; et al. Multiple Drug Treatments That Increase cAMP Signaling Restore Long-Term Memory and Aberrant Signaling in Fragile X Syndrome Models. Front. Behav. Neurosci. 2016, 136. [Google Scholar] [CrossRef] [PubMed]
- Westmark, P.R.; Garrone, B.; Ombrato, R.; Milanese, C.; Di Giorgio, F.P.; Westmark, C.J. Testing Fmr1KO Phenotypes in Response to GSK3 Inhibitors: SB216763 versus AFC03127. Front. Mol. Neurosci. 2021, 14, 224. [Google Scholar] [CrossRef] [PubMed]
- McCamphill, P.K.; Stoppel, L.J.; Senter, R.K.; Lewis, M.C.; Heynen, A.J.; Stoppel, D.C.; Sridhar, V.; Collins, K.A.; Shi, X.; Pan, J.Q.; et al. Selective inhibition of glycogen synthase kinase 3α corrects pathophysiology in a mouse model of fragile X syndrome. Sci. Transl. Med. 2020, 12, eaam8572. [Google Scholar] [CrossRef] [PubMed]
- Pröschel, C.; Blouin, M.J.; Gutowski, N.J.; Ludwig, R.; Noble, M. Limk1 is predominantly expressed in neural tissues and phosphorylates serine, threonine and tyrosine residues in vitro. Oncogene 1995, 11, 1271–1281. [Google Scholar]
- Edwards, D.C.; Gill, G.N. Structural features of LIM kinase that control effects on the actin cytoskeleton. J. Biol. Chem. 1999, 274, 11352–11361. [Google Scholar] [CrossRef]
- Bernard, O. Lim kinases, regulators of actin dynamics. Int. J. Biochem. Cell Biol. 2007, 39, 1071–1076. [Google Scholar] [CrossRef]
- Nagata, K.; Ohashi, K.; Yang, N.; Mizuno, K. The N-terminal LIM domain negatively regulates the kinase activity of LIM-kinase 1. Biochem. J. 1999, 343, 99–105. [Google Scholar] [CrossRef]
- Spiering, D.; Hodgson, L. Dynamics of the Rho-family small GTPases in actin regulation and motility. Cell Adh. Migr. 2011, 5, 170–180. [Google Scholar] [CrossRef]
- Sit, S.-T.; Manser, E. Rho GTPases and their role in organizing the actin cytoskeleton. J. Cell Sci. 2011, 124, 679–683. [Google Scholar] [CrossRef]
- Dan, C.; Kelly, A.; Bernard, O.; Minden, A. Cytoskeletal changes regulated by the PAK4 serine/threonine kinase are mediated by LIM kinase 1 and cofilin. J. Biol. Chem. 2001, 276, 32115–32121. [Google Scholar] [CrossRef] [PubMed]
- Maekawa, M.; Ishizaki, T.; Boku, S.; Watanabe, N.; Fujita, A.; Iwamatsu, A.; Obinata, T.; Ohashi, K.; Mizuno, K.; Narumiya, S. Signaling from Rho to the actin cytoskeleton through protein kinases ROCK and LIM-kinase. Science 1999, 285, 895–898. [Google Scholar] [CrossRef] [PubMed]
- Nadella, K.S.; Saji, M.; Jacob, N.K.; Pavel, E.; Ringel, M.D.; Kirschner, L.S. Regulation of actin function by protein kinase A-mediated phosphorylation of Limk1. EMBO Rep. 2009, 10, 599–605. [Google Scholar] [CrossRef] [PubMed]
- Soosairajah, J.; Maiti, S.; Wiggan, O.; Sarmiere, P.; Moussi, N.; Sarcevic, B.; Sampath, R.; Bamburg, J.R.; Bernard, O. Interplay between components of a novel LIM kinase-slingshot phosphatase complex regulates cofilin. EMBO J. 2005, 24, 473–486. [Google Scholar] [CrossRef]
- Arber, S.; Barbayannis, F.A.; Hanser, H.; Schneider, C.; Stanyon, C.; Bernard, O.; Caroni, P. Regulation of actin dynamics through phosphorylation of cofilin by LIM-kinase. Nature 1998, 393, 805–809. [Google Scholar] [CrossRef]
- Sacchetti, P.; Carpentier, R.; Ségard, P.; Olivé-Cren, C.; Lefebvre, P. Multiple signaling pathways regulate the transcriptional activity of the orphan nuclear receptor NURR1. Nucleic Acids Res. 2006, 34, 5515–5527. [Google Scholar] [CrossRef]
- Yang, E.J.; Yoon, J.H.; Min, D.S.; Chung, K.C. LIM Kinase 1 Activates cAMP-responsive Element-binding Protein during the Neuronal Differentiation of Immortalized Hippocampal Progenitor Cells. J. Biol. Chem. 2004, 279, 8903–8910. [Google Scholar] [CrossRef]
- Kashima, R.; Roy, S.; Ascano, M.; Martinez-Cerdeno, V.; Ariza-Torres, J.; Kim, S.; Louie, J.; Lu, Y.; Leyton, P.; Bloch, K.D.; et al. Augmented noncanonical BMP type II receptor signaling mediates the synaptic abnormality of fragile X syndrome. Sci. Signal. 2016, 9, ra58. [Google Scholar] [CrossRef]
- Pyronneau, A.; He, Q.; Hwang, J.-Y.; Porch, M.; Contractor, A.; Zukin, R.S. Aberrant Rac1-cofilin signaling mediates defects in dendritic spines, synaptic function, and sensory perception in fragile X syndrome. Sci. Signal. 2017, 10, eaan0852. [Google Scholar] [CrossRef]
