Changes in Arterial Stiffness in Response to Various Types of Exercise Modalities: A Narrative Review on Physiological and Endothelial Senescence Perspectives
Abstract
:1. Introduction
2. Data Sources and Search Strategies
3. Potential Factors Influencing Arterial Stiffness and Cardiovascular Health
Authors | Subject | Research Design | Sample Size (n) | Assessment Variable | Result/Outcomes |
---|---|---|---|---|---|
Ho et al., 2010 [45] | Healthy older adults Age: 40 years and above | A population-based prospective cohort study with a stratified, two-stage random sampling approach was used | 2188 subjects (Male: 1063 and Female: 1125) |
| ↑ HOMA → ↑ BaPWV (Male and Female)
|
Webb et al., 2010 [16] | Healthy older adults (risk of diabetes mellitus) Age: ±59 years | A population-based prospective cohort study-screen-detected type 2 diabetes mellitus. | 570 subjects (Male: 319 and Female: 251) |
| cfPWV mean ± SE
cfPWV → isolated FPG
|
Urbina et al., 2011 [15] | Healthy young adults Age: 15–28 years | A large longitudinal school-based study of the effect of obesity on the development of diabetes | 343 subjects (Male: 161 and Female: 182) |
| HOMA index [p ≤ 0.0001] (higher = stronger)
AIx (%) [p ≤ 0.05] (higher = stiffer)
|
Won et al., 2018 [17] | Healthy older adults Age: ±60 years | This is a cross-sectional investigation analyzing baseline data collected for a prospective cohort study | 2560 subjects Male: 842 and Female: 1718 |
| ↑ baPWV → ↑ TyG index [p < 0.001]
baPWV (1421 ± 242 cm/s)
baPWV (1480 ± 244 cm/s)
baPWV (1534 ± 260 cm/s)
baPWV (1575 ± 279 cm/s) |
Nakagomi et al., 2019 [47] | Healthy middle-aged adults Age: 38.75 ± 9.75 years | This was a cross-sectional study that enrolled non-industrial workers in Japan | 2818 subjects (Male: 1720 and Female: 1098) |
|
|
Ryder et al., 2016 [46] | Healthy young children Age: 15.1 ± 2.4 | This is a cross-sectional study with 2 longitudinal studies conducted at the University of Minnesota | 252 subjects (Male: 121 and Female: 131) |
|
|
Hughes et al., 2012 [48] | Healthy middle-aged adults Age: 20–45 years | A randomized controlled trial examining the effects of physical activity and weight reduction on improving vascular health | 339 subjects (Male: 78 and Female: 261) |
| The measures of baseline arterial stiffness were significantly correlated with one another.
|
Fantin et al., 2017 [49] | Overweight/Obese middle-aged adults Age: 20–77 years | A randomized control trial-subject randomly selected by outpatients in the nutritional service of Verona hospital | 95 subjects (Male: 42 and Female: 53) |
| Subjects with high values of neck circumference had higher insulin resistance.
|
4. Effect of Aerobic Exercise on Arterial Stiffness
Authors | Subject | Research Design | Sample Size | Intervention | Intensity | Assessment Variable | Result/Outcomes |
---|---|---|---|---|---|---|---|
Wang et al., 2014 [33] | Healthy young male students Age: 21.2 ± 0.4 years | A randomized balanced self-control crossover design was used in this study | 15 subjects | CE (Continuous Exercise) IE (Interval Exercise) Cycling Ergometer | 30 min at 35% HRR and 15-min separated by a 20-min rest | CAVI Measured at:
| The time-dependent changes in CAVI were significantly different between the control and intervention groups. CON trial
|
Siasos et al., 2016 [34] | Healthy young men Age: 22.6 ± 3.3 years | This study used a cross-over study design | 20 subjects | CAE (Intensity Aerobic Exercise) hIAE (High-Intensity Interval Aerobic Exercise) Cycling Ergometer | 30 min at 50% of maximum aerobic work |
| FMD
|
Doonan et al., 2013 [35] | Healthy young adults Age: 24.05 ± 5.5 years | This study used a cross-sectional study design | 122 subjects | Aerobic Exercise Treadmill Running | Exercise protocol to volitional exhaustion (sprint) |
|
|
Way et al., 2021 [32] | Diabetes adult patients VO2peak: 25.2 ± 1.1 mL/min/kg Age: 29–59 years | This study used a randomized cross-over design | 24 subjects | HIIE (High-Intensity Interval Training) MICE (Moderate-Intensity Continuous Exercise) Cycling Ergometer |
|
| cfPWV (m/s) [n.s]
AIx (%) [n.s]
AIx75 (%) [p = 0.04]
