The Drosophila simulans Genome Lacks the crystal-Stellate System
Abstract
:1. Introduction
1.1. Structural Organization of the crystal-Stellate System
1.2. Evolution of the cry-Ste System
2. Materials and Methods
2.1. Fly Strains and Genetic Crosses
2.2. Fluorescence In Situ Hybridization (FISH)
2.3. Molecular Analysis
2.4. Sequences Analysis
3. Results
3.1. Overview of Ste- and Su(Ste)-like Sequences in the Melanogaster Complex
3.2. Ste- and Su(Ste)-like Elements Chromosomal Distribution in the Melanogaster Complex
3.3. Ste- and Su(Ste)-like Sequences in D. simulans
3.3.1. Ste-like Sequences
3.3.2. Su(Ste)-like Sequences
3.4. Expression of Ste-like Sequences in D. simulans
4. Discussion
4.1. cry-Ste Origin in D. mel-sim Clade
4.2. The Biological Function of the cry-Ste System
“A central issue about constitutive heterochromatin concerns the mechanisms underlying its evolutionary conservation. The presence of large amounts of heterochromatin in the germline of most higher eukaryotes, and its fine quantitative regulation in certain somatic tissues, suggest that heterochromatin is an integral part of the genome that positively contributes to fitness”(Gatti and Pimpinelli. Pg 267, Annu. Rev. Genet. 1992).
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Livak, K.J. Detailed Structure of the Drosophila melanogaster Stellate Genes and Their Transcripts. Genetics 1990, 124, 303–316. [Google Scholar] [CrossRef] [PubMed]
- Bozzetti, M.P.; Massari, S.; Finelli, P.; Meggio, F.; Pinna, L.A.; Boldyreff, B.; Issinger, O.G.; Palumbo, G.; Ciriaco, C.; Bonaccorsi, S. The Ste Locus, a Component of the Parasitic Cry-Ste System of Drosophila melanogaster, Encodes a Protein That Forms Crystals in Primary Spermatocytes and Mimics Properties of the Beta Subunit of Casein Kinase 2. Proc. Natl. Acad. Sci. USA 1995, 92, 6067–6071. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aravin, A.A.; Naumova, N.M.; Tulin, A.V.; Vagin, V.V.; Rozovsky, Y.M.; Gvozdev, V.A. Double-Stranded RNA-Mediated Silencing of Genomic Tandem Repeats and Transposable Elements in the D. melanogaster Germline. Curr. Biol. 2001, 11, 1017–1027. [Google Scholar] [CrossRef] [Green Version]
- Aravin, A.A.; Klenov, M.S.; Vagin, V.V.; Bantignies, F.; Cavalli, G.; Gvozdev, V.A. Dissection of a Natural RNA Silencing Process in the Drosophila melanogaster Germ Line. Mol. Cell Biol. 2004, 24, 6742–6750. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hardy, R.W.; Lindsley, D.L.; Livak, K.J.; Lewis, B.; Siversten, A.L.; Joslyn, G.L.; Edwards, J.; Bonaccorsi, S. Cytogenetic analysis of a segment of the Y chromosome of Drosophila melanogaster. Genetics 1984, 107, 591–610. [Google Scholar] [CrossRef] [PubMed]
- Palumbo, G.; Berloco, M.; Fanti, L.; Bozzetti, M.P.; Massari, S.; Caizzi, R.; Caggese, C.; Spinelli, L.; Pimpinelli, S. Interaction Systems between Heterochromatin and Euchromatin in Drosophila melanogaster. Genetica 1994, 94, 267–274. [Google Scholar] [CrossRef]
- Palumbo, G.; Bonaccorsi, S.; Robbins, L.G.; Pimpinelli, S. Genetic Analysis of Stellate Elements of Drosophila melanogaster. Genetics 1994, 138, 1181–1197. [Google Scholar] [CrossRef]
- Livak, K.J. Organization and Mapping of a Sequence on the Drosophila melanogaster X and Y Chromosomes That Is Transcribed during Spermatogenesis. Genetics 1984, 107, 611–634. [Google Scholar] [CrossRef]
- Schmidt, A.; Palumbo, G.; Bozzetti, M.P.; Tritto, P.; Pimpinelli, S.; Schäfer, U. Genetic and Molecular Characterization of Sting, a Gene Involved in Crystal Formation and Meiotic Drive in the Male Germ Line of Drosophila melanogaster. Genetics 1999, 151, 749–760. [Google Scholar] [CrossRef]