- Waskiewicz, A.J.; Flynn, A.; Proud, C.G.; Cooper, J.A. Mitogen-activated protein kinases activate the serine/threonine kinases Mnk1 and Mnk2. EMBO J. 1997, 16, 1909–1920. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Flynn, A.; Waskiewicz, A.J.; Webb, B.; Vries, R.G.; Baines, I.A.; Cooper, J.A.; Proud, C. The phosphorylation of eukaryotic initiation factor eIF4E in response to phorbol esters, cell stresses, and cytokines is mediated by distinct MAP kinase pathways. J. Biol. Chem. 1998, 273, 9373–9377. [Google Scholar] [CrossRef] [PubMed]
- Parra, J.L.; Buxadé, M.; Proud, C. Features of the catalytic domains and C termini of the MAPK signal-integrating kinases Mnk1 and Mnk2 determine their differing activities and regulatory properties. J. Biol. Chem. 2005, 280, 37623–37633. [Google Scholar] [CrossRef] [PubMed]
- Joshi, S. Mnk kinase pathway: Cellular functions and biological outcomes. World J. Biol. Chem. 2014, 5, 321. [Google Scholar] [CrossRef] [PubMed]
- Diab, S.; Kumarasiri, M.; Yu, M.; Teo, T.; Proud, C.; Milne, R.; Wang, S. Chemistry & Biology Review MAP Kinase-Interacting Kinases-Emerging Targets against Cancer. Chem. Biol. 2014, 21, 441–452. [Google Scholar] [CrossRef] [PubMed]
- Shveygert, M.; Kaiser, C.; Bradrick, S.S.; Gromeier, M. Regulation of Eukaryotic Initiation Factor 4E (eIF4E) Phosphorylation by Mitogen-Activated Protein Kinase Occurs through Modulation of Mnk1-eIF4G Interaction. Mol. Cell. Biol. 2010, 30, 5160. [Google Scholar] [CrossRef]
- Li, Y.; Yue, P.; Deng, X.; Ueda, T.; Fukunaga, R.; Khuri, F.R.; Sun, S.-Y. Protein phosphatase 2A negatively regulates eukaryotic initiation factor 4E phosphorylation and eIF4F assembly through direct dephosphorylation of Mnk and eIF4E. Neoplasia 2010, 12, 848–855. [Google Scholar] [CrossRef]
- Gkogkas, C.G.; Khoutorsky, A.; Cao, R.; Jafarnejad, S.M.; Prager-Khoutorsky, M.; Giannakas, N.; Kaminari, A.; Fragkouli, A.; Nader, K.; Price, T.J.; et al. Pharmacogenetic Inhibition of eIF4E-Dependent Mmp9 mRNA Translation Reverses Fragile X Syndrome-like Phenotypes. Cell Rep. 2014, 9, 1742–1755. [Google Scholar] [CrossRef]
- Shukla, T.; de la Peña, J.B.; Perish, J.M.; PLoSki, J.E.; Stumpf, C.R.; Webster, K.R.; Thorn, C.A.; Campbell, Z.T. A Highly Selective MNK Inhibitor Rescues Deficits Associated with Fragile X Syndrome in Mice. Neurotherapeutics 2021, 18, 624–639. [Google Scholar] [CrossRef]
- Asnaghi, L.; Bruno, P.; Priulla, M.; Nicolin, A. mTOR: A protein kinase switching between life and death. Pharmacol. Res. 2004, 50, 545–549. [Google Scholar] [CrossRef]
- Yang, H.; Rudge, D.G.; Koos, J.; Vaidialingam, B.; Yang, H.; Pavletich, N.P. mTOR kinase structure, mechanism and regulation. Nature 2013, 497, 217–223. [Google Scholar] [CrossRef]
- Hay, N.; Sonenberg, N. Upstream and downstream of mTOR. Genes Dev. 2004, 18, 1926–1945. [Google Scholar] [CrossRef] [PubMed]
- Laplante, M.; Sabatini, D.M. mTOR signaling in growth control and disease. Cell 2012, 149, 274–293. [Google Scholar] [CrossRef]
- Bockaert, J.; Marin, P. mTOR in Brain Physiology and Pathologies. Physiol. Rev. 2015, 95, 1157–1187. [Google Scholar] [CrossRef] [PubMed]
- Sato, A. mTOR, a Potential Target to Treat Autism Spectrum Disorder. CNS Neurol. Disord. Drug Targets 2016, 15, 533. [Google Scholar] [CrossRef] [PubMed]
- Busquets-Garcia, A.; Gomis-González, M.; Guegan, T.; Agustín-Pavón, C.; Pastor, A.; Mato, S.; Samartin, A.L.P.; Matute, C.; de la Torre, R.; Dierssen, M.; et al. Targeting the endocannabinoid system in the treatment of fragile X syndrome. Nat. Med. 2013, 19, 603–607. [Google Scholar] [CrossRef]
- Saré, R.M.; Song, A.; Loutaev, I.; Cook, A.; Maita, I.; Lemons, A.; Sheeler, C.; Smith, C.B. Negative Effects of Chronic Rapamycin Treatment on Behavior in a Mouse Model of Fragile X Syndrome. Front. Mol. Neurosci. 2018, 10, 452. [Google Scholar] [CrossRef]
- Nobes, C.D.; Hall, A. Rho GTPases Control Polarity, Protrusion, and Adhesion during Cell Movement. J. Cell Biol. 1999, 144, 1235–1244. [Google Scholar] [CrossRef]
- Daniels, R.H.; Bokoch, G.M. p21-activated protein kinase: A crucial component of morphological signaling? Trends Biochem. Sci. 1999, 24, 350–355. [Google Scholar] [CrossRef]
- Zhang, K.; Wang, Y.; Fan, T.; Zeng, C.; Sun, Z.S. The p21-activated kinases in neural cytoskeletal remodeling and related neurological disorders. Protein Cell 2022, 13, 6–25. [Google Scholar] [CrossRef]
- Knaus, U.G.; Bokoch, G.M. The p21Rac/Cdc42-activated kinases (PAKs). Int. J. Biochem. Cell Biol. 1998, 30, 857–862. [Google Scholar] [CrossRef]