[all above showed the values at 30 min preEx, 0 min postEx, 30 min postEx, and 60 min postEx, respectively] |
5. Effect of Resistance Exercise on Arterial Stiffness
Authors | Subject | Research Design | Sample Size | Intervention | Intensity | Assessment Variable | Result/Outcomes |
---|---|---|---|---|---|---|---|
Yoon et al., 2010 [88] | Healthy non-smoking men Age: 20–29 years | The study involved a cross-over design in which the same subject was treated twice | 13 subjects (Male: 13 and Female: 0) | Resistance exercise | Resistance exercises at 60% of 1 RM and sham control (seated rest) 15 repetitions, 2 sets |
| HR (bpm)
It was significantly elevated. |
Figueroa et al., 2011 [89] | Healthy young men Age: 21 ± 4 years | This study used a cross-sectional design | 15 subjects (Male: 15 and Female: 0) | Resistance exercise | 10 rep of 1-min sets of static squats with/without WBV (40 Hz, 1 mm, 5.37 G), 10 sets |
| Non-WBV Group
WBV Group
|
Kingsley et al., 2016 [36] | Healthy young adults Age: 23 ± 3 years | This study used a cross-over study design | 16 subjects (Male: 11 and Female: 5) | Whole Body Resistance exercise | 3 sets of 10 repetitions at 75% 1 RM free-weight exercise (squat, deadlift, and bench press) |
|
RE (5.3 vs. 5.8) (↑) |
Okamoto et al., 2014 [112] | Healthy young adults Age: 26 ± 5 years | This study used a randomized controlled crossover design | 10 subjects (Male: 7 and Female: 3) | Resistance exercise | LRE (40% of 1 repetition maximum) and CON (seated rest in the exercise room), 3 sets until exhaustion |
|
LRE (0.13 vs. 0.17 vs. 0.17) (⟷)
LRE (2.0 vs. 1.5 vs. 1.3) (↓) |
6. Effects of Interval Training on Arterial Stiffness
Authors | Subject | Research Design | Sample Size | Intervention | Intensity | Assessment Variable | Result/Outcomes |
---|---|---|---|---|---|---|---|
Hortmann et al., 2020 [113] | Young obese women Age: 18–39 years old | This study used a cross-over study design | 15 subjects (Male: 0 and Female: 15) | HIIT | HIIT (4 × 4 min at 85–95% of HRmax), MICT (41 min at 65–75% of HRmax), and control |
|
(15 vs. 8 vs. 2 vs. (−1)) (↓) cfPWV (m/s) [p = 0.811] (6.5 vs. 6.4 vs. 6.5 vs. 6.5) (⟷) AIx@75 (%) [p = 0.049] (16 vs. 17 vs. 13 vs. 3) (↓)
(15 vs. 14 vs. 9 vs. 8.5) (↓) cfPWV (m/s) [p = 0.811] (6.5 vs. 6.5 vs. 6.4 vs. 6.5) (⟷) AIx@75 (%) [p = 0.049] (18 vs. 17 vs. 10 vs. 9) (↓)
(20 vs. 16 vs. 15 vs. 16) (⟷) cfPWV (m/s) [p = 0.811] (6.4 vs. 6.4 vs. 6.3 vs. 6.2) (⟷) AIx@75 (%) [p = 0.049] (18 vs. 15 vs. 13 vs. 14) (⟷) |
Francois et al., 2017 [114] | T2D adults patients VO2peak: 17.9 mL/min/kg Age: 57.6 ± 8.6 years | This study used a double-blind controlled trial | 53 subjects (Male: 19 and Female: 34) | HIIT | Cardio and resistance-based HIIT (4–10 × 1 min at 90% HRmax) | Central and peripheral PWV Measured at:
| HIIT reduces femoral IMT, arterial stiffness, and resting heart rate in individuals with T2D.
Post: 0.81 ± 0.16 mm (↓)
Post: 8.6 ± 1.8 m/s (↓)
Post: 67.8 ± 8.6 bpm (↓) |
Hanssen et al., 2015 [127] | Healthy young men VO2peak: 4.2 ± 0.5 mL/min/kg Age: 18–35 years | This study used a randomized cross-over design | 21 subjects (Male: 21 and Female: 0) | HIIT | HIIT (4 × 4 min interval training at 90–95% HRmax) and MCT (80% HR (±5 heartbeats)) |
|
0 min (−2 ± 8 vs. −2.6 ± 8) [p = 0.825] 5 min (−1.3 ± 9 vs. −3.7 ± 8) [p = 0.195] 20 min (−4 ± 8 vs. −2.7 ± 8) [p = 0.491] 35 min (−6 ± 8 vs. −2.2 ± 8) [p = 0.045] (↓) 50 min (−6.9 ± 8 vs. −1.9 ± 8) [p = 0.008] (↓)
0 min (−10.8 ± 9 vs. −11.9 ± 8) [p = 0.663] 5 min (8.3 ± 9 vs. −4.4 ± 8) [p < 0.001] 20 min (1.4 ± 9 vs. −7.9 ± 8) [p < 0.001] 35 min (−4.1 ± 9 vs. −9.5 ± 8) [p = 0.009] (↓) 50 min (−7.4 ± 9 vs. −10.2 ± 8) [p = 0.206] (↓) |