- Tritto, P.; Specchia, V.; Fanti, L.; Berloco, M.; D’Alessandro, R.; Pimpinelli, S.; Palumbo, G.; Pia Bozzetti, M. Structure, Regulation and Evolution of the Crystal-Stellate System of Drosophila. Genetica 2003, 117, 247–257. [Google Scholar] [CrossRef]
- Specchia, V.; Piacentini, L.; Tritto, P.; Fanti, L.; D’Alessandro, R.; Palumbo, G.; Pimpinelli, S.; Bozzetti, M.P. Hsp90 Prevents Phenotypic Variation by Suppressing the Mutagenic Activity of Transposons. Nature 2010, 463, 662–665. [Google Scholar] [CrossRef] [PubMed]
- Bozzetti, M.P.; Fanti, L.; Di Tommaso, S.; Piacentini, L.; Berloco, M.; Tritto, P.; Specchia, V. The “Special” Crystal-Stellate System in Drosophila melanogaster Reveals Mechanisms Underlying PiRNA Pathway-Mediated Canalization. Genet. Res. Int. 2012, 2012, 324293. [Google Scholar] [CrossRef] [PubMed]
- Specchia, V.; D’Attis, S.; Puricella, A.; Bozzetti, M. DFmr1 Plays Roles in Small RNA Pathways of Drosophila melanogaster. Int. J. Mol. Sci. 2017, 18, 1066. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Specchia, V.; Puricella, A.; D’Attis, S.; Massari, S.; Giangrande, A.; Bozzetti, M.P. Drosophila melanogaster as a Model to Study the Multiple Phenotypes, Related to Genome Stability of the Fragile-X Syndrome. Front. Genet. 2019, 10, 10. [Google Scholar] [CrossRef]
- Chang, C.H.; Larracuente, A.M. Heterochromatin-Enriched Assemblies Reveal the Sequence and Organization of the Drosophila melanogaster Y Chromosome. Genetics 2019, 211, 333–348. [Google Scholar] [CrossRef] [Green Version]
- Shevelyov, Y.Y. Copies of a Stellate Gene Variant Are Located in the X Heterochromatin of Drosophila melanogaster and Are Probably Expressed. Genetics 1992, 132, 1033–1037. [Google Scholar] [CrossRef]
- Lyckegaard, E.M.; Clark, A.G. Ribosomal DNA and Stellate Gene Copy Number Variation on the Y Chromosome of Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 1989, 86, 1944–1948. [Google Scholar] [CrossRef] [Green Version]
- McKee, B.D.; Satter, M.T. Structure of the Y Chromosomal Su(Ste) Locus in Drosophila melanogaster and Evidence for Localized Recombination among Repeats. Genetics 1996, 142, 149–161. [Google Scholar] [CrossRef]
- Hoskins, R.A.; Carlson, J.W.; Wan, K.H.; Park, S.; Mendez, I.; Galle, S.E.; Booth, B.W.; Pfeiffer, B.D.; George, R.A.; Svirskas, R.; et al. The Release 6 Reference Sequence of the Drosophila melanogaster Genome. Genome Res. 2015, 25, 445–458. [Google Scholar] [CrossRef] [Green Version]
- Kogan, G.L.; Epstein, V.N.; Aravin, A.A.; Gvozdev, V.A. Molecular Evolution of Two Paralogous Tandemly Repeated Heterochromatic Gene Clusters Linked to the X and Y Chromosomes of Drosophila melanogaster. Mol. Biol. Evol. 2000, 17, 697–702. [Google Scholar] [CrossRef]
- Kalmykova, A.I.; Shevelyov, Y.Y.; Dobritsa, A.A.; Gvozdev, V.A. Acquisition and Amplification of a Testis-Expressed Autosomal Gene, SSL, by the Drosophila Y Chromosome. Proc. Natl. Acad. Sci. USA 1997, 94, 6297–6302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Danilevskaya, O.N.; Kurenova, E.V.; Pavlova, M.N.; Bebehov, D.V.; Link, A.J.; Koga, A.; Vellek, A.; Hartl, D.L. He-T Family DNA Sequences in the Y Chromosome of Drosophila melanogaster Share Homology with the X-Linked Stellate Genes. Chromosoma 1991, 100, 118–124. [Google Scholar] [CrossRef] [PubMed]