- Jaffer, Z.M.; Chernoff, J. p21-activated kinases: Three more join the Pak. Int. J. Biochem. Cell Biol. 2002, 34, 713–717. [Google Scholar] [CrossRef]
- Rane, C.K.; Minden, A. P21 activated kinases: Structure, regulation, and functions. Small GTPases 2014, 5, e28003. [Google Scholar] [CrossRef] [PubMed]
- Lei, M.; Lu, W.; Meng, W.; Parrini, M.-C.; Eck, M.J.; Mayer, B.J.; Harrison, S.C. Structure of PAK1 in an autoinhibited conformation reveals a multistage activation switch. Cell 2000, 102, 387–397. [Google Scholar] [CrossRef]
- Comery, T.A.; Harris, J.B.; Willems, P.J.; Oostra, B.A.; Irwin, S.A.; Weiler, I.J.; Greenough, W.T. Abnormal dendritic spines in fragile X knockout mice: Maturation and pruning deficits. Neurobiology 1997, 94, 5401–5404. [Google Scholar] [CrossRef] [PubMed]
- Allen, K.M.; Gleeson, J.G.; Bagrodia, S.; Partington, M.W.; Macmillan, J.C.; Cerione, R.A.; Mulley, J.C.; Walsh, C.A. PAK3 mutation in nonsyndromic X-linked mental retardation. Nat. Genet. 1998, 20, 25–30. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, M.L.; Shankaranarayana Rao, B.S.; Seo, J.-S.; Choi, H.-S.; Dolan, B.M.; Choi, S.-Y.; Sumantra, C.; Tonegawa, S. Inhibition of p21-activated kinase rescues symptoms of fragile X syndrome in mice. Proc. Natl. Acad. Sci. USA 2007, 104, 11489–11494. [Google Scholar] [CrossRef]
- Dolan, B.M.; Duron, S.G.; Campbell, D.A.; Vollrath, B.; Rao, B.S.S.; Ko, H.-Y.; Lin, G.G.; Govindarajan, A.; Choi, S.-Y.; Tonegawa, S. Rescue of fragile X syndrome phenotypes in Fmr1 KO mice by the small-molecule PAK inhibitor FRAX486. Proc. Natl. Acad. Sci. USA 2013, 110, 5671–5676. [Google Scholar] [CrossRef]
- Waite, K.; Eickholt, B.J. The neurodevelopmental implications of PI3K signaling. Curr. Top. Microbiol. Immunol. 2010, 346, 245–265. [Google Scholar] [CrossRef]
- Donahue, T.R.; Tran, L.M.; Hill, R.; Li, Y.; Kovochich, A.; Calvopina, J.H.; Patel, S.G.; Wu, N.; Hindoyan, A.; Farrell, J.J.; et al. Integrative survival-based molecular profiling of human pancreatic cancer. Clin. Cancer Res. 2012, 18, 1352–1363. [Google Scholar] [CrossRef]
- Yang, J.; Nie, J.; Ma, X.; Wei, Y.; Peng, Y.; Wei, X. Targeting PI3K in cancer: Mechanisms and advances in clinical trials. Mol. Cancer 2019, 18, 26. [Google Scholar] [CrossRef] [PubMed]
- Yuan, T.L.; Cantley, L.C. PI3K pathway alterations in cancer: Variations on a theme. Oncogene 2008, 27, 5497–5510. [Google Scholar] [CrossRef] [PubMed]
- Shin, B.C.; Suzuki, M.; Inukai, K.; Anai, M.; Asano, T.; Takata, K. Multiple isoforms of the regulatory subunit for phosphatidylinositol 3-kinase (PI3-kinase) are expressed in neurons in the rat brain. Biochem. Biophys. Res. Commun. 1998, 246, 313–319. [Google Scholar] [CrossRef] [PubMed]
- Engelman, J.A.; Luo, J.; Cantley, L.C. The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat. Rev. Genet. 2006, 7, 606–619. [Google Scholar] [CrossRef]
- Rodgers, E.E.; Theibert, A.B. Functions of PI 3-kinase in development of the nervous system. Int. J. Dev. Neurosci. 2002, 20, 187–197. [Google Scholar] [CrossRef]
- Hawkins, P.T.; Anderson, K.E.; Davidson, K.; Stephens, L.R. Signalling through Class I PI3Ks in mammalian cells. Biochem. Soc. Trans. 2006, 34, 647–662. [Google Scholar] [CrossRef]
- Carracedo, A.; Pandolfi, P.P. The PTEN–PI3K pathway: Of feedbacks and cross-talks. Oncogene 2008, 27, 5527–5541. [Google Scholar] [CrossRef]
- Gross, C.; Bassell, G.J. Excess Protein Synthesis in FXS Patient Lymphoblastoid Cells Can Be Rescued with a p110β-Selective Inhibitor. Mol. Med. 2012, 18, 336. [Google Scholar] [CrossRef]
- Ding, Q.; Sethna, F.; Wu, X.T.; Miao, Z.; Chen, P.; Zhang, Y.; Xiao, H.; Feng, W.; Feng, Y.; Li, X.; et al. Transcriptome signature analysis repurposes trifluoperazine for the treatment of fragile X syndrome in mouse model. Commun. Biol. 2020, 3, 127. [Google Scholar] [CrossRef]
- Raj, N.; McEachin, Z.T.; Harousseau, W.; Zhou, Y.; Zhang, F.; Merritt-Garza, M.E.; Taliaferro, J.M.; Kalinowska, M.; Marro, S.G.; Hales, C.M.; et al. Cell-type-specific profiling of human cellular models of fragile X syndrome reveal PI3K-dependent defects in translation and neurogenesis. Cell Rep. 2021, 35, 108991. [Google Scholar] [CrossRef]
- Søberg, K.; Moen, L.V.; Skålhegg, B.S.; Laerdahl, J.K. Evolution of the cAMP-dependent protein kinase (PKA) catalytic subunit isoforms. PLoS ONE 2017, 12, e0181091. [Google Scholar] [CrossRef] [PubMed]