7. Conclusive Remarks and Suggestions for Future Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pierce, D.R.; Doma, K.; Leicht, A.S. Acute Effects of Exercise Mode on Arterial Stiffness and Wave Reflection in Healthy Young Adults: A Systematic Review and Meta-Analysis. Front. Physiol. 2018, 9, 73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Said, M.A.; Eppinga, R.N.; Lipsic, E.; Verweij, N.; van der Harst, P. Relationship of Arterial Stiffness Index and Pulse Pressure with Cardiovascular Disease and Mortality. J. Am. Heart Assoc. 2018, 7, e007621. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, M.; Shu, Y.; Wang, L.; Song, L.; Chen, S.; Liu, Y.; Bi, J.; Li, D.; Yang, Y.; Hu, Y.; et al. Visit-to-visit variability in the measurements of metabolic syndrome components and the risk of all-cause mortality, cardiovascular disease, and arterial stiffness. Nutr. Metab. Cardiovasc. Dis. NMCD 2021, 31, 2895–2903. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Agnoletti, D.; Xu, Y.; Wang, J.G.; Blacher, J.; Safar, M.E. Carotid-femoral pulse wave velocity in the elderly. J. Hypertens. 2014, 32, 1572–1576. [Google Scholar] [CrossRef] [PubMed]
- Bonarjee, V.V.S. Arterial Stiffness: A Prognostic Marker in Coronary Heart Disease. Available Methods and Clinical Application. Front. Cardiovasc. Med. 2018, 5, 64. [Google Scholar] [CrossRef] [Green Version]
- Van Bortel, L.M.; Laurent, S.; Boutouyrie, P.; Chowienczyk, P.; Cruickshank, J.K.; De Backer, T.; Filipovsky, J.; Huybrechts, S.; Mattace-Raso, F.U.; Protogerou, A.D.; et al. Expert consensus document on the measurement of aortic stiffness in daily practice using carotid-femoral pulse wave velocity. J. Hypertens. 2012, 30, 445–448. [Google Scholar] [CrossRef] [Green Version]
- Chirinos, J.A.; Kips, J.G.; Jacobs, D.R., Jr.; Brumback, L.; Duprez, D.A.; Kronmal, R.; Bluemke, D.A.; Townsend, R.R.; Vermeersch, S.; Segers, P. Arterial wave reflections and incident cardiovascular events and heart failure: MESA (Multiethnic Study of Atherosclerosis). J. Am. Coll. Cardiol. 2012, 60, 2170–2177. [Google Scholar] [CrossRef]
- Safar, M.E.; Balkau, B.; Lange, C.; Protogerou, A.D.; Czernichow, S.; Blacher, J.; Levy, B.I.; Smulyan, H. Hypertension and vascular dynamics in men and women with metabolic syndrome. J. Am. Coll. Cardiol. 2013, 61, 12–19. [Google Scholar] [CrossRef] [Green Version]
- Safar, M.E.; Thomas, F.; Blacher, J.; Nzietchueng, R.; Bureau, J.M.; Pannier, B.; Benetos, A. Metabolic syndrome and age-related progression of aortic stiffness. J. Am. Coll. Cardiol. 2006, 47, 72–75. [Google Scholar] [CrossRef]
- Meyer, M.L.; Tanaka, H.; Palta, P.; Cheng, S.; Gouskova, N.; Aguilar, D.; Heiss, G. Correlates of Segmental Pulse Wave Velocity in Older Adults: The Atherosclerosis Risk in Communities (ARIC) Study. Am. J. Hypertens. 2016, 29, 114–122. [Google Scholar] [CrossRef]
- Perissiou, M.; Bailey, T.G.; Windsor, M.; Nam, M.C.Y.; Greaves, K.; Leicht, A.S.; Golledge, J.; Askew, C.D. Effects of exercise intensity and cardiorespiratory fitness on the acute response of arterial stiffness to exercise in older adults. Eur. J. Appl. Physiol. 2018, 118, 1673–1688. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tune, J.D.; Goodwill, A.G.; Sassoon, D.J.; Mather, K.J. Cardiovascular consequences of metabolic syndrome. Transl. Res. 2017, 183, 57–70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pannier, B.; Thomas, F.; Eschwège, E.; Bean, K.; Benetos, A.; Leocmach, Y.; Danchin, N.; Guize, L. Cardiovascular risk markers associated with the metabolic syndrome in a large French population: The “SYMFONIE” study. Diabetes. Metab. 2006, 32, 467–474. [Google Scholar] [CrossRef]
- Akbulut, G.; Köksal, E.; Bilici, S.; Acar Tek, N.; Yildiran, H.; Karadag, M.G.; Sanlier, N. Metabolic syndrome (MS) in elderly: A cross sectional survey. Arch. Gerontol. Geriatr. 2011, 53, e263–e266. [Google Scholar] [CrossRef] [PubMed]
- Urbina, E.M.; Gao, Z.; Khoury, P.R.; Martin, L.J.; Dolan, L.M. Insulin resistance and arterial stiffness in healthy adolescents and young adults. Diabetologia 2012, 55, 625–631. [Google Scholar] [CrossRef] [Green Version]
- Webb, D.R.; Khunti, K.; Silverman, R.; Gray, L.J.; Srinivasan, B.; Lacy, P.S.; Williams, B.; Davies, M.J. Impact of metabolic indices on central artery stiffness: Independent association of insulin resistance and glucose with aortic pulse wave velocity. Diabetologia 2010, 53, 1190–1198. [Google Scholar] [CrossRef]
- Won, K.B.; Park, G.M.; Lee, S.E.; Cho, I.J.; Kim, H.C.; Lee, B.K.; Chang, H.J. Relationship of insulin resistance estimated by triglyceride glucose index to arterial stiffness. Lipids Health Dis. 2018, 17, 268. [Google Scholar] [CrossRef]