- Usakin, L.A.; Kogan, G.L.; Kalmykova, A.I.; Gvozdev, V.A. An Alien Promoter Capture as a Primary Step of the Evolution of Testes-Expressed Repeats in the Drosophila melanogaster Genome. Mol. Biol. Evol. 2005, 22, 1555–1560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olenkina, O.M.; Egorova, K.S.; Kibanov, M.V.; Gervaziev, Y.V.; Gvozdev, V.A.; Olenina, L.V. Promoter Contribution to the Testis-Specific Expression of Stellate Gene Family in Drosophila melanogaster. Gene 2012, 499, 143–153. [Google Scholar] [CrossRef]
- Kogan, G.L.; Usakin, L.A.; Ryazansky, S.S.; Gvozdev, V.A. Expansion and Evolution of the X-Linked Testis Specific Multigene Families in the Melanogaster Species Subgroup. PLoS ONE 2012, 7, e37738. [Google Scholar] [CrossRef] [Green Version]
- Chakraborty, M.; Chang, C.-H.; Khost, D.E.; Vedanayagam, J.; Adrion, J.R.; Liao, Y.; Montooth, K.L.; Meiklejohn, C.D.; Larracuente, A.M.; Emerson, J.J. Evolution of Genome Structure in the Drosophila simulans Species Complex. Genome Res. 2021, 31, 380–396. [Google Scholar] [CrossRef]
- Chang, C.H.; Gregory, L.E.; Gordon, K.E.; Meiklejohn, C.D.; Larracuente, A.M. Unique Structure and Positive Selection Promote the Rapid Divergence of Drosophila Y Chromosomes. eLife 2022, 11, e75795. [Google Scholar] [CrossRef]
- Kotov, A.A.; Adashev, V.E.; Godneeva, B.K.; Ninova, M.; Shatskikh, A.S.; Bazylev, S.S.; Aravin, A.A.; Olenina, L.V. PiRNA Silencing Contributes to Interspecies Hybrid Sterility and Reproductive Isolation in Drosophila melanogaster. Nucleic Acids Res. 2019, 47, 4255–4271. [Google Scholar] [CrossRef] [Green Version]
- Adashev, V.E.; Kotov, A.A.; Bazylev, S.S.; Shatskikh, A.S.; Aravin, A.A.; Olenina, L.V. Stellate Genes and the PiRNA Pathway in Speciation and Reproductive Isolation of Drosophila melanogaster. Front. Genet. 2021, 11, 610665. [Google Scholar] [CrossRef]
- Hey, J.; Kliman, R.M. Population genetics and phylogenetics of DNA sequence variation at multiple loci within the Drosophila melanogaster species complex. Mol. Biol. Evol. 1993, 10, 804–822. [Google Scholar] [CrossRef]
- Hutter, P.; Roote, J.; Ashburner, M. A genetic basis for the inviability of hybrids between sibling species of Drosophila. Genetics 1990, 124, 909–920. [Google Scholar] [CrossRef] [PubMed]
- Barbash, D.A. Ninety years of Drosophila melanogaster hybrids. Genetics 2010, 186, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Markow, T.A.; O’Grady, P.M. Drosophila: A Guide to Species Identification and Use; Academic Press: London, UK, 2005. [Google Scholar]
- Pardue, M.-L. Looking at Polytene Chromosomes. In Methods in Cell Biology; Elsevier: Amsterdam, The Netherlands, 1994; Volume 44, pp. 333–351. [Google Scholar] [CrossRef]
- Fanti, L.; Pimpinelli, S. Immunostaining of Squash Preparations of Chromosomes of Larval Brains. In Drosophila Cytogenetics Protocols; Humana Press: Totowa, NJ, USA, 2003; Volume 247, pp. 353–362. [Google Scholar] [CrossRef]
- Pimpinelli, S.; Bonaccorsi, S.; Fanti, L.; Gatti, M. Chromosome Banding of Mitotic Chromosomes from Drosophila Larval Brain. Cold Spring Harb. Protoc. 2010, 2010, pdb.prot5390. [Google Scholar] [CrossRef] [PubMed]
- Bitetti, M. Identification of Genomic Clones Containing Heterochromatic Stellate sequences in D. melanogaster. Bachelor’s Thesis, University of Bari, Bari, Italy, 1998. [Google Scholar]
- Moschetti, R.; Caggese, C.; Barsanti, P.; Caizzi, R. Intra- and Interspecies Variation among Bari-1 Elements of the Melanogaster Species Group. Genetics 1998, 150, 239–250. [Google Scholar] [CrossRef]