- Ji, L.; Chauhan, V.; Flory, M.J.; Chauhan, A. Brain Region–Specific Decrease in the Activity and Expression of Protein Kinase A in the Frontal Cortex of Regressive Autism. PLoS ONE 2011, 6, e23751. [Google Scholar] [CrossRef]
- Sjoberg, T.J.; Kornev, A.P.; Taylor, S.S. Dissecting the cAMP-inducible allosteric switch in protein kinase A RIα. Protein Sci. 2010, 19, 1213–1221. [Google Scholar] [CrossRef] [PubMed]
- Karege, F.; Schwald, M.; Papadimitriou, P.; Lachausse, C.; Cissé, M. The cAMP-dependent protein kinase A and brain-derived neurotrophic factor expression in lymphoblast cells of bipolar affective disorder. J. Affect. Disord. 2004, 79, 187–192. [Google Scholar] [CrossRef]
- Tardito, D.; Tura, G.B.; Bocchio, L.; Bignotti, S.; Pioli, R.; Racagni, G.; Perez, J. Abnormal Levels of cAMP-dependent Protein Kinase Regulatory Subunits in Platelets from Schizophrenic Patients. Neuropsychopharmacology 2000, 23, 216–219. [Google Scholar] [CrossRef]
- Berry-Kravis, E.; Huttenlocher, P.R. Cyclic AMP metabolism in fragile X syndrome. Ann. Neurol. 1992, 31, 22–26. [Google Scholar] [CrossRef] [PubMed]
- Choi, C.H.; Schoenfeld, B.P.; Weisz, E.D.; Bell, A.J.; Chambers, D.B.; Hinchey, J.; Choi, R.J.; Hinchey, P.; Kollaros, M.; Gertner, M.J.; et al. PDE-4 inhibition rescues aberrant synaptic plasticity in Drosophila and mouse models of fragile X syndrome. J. Neurosci. 2015, 35, 396–408. [Google Scholar] [CrossRef]
- Androschuk, A.; He, R.X.; Weber, S.; Rosenfelt, C.; Bolduc, F.V. Stress Odorant Sensory Response Dysfunction in Drosophila Fragile X Syndrome Mutants. Front. Mol. Neurosci. 2018, 11, 242. [Google Scholar] [CrossRef]
- Gurney, M.E.; Cogram, P.; Deacon, R.M.; Rex, C.; Tranfaglia, M. Multiple Behavior Phenotypes of the Fragile-X Syndrome Mouse Model Respond to Chronic Inhibition of Phosphodiesterase-4D (PDE4D). Sci. Rep. 2017, 7, 14653. [Google Scholar] [CrossRef]
- Kelley, D.J.; Davidson, R.J.; Elliott, J.L.; Lahvis, G.P.; Yin, J.C.P.; Bhattacharyya, A. The cyclic AMP cascade is altered in the fragile X nervous system. PLoS ONE 2007, 2, e931. [Google Scholar] [CrossRef]
- Koga, K.; Liu, M.-G.; Qiu, S.; Song, Q.; O’den, G.; Chen, T.; Zhuo, M. Cellular/Molecular Impaired Presynaptic Long-Term Potentiation in the Anterior Cingulate Cortex of Fmr1 Knock-out Mice. J. Neurosci. 2015, 35, 2033–2043. [Google Scholar] [CrossRef] [PubMed]
- Sears, J.C.; Choi, W.J.; Broadie, K. Fragile X Mental Retardation Protein positively regulates PKA anchor Rugose and PKA activity to control actin assembly in learning/memory circuitry. Neurobiol. Dis. 2019, 127, 53–64. [Google Scholar] [CrossRef] [PubMed]
- Sears, J.C.; Broadie, K. FMRP-PKA Activity Negative Feedback Regulates RNA Binding-Dependent Fibrillation in Brain Learning and Memory Circuitry. Cell Rep. 2020, 33, 108266. [Google Scholar] [CrossRef] [PubMed]
- Jiang, A.; Wang, L.; Lu, J.Y.D.; Freeman, A.; Campbell, C.; Su, P.; Wong, A.H.C.; Liu, F. Sex Differences in Dopamine Receptor Signaling in Fmr1 Knockout Mice: A Pilot Study. Brain Sci. 2021, 11, 1398. [Google Scholar] [CrossRef]
- Webb, B.L.J.; Hirst, S.J.; Giembycz, M.A. Protein kinase C isoenzymes: A review of their structure, regulation and role in regulating airways smooth muscle tone and mitogenesis. Br. J. Pharmacol. 2000, 130, 1433. [Google Scholar] [CrossRef]
- Black, A.R.; Black, J.D. Protein kinase C signaling and cell cycle regulation. Front. Immunol. 2012, 3, 423. [Google Scholar] [CrossRef]
- Mochly-Rosen, D.; Das, K.; Grimes, K. V Protein kinase C, an elusive therapeutic target? Nat. Rev. Drug Discov. 2012, 11, 937–957. [Google Scholar] [CrossRef]
- Zhang, W.; Xu, C.; Tu, H.; Wang, Y.; Sun, Q.; Hu, P.; Hu, Y.; Rondard, P.; Liu, J. GABA B receptor upregulates fragile X mental retardation protein expression in neurons. Sci. Rep. 2015, 5, 10468. [Google Scholar] [CrossRef]
- Zhao, W.; Wang, J.; Song, S.; Li, F.; Yuan, F. Reduction of α1GABAA receptor mediated by tyrosine kinase C (PKC) phosphorylation in a mouse model of fragile X syndrome. Int. J. Clin. Exp. Med. 2015, 8, 13219–13226. [Google Scholar]
- Deng, P.Y.; Klyachko, V.A. Increased Persistent Sodium Current Causes Neuronal Hyperexcitability in the Entorhinal Cortex of Fmr1 Knockout Mice. Cell Rep. 2016, 16, 3157–3166. [Google Scholar] [CrossRef]