- Humphrey, J.D. Mechanisms of Vascular Remodeling in Hypertension. Am. J. Hypertens. 2021, 34, 432–441. [Google Scholar] [CrossRef]
- Lopes-Vicente, W.R.P.; Rodrigues, S.; Cepeda, F.X.; Jordão, C.P.; Costa-Hong, V.; Dutra-Marques, A.C.B.; Carvalho, J.C.; Alves, M.; Bortolotto, L.A.; Trombetta, I.C. Arterial stiffness and its association with clustering of metabolic syndrome risk factors. Diabetol. Metab. Syndr. 2017, 9, 87. [Google Scholar] [CrossRef] [Green Version]
- Vatner, S.F.; Zhang, J.; Vyzas, C.; Mishra, K.; Graham, R.M.; Vatner, D.E. Vascular Stiffness in Aging and Disease. Front. Physiol. 2021, 12, 762437. [Google Scholar] [CrossRef]
- Safar, M.E.; Asmar, R.; Benetos, A.; Blacher, J.; Boutouyrie, P.; Lacolley, P.; Laurent, S.; London, G.; Pannier, B.; Protogerou, A.; et al. Interaction Between Hypertension and Arterial Stiffness. Hypertension 2018, 72, 796–805. [Google Scholar] [CrossRef] [PubMed]
- Shephard, R.J.; Balady, G.J. Exercise as cardiovascular therapy. Circulation 1999, 99, 963–972. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ryan, A.S. Insulin resistance with aging. Sport. Med. 2000, 30, 327–346. [Google Scholar] [CrossRef] [PubMed]
- Carracedo, J.; Ramírez-Carracedo, R.; Alique, M.; Ramírez-Chamond, R. Endothelial cell senescence in the pathogenesis of endothelial dysfunction. In Endothel Dysfunct Old Concepts New Challenges; IntechOpen: London, UK, 2018; Volume 10. [Google Scholar]
- Lloyd-Jones, D.M. Cardiovascular risk prediction: Basic concepts, current status, and future directions. Circulation 2010, 121, 1768–1777. [Google Scholar] [CrossRef]
- Benjamin, E.J.; Blaha, M.J.; Chiuve, S.E.; Cushman, M.; Das, S.R.; Deo, R.; de Ferranti, S.D.; Floyd, J.; Fornage, M.; Gillespie, C.; et al. Heart Disease and Stroke Statistics-2017 Update: A Report From the American Heart Association. Circulation 2017, 135, e146–e603. [Google Scholar] [CrossRef]
- Seals, D.R.; Jablonski, K.L.; Donato, A.J. Aging and vascular endothelial function in humans. Clin. Sci. 2011, 120, 357–375. [Google Scholar] [CrossRef] [Green Version]
- Jia, G.; Aroor, A.R.; DeMarco, V.G.; Martinez-Lemus, L.A.; Meininger, G.A.; Sowers, J.R. Vascular stiffness in insulin resistance and obesity. Front. Physiol. 2015, 6, 231. [Google Scholar] [CrossRef]
- Gill, J.M.; Al-Mamari, A.; Ferrell, W.R.; Cleland, S.J.; Packard, C.J.; Sattar, N.; Petrie, J.R.; Caslake, M.J. Effects of prior moderate exercise on postprandial metabolism and vascular function in lean and centrally obese men. J. Am. Coll. Cardiol. 2004, 44, 2375–2382. [Google Scholar] [CrossRef] [Green Version]
- Gruber, H.J.; Mayer, C.; Mangge, H.; Fauler, G.; Grandits, N.; Wilders-Truschnig, M. Obesity reduces the bioavailability of nitric oxide in juveniles. Int. J. Obes. 2008, 32, 826–831. [Google Scholar] [CrossRef] [Green Version]
- Kim, F.; Pham, M.; Maloney, E.; Rizzo, N.O.; Morton, G.J.; Wisse, B.E.; Kirk, E.A.; Chait, A.; Schwartz, M.W. Vascular inflammation, insulin resistance, and reduced nitric oxide production precede the onset of peripheral insulin resistance. Arter. Thromb. Vasc. Biol. 2008, 28, 1982–1988. [Google Scholar] [CrossRef]
- Way, K.L.; Lee, A.S.; Twigg, S.M.; Johnson, N.A. The effect of acute aerobic exercise on central arterial stiffness, wave reflections, and hemodynamics in adults with diabetes: A randomized cross-over design. J. Sport Health Sci. 2021, 10, 499–506. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, T.; Zhu, W.; Wu, H.; Yan, S. Acute effects of continuous and interval low-intensity exercise on arterial stiffness in healthy young men. Eur. J. Appl. Physiol. 2014, 114, 1385–1392. [Google Scholar] [CrossRef] [PubMed]
- Siasos, G.; Athanasiou, D.; Terzis, G.; Stasinaki, A.; Oikonomou, E.; Tsitkanou, S.; Kolokytha, T.; Spengos, K.; Papavassiliou, A.G.; Tousoulis, D. Acute effects of different types of aerobic exercise on endothelial function and arterial stiffness. Eur. J. Prev. Cardiol. 2016, 23, 1565–1572. [Google Scholar] [CrossRef] [PubMed]