- Sambrook, J.; Deng, W. Molecular Cloning: A Laboratory Manual; Cold Spring Harbor Press: Cold Spring Harbor, NY, USA, 2001. [Google Scholar]
- Bozzetti, M.P.; Specchia, V.; Cattenoz, P.B.; Laneve, P.; Geusa, A.; Sahin, H.B.; Di Tommaso, S.; Friscini, A.; Massari, S.; Diebold, C.; et al. The Drosophila Fragile X Mental Retardation Protein Participates in the PiRNA Pathway. J. Cell Sci. 2015, 128, 2070–2084. [Google Scholar] [CrossRef] [Green Version]
- Marcella, M.; Piacentini, L.; Berloco, M.F.; Casale, A.M.; Cappucci, U.; Pimpinelli, S.; Fanti, L. Cytological heterogeneity of heterochromatin among 10 sequenced Drosophila species. Genetics 2022, 222, iyac119. [Google Scholar] [CrossRef]
- Berloco, M.; Fanti, L.; Sheen, F.; Levis, R.W.; Pimpinelli, S. Heterochromatic Distribution of HeT-A- and TART-like Sequences in Several Drosophila Species. Cytogenet. Genome Res. 2005, 110, 124–133. [Google Scholar] [CrossRef]
- Belloni, M.; Tritto, P.; Bozzetti, M.P.; Palumbo, G.; Robbins, L.G. Does Stellate Cause Meiotic Drive in Drosophila melanogaster? Genetics 2002, 161, 1551–1559. [Google Scholar] [CrossRef]
- Balakireva, M.D.; Shevelyov, Y.Y.; Nurminsky, D.I.; Livak, K.J.; Gvozdev, V.A. Structural Organization and Diversification of Y-Linked Sequences Comprising Su(Ste) Genes in Drosophila melanogaster. Nucl. Acids Res. 1992, 20, 3731–3736. [Google Scholar] [CrossRef] [Green Version]
- Tulin, A.V.; Kogan, G.L.; Filipp, D.; Balakireva, M.D.; Gvozdev, V.A. Heterochromatic Stellate Gene Cluster in Drosophila melanogaster: Structure and Molecular Evolution. Genetics 1997, 146, 253–262. [Google Scholar] [CrossRef]
- Hurst, L.D. Further Evidence Consistent with Stellate’s Involvement in Meiotic Drive. Genetics 1996, 142, 641–643. [Google Scholar] [CrossRef] [PubMed]
- Quénerch’du, E.; Anand, A.; Kai, T. The PiRNA Pathway Is Developmentally Regulated during Spermatogenesis in Drosophila. RNA 2016, 22, 1044–1054. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, P.; Kotov, A.A.; Godneeva, B.K.; Bazylev, S.S.; Olenina, L.V.; Aravin, A.A. PiRNA-Mediated Gene Regulation and Adaptation to Sex-Specific Transposon Expression in D. melanogaster Male Germline. Genes Dev. 2021, 35, 914–935. [Google Scholar] [CrossRef] [PubMed]
- Deng, W.; Lin, H. Miwi, a Murine Homolog of Piwi, Encodes a Cytoplasmic Protein Essential for Spermatogenesis. Dev. Cell 2002, 2, 819–830. [Google Scholar] [CrossRef] [Green Version]
- Reddy, H.M.; Bhattacharya, R.; Tiwari, S.; Mishra, K.; Annapurna, P.; Jehan, Z.; Praveena, N.M.; Alex, J.L.; Dhople, V.M.; Singh, L.; et al. Y Chromosomal Noncoding RNAs Regulate Autosomal Gene Expression via PiRNAs in Mouse Testis. BMC Biol. 2021, 19, 198. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Grassi, A.; Tritto, P.; Palumbo, V.; Bozzetti, M.P.; Berloco, M.F. The Drosophila simulans Genome Lacks the crystal-Stellate System. Cells 2022, 11, 3725. https://doi.org/10.3390/cells11233725
De Grassi A, Tritto P, Palumbo V, Bozzetti MP, Berloco MF. The Drosophila simulans Genome Lacks the crystal-Stellate System. Cells. 2022; 11(23):3725. https://doi.org/10.3390/cells11233725
Chicago/Turabian StyleDe Grassi, Anna, Patrizia Tritto, Valeria Palumbo, Maria Pia Bozzetti, and Maria Francesca Berloco. 2022. "The Drosophila simulans Genome Lacks the crystal-Stellate System" Cells 11, no. 23: 3725. https://doi.org/10.3390/cells11233725
APA StyleDe Grassi, A., Tritto, P., Palumbo, V., Bozzetti, M. P., & Berloco, M. F. (2022). The Drosophila simulans Genome Lacks the crystal-Stellate System. Cells, 11(23), 3725. https://doi.org/10.3390/cells11233725