- Roberts, P.J.; Der, C.J. Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene 2007, 26, 3291–3310. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.H.; Sarnecki, C.; Blenis, J. Nuclear localization and regulation of erk- and rsk-encoded protein kinases. Mol. Cell. Biol. 1992, 12, 915–927. [Google Scholar] [CrossRef] [PubMed]
- Richards, S.A.; Dreisbach, V.C.; Murphy, L.O.; Blenis, J. Characterization of regulatory events associated with membrane targeting of p90 ribosomal S6 kinase 1. Mol. Cell. Biol. 2001, 21, 7470–7480. [Google Scholar] [CrossRef] [PubMed]
- Fisher, T.L.; Blenis, J. Evidence for two catalytically active kinase domains in pp90rsk. Mol. Cell. Biol. 1996, 16, 1212–1219. [Google Scholar] [CrossRef] [PubMed]
- Bjorbaek, C.; Zhao, Y.; Moller, D.E. Divergent functional roles for p90rsk kinase domains. J. Biol. Chem. 1995, 270, 18848–18852. [Google Scholar] [CrossRef]
- Jensen, C.J.; Buch, M.B.; Krag, T.O.; Hemmings, B.A.; Gammeltoft, S.; Frödin, M. 90-kDa ribosomal S6 kinase is phosphorylated and activated by 3-phosphoinositide-dependent protein kinase-1. J. Biol. Chem. 1999, 274, 27168–27176. [Google Scholar] [CrossRef]
- Sutherland, C.; Campbell, D.G.; Cohen, P. Identification of insulin-stimulated protein kinase-1 as the rabbit equivalent of rskmo-2. Identification of two threonines phosphorylated during activation by mitogen-activated protein kinase. Eur. J. Biochem. 1993, 212, 581–588. [Google Scholar] [CrossRef]
- Marques Pereira, P.; Schneider, A.; Pannetier, S.; Heron, D.; Hanauer, A. Coffin-Lowry syndrome. Eur. J. Hum. Genet. 2010, 18, 627–633. [Google Scholar] [CrossRef]
- Sala, C.; Vicidomini, C.; Bigi, I.; Mossa, A.; Verpelli, C. Shank synaptic scaffold proteins: Keys to understanding the pathogenesis of autism and other synaptic disorders. J. Neurochem. 2015, 135, 849–858. [Google Scholar] [CrossRef]
- Hall, M.N. mTOR-what does it do? In Transplantation Proceedings; Elsevier: Amsterdam, The Netherlands, 2008; Volume 40, pp. S5–S8. [Google Scholar] [CrossRef]
- Tavares, M.R.; Pavan, I.C.B.; Amaral, C.L.; Meneguello, L.; Luchessi, A.D.; Simabuco, F.M. The S6K protein family in health and disease. Life Sci. 2015, 131, 1–10. [Google Scholar] [CrossRef]
- Magnuson, B.; Ekim, B.; Fingar, D.C. Regulation and function of ribosomal protein S6 kinase (S6K) within mTOR signalling networks. Biochem. J. 2012, 441, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Biever, A.; Valjent, E.; Puighermanal, E. Ribosomal protein S6 phosphorylation in the nervous system: From regulation to function. Front. Mol. Neurosci. 2015, 8, 75. [Google Scholar] [CrossRef] [PubMed]
- Niwa, H.; Mikuni, J.; Sasaki, S.; Tomabechi, Y.; Honda, K.; Ikeda, M.; Ohsawa, N.; Wakiyama, M.; Handa, N.; Shirouzu, M.; et al. Crystal structures of the S6K1 kinase domain in complexes with inhibitors. J. Struct. Funct. Genom. 2014, 15, 153. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, P.; Ahmad, M.F.; Grove, J.R.; Kozlosky, C.; Price, D.J.; Avruch, J. Molecular structure of a major insulin/mitogen-activated 70-kDa S6 protein kinase. Proc. Natl. Acad. Sci. USA 1990, 87, 8550–8554. [Google Scholar] [CrossRef]
- Romanelli, A.; Martin, K.A.; Toker, A.; Blenis, J. p70 S6 Kinase Is Regulated by Protein Kinase Cζ and Participates in a Phosphoinositide 3-Kinase-Regulated Signalling Complex. Mol. Cell. Biol. 1999, 19, 2921. [Google Scholar] [CrossRef]
- Oliver, C.J.; Terry-Lorenzo, R.T.; Elliott, E.; Bloomer, W.A.C.; Li, S.; Brautigan, D.L.; Colbran, R.J.; Shenolikar, S. Targeting Protein Phosphatase 1 (PP1) to the Actin Cytoskeleton: The Neurabin I/PP1 Complex Regulates Cell Morphology. Mol. Cell. Biol. 2002, 22, 4690. [Google Scholar] [CrossRef]
- Halevy, T.; Czech, C.; Benvenisty, N. Molecular Mechanisms Regulating the Defects in Fragile X Syndrome Neurons Derived from Human Pluripotent Stem Cells. Stem Cell Rep. 2015, 4, 37–46. [Google Scholar] [CrossRef]
- Gupta, V.K.; You, Y.; Gupta, V.B.; Klistorner, A.; Graham, S.L. TrkB Receptor Signalling: Implications in Neurodegenerative, Psychiatric and Proliferative Disorders. Int. J. Mol. Sci. 2013, 14, 10122. [Google Scholar] [CrossRef]
- Reichardt, L.F. Neurotrophin-regulated signalling pathways. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2006, 361, 1545–1564. [Google Scholar] [CrossRef]