- Doonan, R.J.; Mutter, A.; Egiziano, G.; Gomez, Y.H.; Daskalopoulou, S.S. Differences in arterial stiffness at rest and after acute exercise between young men and women. Hypertens. Res. 2013, 36, 226–231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kingsley, J.D.; Mayo, X.; Tai, Y.L.; Fennell, C. Arterial Stiffness and Autonomic Modulation After Free-Weight Resistance Exercises in Resistance Trained Individuals. J. Strength Cond. Res. 2016, 30, 3373–3380. [Google Scholar] [CrossRef]
- Scuteri, A.; Najjar, S.S.; Orru, M.; Usala, G.; Piras, M.G.; Ferrucci, L.; Cao, A.; Schlessinger, D.; Uda, M.; Lakatta, E.G. The central arterial burden of the metabolic syndrome is similar in men and women: The SardiNIA Study. Eur. Heart J. 2010, 31, 602–613. [Google Scholar] [CrossRef]
- Topouchian, J.; Labat, C.; Gautier, S.; Back, M.; Achimastos, A.; Blacher, J.; Cwynar, M.; de la Sierra, A.; Pall, D.; Fantin, F.; et al. Effects of metabolic syndrome on arterial function in different age groups: The Advanced Approach to Arterial Stiffness study. J. Hypertens. 2018, 36, 824–833. [Google Scholar] [CrossRef] [Green Version]
- Blacher, J.; Guerin, A.P.; Pannier, B.; Marchais, S.J.; Safar, M.E.; London, G.M. Impact of aortic stiffness on survival in end-stage renal disease. Circulation 1999, 99, 2434–2439. [Google Scholar] [CrossRef] [Green Version]
- Boutouyrie, P.; Tropeano, A.I.; Asmar, R.; Gautier, I.; Benetos, A.; Lacolley, P.; Laurent, S. Aortic stiffness is an independent predictor of primary coronary events in hypertensive patients: A longitudinal study. Hypertension 2002, 39, 10–15. [Google Scholar] [CrossRef] [Green Version]
- Mattace-Raso, F.U.; van der Cammen, T.J.; Hofman, A.; van Popele, N.M.; Bos, M.L.; Schalekamp, M.A.; Asmar, R.; Reneman, R.S.; Hoeks, A.P.; Breteler, M.M.; et al. Arterial stiffness and risk of coronary heart disease and stroke: The Rotterdam Study. Circulation 2006, 113, 657–663. [Google Scholar] [CrossRef]
- Cecelja, M.; Chowienczyk, P. Role of arterial stiffness in cardiovascular disease. J. R. Soc. Med. Cardiovasc. Dis. 2012, 1, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Scuteri, A.; Cunha, P.G.; Agabiti Rosei, E.; Badariere, J.; Bekaert, S.; Cockcroft, J.R.; Cotter, J.; Cucca, F.; De Buyzere, M.L.; De Meyer, T.; et al. Arterial stiffness and influences of the metabolic syndrome: A cross-countries study. Atherosclerosis 2014, 233, 654–660. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Henry, R.M.; Kostense, P.J.; Spijkerman, A.M.; Dekker, J.M.; Nijpels, G.; Heine, R.J.; Kamp, O.; Westerhof, N.; Bouter, L.M.; Stehouwer, C.D. Arterial stiffness increases with deteriorating glucose tolerance status: The Hoorn Study. Circulation 2003, 107, 2089–2095. [Google Scholar] [CrossRef] [PubMed]
- Ho, C.T.; Lin, C.C.; Hsu, H.S.; Liu, C.S.; Davidson, L.E.; Li, T.C.; Li, C.I.; Lin, W.Y. Arterial Stiffness is Strongly Associated with Insulin Resistance in Chinese—A Population-Based Study (Taichung Community Health Study, TCHS). J. Atheroscler. Thromb. 2011, 18, 122–130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ryder, J.R.; Dengel, D.R.; Jacobs, D.R., Jr.; Sinaiko, A.R.; Kelly, A.S.; Steinberger, J. Relations among Adiposity and Insulin Resistance with Flow-Mediated Dilation, Carotid Intima-Media Thickness, and Arterial Stiffness in Children. J. Pediatr. 2016, 168, 205–211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakagomi, A.; Sunami, Y.; Kawasaki, Y.; Fujisawa, T.; Kobayashi, Y. Sex difference in the association between surrogate markers of insulin resistance and arterial stiffness. J. Diabetes Its Complicat. 2020, 34, 107442. [Google Scholar] [CrossRef]
- Hughes, T.M.; Althouse, A.D.; Niemczyk, N.A.; Hawkins, M.S.; Kuipers, A.L.; Tyrrell, K.S. Effects of weight loss and insulin reduction on arterial stiffness in the SAVE trial. Cardiovasc. Diabetol. 2012, 11, 114 . [Google Scholar] [CrossRef] [Green Version]
- Fantin, F.; Comellato, G.; Rossi, A.P.; Grison, E.; Zoico, E.; Mazzali, G.; Zamboni, M. Relationship between neck circumference, insulin resistance and arterial stiffness in overweight and obese subjects. Eur. J. Prev. Cardiol. 2017, 24, 1532–1540. [Google Scholar] [CrossRef]