- Cunningham, M.E.; Greene, L.A. A function-structure model for NGF-activated TRK. EMBO J. 1998, 17, 7282. [Google Scholar] [CrossRef]
- Kavanaugh, W.M.; Williams, L.T. An alternative to SH2 domains for binding tyrosine-phosphorylated proteins. Science 1994, 266, 1862–1865. [Google Scholar] [CrossRef] [PubMed]
- Qian, X.; Riccio, A.; Zhang, Y.; Ginty, D.D. Identification and characterization of novel substrates of Trk receptors in developing neurons. Neuron 1998, 21, 1017–1029. [Google Scholar] [CrossRef]
- Minichiello, L. TrkB signalling pathways in LTP and learning. Nat. Rev. Neurosci. 2009, 10, 850–860. [Google Scholar] [CrossRef] [PubMed]
- Jin, W. Regulation of BDNF-TrkB Signaling and Potential Therapeutic Strategies for Parkinson’s Disease. J. Clin. Med. 2020, 9, 257. [Google Scholar] [CrossRef]
- Barbacid, M. The Trk family of neurotrophin receptors. J. Neurobiol. 1994, 25, 1386–1403. [Google Scholar] [CrossRef] [PubMed]
- Castrén, M.; Lampinen, K.E.; Miettinen, R.; Koponen, E.; Sipola, I.; Bakker, C.E.; Oostra, B.A.; Castrén, E. BDNF regulates the expression of fragile X mental retardation protein mRNA in the hippocampus. Neurobiol. Dis. 2002, 11, 221–229. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Selby, L.; Zhang, C.; Sun, Q.Q. Major Defects in Neocortical GABAergic Inhibitory Circuits in Mice Lacking the Fragile X Mental Retardation Protein. Neurosci. Lett. 2007, 412, 227. [Google Scholar] [CrossRef]
- Louhivuori, V.; Vicario, A.; Uutela, M.; Rantamäki, T.; Louhivuori, L.M.; Castrén, E.; Tongiorgi, E.; Åkerman, K.E.; Castrén, M.L. BDNF and TrkB in neuronal differentiation of Fmr1-knockout mouse. Neurobiol. Dis. 2011, 41, 469–480. [Google Scholar] [CrossRef]
- Nomura, T.; Musial, T.F.; Marshall, J.J.; Zhu, Y.; Remmers, C.L.; Xu, J.; Nicholson, D.A.; Contractor, A. Delayed Maturation of Fast-Spiking Interneurons Is Rectified by Activation of the TrkB Receptor in the Mouse Model of Fragile X Syndrome. J. Neurosci. 2017, 37, 11298–11310. [Google Scholar] [CrossRef]
- Ferrante, A.; Boussadia, Z.; Borreca, A.; Mallozzi, C.; Pedini, G.; Pacini, L.; Pezzola, A.; Armida, M.; Vincenzi, F.; Varani, K.; et al. Adenosine A2A receptor inhibition reduces synaptic and cognitive hippocampal alterations in Fmr1 KO mice. Transl. Psychiatry 2021, 11, 112. [Google Scholar] [CrossRef]
- Buljan, M.; Ciuffa, R.; van Drogen, A.; Vichalkovski, A.; Mehnert, M.; Rosenberger, G.; Lee, S.; Varjosalo, M.; Pernas, L.E.; Spegg, V.; et al. Kinase Interaction Network Expands Functional and Disease Roles of Human Kinases. Mol. Cell 2020, 79, 504–520.e9. [Google Scholar] [CrossRef] [PubMed]
- Wirbel, J.; Cutillas, P.; Saez-Rodriguez, J. Phosphoproteomics-Based Profiling of Kinase Activities in Cancer Cells. Methods Mol. Biol. 2018, 1711, 103. [Google Scholar] [CrossRef] [PubMed]
- Liao, L.; Sung, K.P.; Xu, T.; Vanderklish, P.; Yates, J.R. Quantitative proteomic analysis of primary neurons reveals diverse changes in synaptic protein content in fmr1 knockout mice. Proc. Natl. Acad. Sci. USA 2008, 105, 15281–15286. [Google Scholar] [CrossRef] [PubMed]
- Klemmer, P.; Meredith, R.M.; Holmgren, C.D.; Klychnikov, O.I.; Stahl-Zeng, J.; Loos, M.; Van Der Schors, R.C.; Wortel, J.; De Wit, H.; Spijker, S.; et al. Proteomics, ultrastructure, and physiology of hippocampal synapses in a fragile X syndrome mouse model reveal presynaptic phenotype. J. Biol. Chem. 2011, 286, 25495–25504. [Google Scholar] [CrossRef] [PubMed]
- Xu, P.; Tan, H.; Duong, D.M.; Yang, Y.; Kupsco, J.; Moberg, K.H.; Li, H.; Jin, P.; Peng, J. Stable Isotope Labeling with Amino Acids in Drosophila for Quantifying Proteins and Modifications. J. Proteome Res. 2012, 11, 4403. [Google Scholar] [CrossRef] [PubMed]
- Tang, B.; Wang, T.; Wan, H.; Han, L.; Qin, X.; Zhang, Y.; Wang, J.; Yu, C.; Berton, F.; Francesconi, W.; et al. Fmr1 deficiency promotes age-dependent alterations in the cortical synaptic proteome. Proc. Natl. Acad. Sci. USA 2015, 112, E4697–E4706. [Google Scholar] [CrossRef] [PubMed]
- Matic, K.; Eninger, T.; Bardoni, B.; Davidovic, L.; Macek, B. Quantitative Phosphoproteomics of Murine Fmr1 -KO Cell Lines Provides New Insights into FMRP-Dependent Signal Transduction Mechanisms. J. Proteome Res. 2014, 13, 4388–4397. [Google Scholar] [CrossRef] [PubMed]
Protein Kinase | Observed Activity | Experimental Specifications | Study Reference |
---|---|---|---|
Protein kinase B (PKB/Akt) | No difference | Fmr1 knock-out mouse hippocampal extracts from cultures and brain | (Hu et al., 2008) |
Increased | Fmr1 knock-out mouse hippocampus | (Sharma et al., 2010) | |
Increased | Fmr1 knock-out mouse hippocampus | (Liu et al., 2012) | |
Increased | Fmr1 knock-out mouse hippocampal cultures | (Lim et al., 2014) | |
Increased | Fmr1 knock-out mouse hippocampal neuron cultures | (Sidhu et al., 2014) | |
Increased | Human FXS platelets | (Pellerin et al., 2016) | |
No difference | Fmr1 knock-out mouse neocortex | (Sawicka et al., 2016) | |
Increased | Fmr1 knock-out mouse primary hippocampal cultures | (Ding et al., 2020) | |
AMP-activated protein kinase (AMPK) | Increased | Insulin-producing cells (IPCs) of the brain of a dFMR1 Drosophila model | (Monyak et al., 2016) |
No difference | Prefrontal cortex and hippocampus of Fmr1 knock-out mouse | (Gantois et al., 2017) | |
Not reported | Fmr1 knock-out mouse primary hippocampal cultures | (Yan et al., 2018) | |
Calcium/calmodulin-dependent protein kinase type II subunit alpha (CaMKIIα) | Increased | Fmr1 knock-out mouse primary hippocampal and neocortex cultures | (Guo et al., 2015) |
Cyclin-dependent kinase 4 (CDK4) | Not reported | Fmr1 knock-out adult neural progenitor/stem cell cultures | (Luo et al., 2010) |
Diacylglycerol Kinase Kappa (DGKk) | Decreased | Fmr1 knock-out mouse primary cortical neuron cultures | (Tabet et al., 2016) |
Decreased | FXS patient cerebellum postmortem | (Tabet et al., 2016) | |
Decreased | Fmr1 knock-out mouse primary cortical neuron cultures | (Geoffroy et al., 2020) | |
Decreased | Fmr1 knock-out mouse primary cortical neuron cultures | (Habbas et al., 2021) | |
Extracellular signal-regulated kinases (ERK1/2) | Increased | Fmr1 knock-out mouse hippocampus | (Hou et al., 2006) |
No difference | Fmr1 knock-out mouse spinal cord (ERK2) | (Price et al., 2007) | |
No difference | Fmr1 knock-out mouse hippocampal extract from cultures and brain | (Hu et al., 2008) | |
Decreased | Fmr1 knock-out mouse cortical synaptoneurosome | (Kim et al., 2008) | |
No difference | Fmr1 knock-out mouse cortical synaptoneurosome | (Gross et al., 2010) | |
Increased | Fmr1 knock-out mouse hippocampus | (Osterweil et al., 2010) | |
Increased | Fmr1 knock-out mouse hippocampus | (Bhattacharya et al., 2012) | |
No difference | FXS lymphocytes | (Hoeffer et al., 2012) | |
Increased | Fmr1 knock-out mouse adult brain | (Rubin et al., 2014) | |
Increased | Human FXS platelets | (Pellerin et al., 2016) | |
Increased | Fmr1 knock-out mouse neocortex | (Sawicka et al., 2016) | |
Increased | Fmr1 knock-out mouse primary hippocampal cultures | (Ding et al., 2020) | |
Focal adhesion kinase (FAK) | Increased | Fmr1 knock-out mouse hippocampal neuron cultures | (Sidhu et al., 2014) |
Glycogen synthase kinase 3 (GSK3) | Increased | GSKβ in Fmr1 knock-out mouse striatum and cortex | (Min et al., 2009) |
Increased | GSKα in Fmr1 knock-out mouse hippocampus, striatum and cortex | (Min et al., 2009) | |
Increased | Fmr1 knock-out mouse brain | (Mines et al., 2010) | |
Increased | Fmr1 knock-out mouse hippocampus | (Yuskaitis et al., 2010) | |
Increased | Fmr1 knock-out mouse hippocampus | (Choi et al., 2016) | |
Increased | Fmr1 knock-out mouse cortex | (McCamphill et al., 2020) | |
LIM Domain Kinase 1 (LIMK1) | Increased | dFMR1 Drosophila | (Kashima et al., 2016) |
Increased | Human postmortem FXS patient prefrontal cortex | (Kashima et al., 2016) | |
Increased | Fmr1 knock-out mouse somatosensory cortex primary cultures | (Pyronneau et al., 2017) | |
MAPK Interacting Serine/Threonine Kinase 1 (MNK) | Increased | Fmr1 knock-out mouse hippocampus and cortex | (Shukla et al., 2021) |
Increased | Fmr1 knock-out mouse hippocampal slices | (Gkogkas et al., 2014) | |
Increased | Fmr1 knock-out mouse hippocampus and cortex | (Shukla et al., 2021) | |
Mechanistic Target of Rapamycin Kinase (mTOR) | No difference | Fmr1 knock-out mouse hippocampus | (Osterweil et al., 2010) |
No difference | Fmr1 knock-out mouse cortex | (Sharma et al., 2010) | |
Increased | Fmr1 knock-out mouse hippocampus | (Sharma et al., 2010) | |
Increased | Fmr1 knock-out mouse hippocampus | (Bhattacharya et al., 2012) | |
No difference | FXS lymphocytes | (Hoeffer et al., 2012) | |