- Sengstock, D.M.; Vaitkevicius, P.V.; Supiano, M.A. Arterial stiffness is related to insulin resistance in nondiabetic hypertensive older adults. J. Clin. Endocrinol. Metab. 2005, 90, 2823–2827. [Google Scholar] [CrossRef]
- Matsushita, H.; Chang, E.; Glassford, A.J.; Cooke, J.P.; Chiu, C.P.; Tsao, P.S. eNOS activity is reduced in senescent human endothelial cells: Preservation by hTERT immortalization. Circ. Res. 2001, 89, 793–798. [Google Scholar] [CrossRef]
- Sato, I.; Morita, I.; Kaji, K.; Ikeda, M.; Nagao, M.; Murota, S. Reduction of nitric oxide producing activity associated with in vitro aging in cultured human umbilical vein endothelial cell. Biochem. Biophys. Res. Commun. 1993, 195, 1070–1076. [Google Scholar] [CrossRef] [PubMed]
- Yoon, H.J.; Cho, S.W.; Ahn, B.W.; Yang, S.Y. Alterations in the activity and expression of endothelial NO synthase in aged human endothelial cells. Mech. Ageing Dev. 2010, 131, 119–123. [Google Scholar] [CrossRef]
- Haendeler, J.; Hoffmann, J.; Diehl, J.F.; Vasa, M.; Spyridopoulos, I.; Zeiher, A.M.; Dimmeler, S. Antioxidants inhibit nuclear export of telomerase reverse transcriptase and delay replicative senescence of endothelial cells. Circ. Res. 2004, 94, 768–775. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xin, M.G.; Zhang, J.; Block, E.R.; Patel, J.M. Senescence-enhanced oxidative stress is associated with deficiency of mitochondrial cytochrome c oxidase in vascular endothelial cells. Mech. Ageing Dev. 2003, 124, 911–919. [Google Scholar] [CrossRef]
- Donato, A.J.; Gano, L.B.; Eskurza, I.; Silver, A.E.; Gates, P.E.; Jablonski, K.; Seals, D.R. Vascular endothelial dysfunction with aging: Endothelin-1 and endothelial nitric oxide synthase. Am. J. Physiol. Heart Circ. Physiol. 2009, 297, H425–H432. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhayadia, R.; Schmidt, B.M.; Melk, A.; Hömme, M. Senescence-Induced Oxidative Stress Causes Endothelial Dysfunction. J. Gerontology. Ser. A Biol. Sci. Med. Sci. 2016, 71, 161–169. [Google Scholar] [CrossRef]
- Werner, C.; Fürster, T.; Widmann, T.; Pöss, J.; Roggia, C.; Hanhoun, M.; Scharhag, J.; Büchner, N.; Meyer, T.; Kindermann, W.; et al. Physical exercise prevents cellular senescence in circulating leukocytes and in the vessel wall. Circulation 2009, 120, 2438–2447. [Google Scholar] [CrossRef]
- Sato, Y.; Nagasaki, M.; Nakai, N.; Fushimi, T. Physical exercise improves glucose metabolism in lifestyle-related diseases. Exp. Biol. Med. 2003, 228, 1208–1212. [Google Scholar] [CrossRef]
- Sui, X.; LaMonte, M.J.; Laditka, J.N.; Hardin, J.W.; Chase, N.; Hooker, S.P.; Blair, S.N. Cardiorespiratory fitness and adiposity as mortality predictors in older adults. J. Am. Med. Assoc. 2007, 298, 2507–2516. [Google Scholar] [CrossRef] [Green Version]
- Powell, K.E.; Thompson, P.D.; Caspersen, C.J.; Kendrick, J.S. Physical activity and the incidence of coronary heart disease. Annu. Rev. Public Health 1987, 8, 253–287. [Google Scholar] [CrossRef]
- Blair, S.N.; Kohl, H.W.; Paffenbarger, R.S.; Clark, D.G.; Cooper, K.H.; Gibbons, L.W. Physical fitness and all-cause mortality: A prospective study of healthy men and women. J. Am. Med. Assoc. 1989, 262, 2395–2401. [Google Scholar] [CrossRef]
- Vaitkevicius, P.V.; Fleg, J.L.; Engel, J.H.; O’Connor, F.C.; Wright, J.G.; Lakatta, L.E.; Yin, F.C.; Lakatta, E.G. Effects of age and aerobic capacity on arterial stiffness in healthy adults. Circulation 1993, 88, 1456–1462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tanaka, H.; DeSouza, C.A.; Seals, D.R. Absence of age-related increase in central arterial stiffness in physically active women. Arterioscler. Thromb. Vasc. Biol. 1998, 18, 127–132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tanaka, H.; Dinenno, F.A.; Monahan, K.D.; Clevenger, C.M.; DeSouza, C.A.; Seals, D.R. Aging, habitual exercise, and dynamic arterial compliance. Circulation 2000, 102, 1270–1275. [Google Scholar] [CrossRef] [Green Version]
- Cameron, J.D.; Dart, A.M. Exercise training increases total systemic arterial compliance in humans. Am. J. Physiol.-Heart Circ. Physiol. 1994, 266, H693–H701. [Google Scholar] [CrossRef]
- Gando, Y.; Yamamoto, K.; Murakami, H.; Ohmori, Y.; Kawakami, R.; Sanada, K.; Higuchi, M.; Tabata, I.; Miyachi, M. Longer time spent in light physical activity is associated with reduced arterial stiffness in older adults. Hypertension 2010, 56, 540–546. [Google Scholar] [CrossRef] [Green Version]
- Seals, D.R.; DeSouza, C.A.; Donato, A.J.; Tanaka, H. Habitual exercise and arterial aging. J. Appl. Physiol. 2008, 105, 1323–1332. [Google Scholar] [CrossRef] [Green Version]
- Hasegawa, N.; Fujie, S.; Horii, N.; Miyamoto-Mikami, E.; Tsuji, K.; Uchida, M.; Hamaoka, T.; Tabata, I.; Iemitsu, M. Effects of Different Exercise Modes on Arterial Stiffness and Nitric Oxide Synthesis. Med. Sci. Sport. Exerc. 2018, 50, 1177–1185. [Google Scholar] [CrossRef]
- Yu, S.; Yarnell, J.W.; Sweetnam, P.M.; Murray, L. What level of physical activity protects against premature cardiovascular death? The Caerphilly study. Heart 2003, 89, 502–506. [Google Scholar] [CrossRef] [Green Version]
- Fransson, E.I.; Alfredsson, L.S.; de Faire, U.H.; Knutsson, A.; Westerholm, P.J. Leisure time, occupational and household physical activity, and risk factors for cardiovascular disease in working men and women: The WOLF study. Scand. J. Public Health 2003, 31, 324–333. [Google Scholar] [CrossRef]
- Pedralli, M.L.; Marschner, R.A.; Kollet, D.P.; Neto, S.G.; Eibel, B.; Tanaka, H.; Lehnen, A.M. Different exercise training modalities produce similar endothelial function improvements in individuals with prehypertension or hypertension: A randomized clinical trial Exercise, endothelium and blood pressure. Sci. Rep. 2020, 10, 7628. [Google Scholar] [CrossRef]
- Guimaraes, G.V.; Ciolac, E.G.; Carvalho, V.O.; D’Avila, V.M.; Bortolotto, L.A.; Bocchi, E.A. Effects of continuous vs. interval exercise training on blood pressure and arterial stiffness in treated hypertension. Hypertens. Res. 2010, 33, 627–632. [Google Scholar] [CrossRef] [PubMed]
- Asamoah, S.; Siegler, J.; Chang, D.; Scholey, A.; Yeung, A.; Cheema, B.S. Effect of Aerobic Training on Cognitive Function and Arterial Stiffness in Sedentary Young Adults: A Pilot Randomized Controlled Trial. Physiol. J. 2013, 2013, 847325. [Google Scholar] [CrossRef] [Green Version]
- Eskurza, I.; Monahan, K.D.; Robinson, J.A.; Seals, D.R. Effect of acute and chronic ascorbic acid on flow-mediated dilatation with sedentary and physically active human ageing. J. Physiol. 2004, 556, 315–324. [Google Scholar] [CrossRef] [PubMed]
- Rossman, M.J.; Kaplon, R.E.; Hill, S.D.; McNamara, M.N.; Santos-Parker, J.R.; Pierce, G.L.; Seals, D.R.; Donato, A.J. Endothelial cell senescence with aging in healthy humans: Prevention by habitual exercise and relation to vascular endothelial function. Am. J. Physiol.-Heart Circ. Physiol. 2017, 313, H890–H895. [Google Scholar] [CrossRef] [PubMed]
- Schafer, M.J.; White, T.A.; Evans, G.; Tonne, J.M.; Verzosa, G.C.; Stout, M.B.; Mazula, D.L.; Palmer, A.K.; Baker, D.J.; Jensen, M.D.; et al. Exercise Prevents Diet-Induced Cellular Senescence in Adipose Tissue. Diabetes 2016, 65, 1606–1615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thijssen, D.H.; Maiorana, A.J.; O’Driscoll, G.; Cable, N.T.; Hopman, M.T.; Green, D.J. Impact of inactivity and exercise on the vasculature in humans. Eur. J. Appl. Physiol. 2010, 108, 845–875. [Google Scholar] [CrossRef] [Green Version]
- Lee, D.C.; Pate, R.R.; Lavie, C.J.; Sui, X.; Church, T.S.; Blair, S.N. Leisure-time running reduces all-cause and cardiovascular mortality risk. J. Am. Coll. Cardiol. 2014, 64, 472–481. [Google Scholar] [CrossRef] [Green Version]
- Dawson, E.A.; Green, D.J.; Cable, N.T.; Thijssen, D.H. Effects of acute exercise on flow-mediated dilatation in healthy humans. J. Appl. Physiol. 2013, 115, 1589–1598. [Google Scholar] [CrossRef]
- Goto, C.; Higashi, Y.; Kimura, M.; Noma, K.; Hara, K.; Nakagawa, K.; Kawamura, M.; Chayama, K.; Yoshizumi, M.; Nara, I. Effect of different intensities of exercise on endothelium-dependent vasodilation in humans: Role of endothelium-dependent nitric oxide and oxidative stress. Circulation 2003, 108, 530–535. [Google Scholar] [CrossRef]