Increased | Fmr1 knock-out mouse hippocampus | (Liu et al., 2012) | |
Increased | Fmr1 knock-out mouse hippocampus | (Busquets et al., 2013) | |
Increased | Fmr1 knock-out mouse primary hippocampal cultures | (Sidhu et al., 2014) | |
Increased | Fmr1 knock-out mouse hippocampus | (Choi et al., 2016) | |
No difference | Fmr1 knock-out mouse neocortex | (Sawicka et al., 2016) | |
No difference | Fmr1 knock-out mouse frontal cortex | (Saré et al., 2018) | |
Increased | Fmr1 knock-out mouse primary hippocampal cultures | (Yan et al., 2018) | |
p21 (RAC1) Activated Kinases (PAKs) | Increased | Fmr1 knock-out mouse forebrain | (Hayashi et al., 2007) |
Increased | Fmr1 knock-out mouse forebrain | (Dolan et al., 2013) | |
Phosphatidylinositol-4,5-Bisphosphate 3-Kinase (PI3K) | Increased | Fmr1 knock-out mouse hippocampal extracts from cultures and brain | (Hu et al., 2008) |
Increased | Fmr1 knock-out mouse cortical synaptoneurosomes | (Gross et al., 2010) | |
Increased | Fmr1 knock-out mouse hippocampus | (Sharma et al., 2010) | |
Increased | Human FXS lymphoblastoid cell cultures | (Gross and Bassell, 2012) | |
Decreased | Fmr1 knock-out mouse hippocampal cultures | (Lim et al., 2014) | |
Increased | Fmr1 knock-out mouse primary hippocampal cultures | (Ding et al., 2020) | |
Increased | Human iPSC derived neural FXS model | (Raj et al., 2021) | |
Protein Kinase cAMP-Activated Catalytic Subunit Alpha (PKA) | No reported | Fmr1 knock-out mouse anterior cingulate cortex | (Koga et al., 2015) |
Decreased | dfmr1 null MB Kenyon cells | (Sears et al., 2019) | |
Increased | dfmr1 null MB Kenyon cells | (Sears et al., 2020) | |
Increased | Male Fmr1 knock-out mice | (Jiang et al., 2021) | |
Protein Kinase C (PKC) | No reported | Fmr1 knock-out mouse cultured cerebellar granule neurons | (Zhang et al., 2015) |
Decreased | Fmr1 knock-out mouse cortical neurons and brains | (Zhao et al., 2015) | |
Increased | Fmr1 knock-out mouse entorhinal cortex | (Deng and Klyachko, 2016) | |
Increased | Fmr1 knock-out mouse primary cortical neuron cultures | (Geoffroy et al., 2020) | |
p90 Ribosomal Protein S6 Kinase (RSK) | Increased | Fmr1 knock-out mouse neocortex | (Sawicka et al., 2016) |
p70 Ribosomal Protein S6 Kinase (S6K) | Increased | FXS lymphocytes | (Hoeffer et al., 2012) |
Increased | Fmr1 knock-out mouse hippocampus | (Bhattacharya et al., 2012) | |
No difference | Fmr1 knock-out mouse hippocampus | (Liu et al., 2012) | |
Increased | Fmr1 knock-out mouse neocortex | (Sawicka et al., 2016) | |
No difference | Fmr1 knock-out mouse frontal cortex | (Saré et al., 2018) | |
Increased | Fmr1 knock-out mouse primary hippocampal cultures | (Ding et al., 2020) | |
Tropomyosin-related kinase B (TrkB) | Not reported | Fmr1 knock-out mouse primary hippocampal cultures | (Castrén et al., 2002) |
Not reported | Fmr1 knock-out mouse somatosensory cortex | (Selby et al., 2007) | |
Not reported | Fmr1 knock-out mouse cortical neuronal progenitor cells | (Louhivuori et al., 2010) | |
Not reported | Fmr1 knock-out mouse neocortex | (Louhivuori et al., 2010) | |
Decreased | Fmr1 knock-out mouse cortex | (Nomura et al., 2017) | |
Decreased | Fmr1 knock-out mouse hippocampus | (Ferrante et al., 2021) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
D’Incal, C.; Broos, J.; Torfs, T.; Kooy, R.F.; Vanden Berghe, W. Towards Kinase Inhibitor Therapies for Fragile X Syndrome: Tweaking Twists in the Autism Spectrum Kinase Signaling Network. Cells 2022, 11, 1325. https://doi.org/10.3390/cells11081325
D’Incal C, Broos J, Torfs T, Kooy RF, Vanden Berghe W. Towards Kinase Inhibitor Therapies for Fragile X Syndrome: Tweaking Twists in the Autism Spectrum Kinase Signaling Network. Cells. 2022; 11(8):1325. https://doi.org/10.3390/cells11081325
Chicago/Turabian StyleD’Incal, Claudio, Jitse Broos, Thierry Torfs, R. Frank Kooy, and Wim Vanden Berghe. 2022. "Towards Kinase Inhibitor Therapies for Fragile X Syndrome: Tweaking Twists in the Autism Spectrum Kinase Signaling Network" Cells 11, no. 8: 1325. https://doi.org/10.3390/cells11081325
APA StyleD’Incal, C., Broos, J., Torfs, T., Kooy, R. F., & Vanden Berghe, W. (2022). Towards Kinase Inhibitor Therapies for Fragile X Syndrome: Tweaking Twists in the Autism Spectrum Kinase Signaling Network. Cells, 11(8), 1325. https://doi.org/10.3390/cells11081325