- Ashor, A.W.; Lara, J.; Siervo, M.; Celis-Morales, C.; Mathers, J.C. Effects of exercise modalities on arterial stiffness and wave reflection: A systematic review and meta-analysis of randomized controlled trials. PLoS ONE 2014, 9, e110034. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arce Esquivel, A.A.; Welsch, M.A. High and low volume resistance training and vascular function. Int. J. Sport. Med. 2007, 28, 217–221. [Google Scholar] [CrossRef] [PubMed]
- Okamoto, T.; Masuhara, M.; Ikuta, K. Effect of low-intensity resistance training on arterial function. Eur. J. Appl. Physiol. 2011, 111, 743–748. [Google Scholar] [CrossRef] [PubMed]
- Shiroma, E.J.; Cook, N.R.; Manson, J.E.; Moorthy, M.V.; Buring, J.E.; Rimm, E.B.; Lee, I.M. Strength Training and the Risk of Type 2 Diabetes and Cardiovascular Disease. Med. Sci. Sport. Exerc. 2017, 49, 40–46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chomistek, A.K.; Cook, N.R.; Flint, A.J.; Rimm, E.B. Vigorous-intensity leisure-time physical activity and risk of major chronic disease in men. Med. Sci. Sport. Exerc. 2012, 44, 1898–1905. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tanasescu, M.; Leitzmann, M.F.; Rimm, E.B.; Willett, W.C.; Stampfer, M.J.; Hu, F.B. Exercise type and intensity in relation to coronary heart disease in men. JAMA 2002, 288, 1994–2000. [Google Scholar] [CrossRef]
- Yoon, E.S.; Jung, S.J.; Cheun, S.K.; Oh, Y.S.; Kim, S.H.; Jae, S.Y. Effects of Acute Resistance Exercise on Arterial Stiffness in Young Men. Korean Circ. J. 2010, 40, 16–22. [Google Scholar] [CrossRef] [Green Version]
- Figueroa, A.; Vicil, F.; Sanchez-Gonzalez, M.A. Acute exercise with whole-body vibration decreases wave reflection and leg arterial stiffness. Am. J. Cardiovasc. Dis. 2011, 1, 60–67. [Google Scholar]
- Failla, M.; Grappiolo, A.; Emanuelli, G.; Vitale, G.; Fraschini, N.; Bigoni, M.; Grieco, N.; Denti, M.; Giannattasio, C.; Mancia, G. Sympathetic tone restrains arterial distensibility of healthy and atherosclerotic subjects. J. Hypertens. 1999, 17, 1117–1123. [Google Scholar] [CrossRef]
- Heffernan, K.S.; Rossow, L.; Jae, S.Y.; Shokunbi, H.G.; Gibson, E.M.; Fernhall, B. Effect of single-leg resistance exercise on regional arterial stiffness. Eur. J. Appl. Physiol. 2006, 98, 185–190. [Google Scholar] [CrossRef]
- Barnes, J.N.; Trombold, J.R.; Dhindsa, M.; Lin, H.-F.; Tanaka, H. Arterial stiffening following eccentric exercise-induced muscle damage. J. Appl. Physiol. 2010, 109, 1102–1108. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.-F.; Chou, C.-C.; Cheng, H.-M.; Tanaka, H. Delayed onset vascular stiffening induced by eccentric resistance exercise and downhill running. Clin. J. Sport Med. 2017, 27, 369–374. [Google Scholar] [CrossRef] [PubMed]
- Howell, J.; Chleboun, G.; Conatser, R. Muscle stiffness, strength loss, swelling and soreness following exercise-induced injury in humans. J. Physiol. 1993, 464, 183–196. [Google Scholar] [CrossRef] [PubMed]
- DeVan, A.E.; Anton, M.M.; Cook, J.N.; Neidre, D.B.; Cortez-Cooper, M.Y.; Tanaka, H. Acute effects of resistance exercise on arterial compliance. J. Appl. Physiol. 2005, 98, 2287–2291. [Google Scholar] [CrossRef] [Green Version]
- Lefferts, W.K.; Augustine, J.A.; Heffernan, K.S. Effect of acute resistance exercise on carotid artery stiffness and cerebral blood flow pulsatility. Front. Physiol. 2014, 5, 101. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.L.; Yeh, D.P.; Lee, J.P.; Chen, C.Y.; Huang, C.Y.; Lee, S.D.; Chen, C.C.; Kuo, T.B.; Kao, C.L.; Kuo, C.H. Parasympathetic nervous activity mirrors recovery status in weightlifting performance after training. J. Strength Cond. Res. 2011, 25, 1546–1552. [Google Scholar] [CrossRef] [Green Version]
- Escamilla, R.F.; Fleisig, G.S.; Zheng, N.; Lander, J.E.; Barrentine, S.W.; Andrews, J.R.; Bergemann, B.W.; Moorman, C.T., 3rd. Effects of technique variations on knee biomechanics during the squat and leg press. Med. Sci. Sport. Exerc. 2001, 33, 1552–1566. [Google Scholar] [CrossRef]
- Santana, J.C.; Vera-Garcia, F.J.; McGill, S.M. A kinetic and electromyographic comparison of the standing cable press and bench press. J. Strength Cond. Res. 2007, 21, 1271–1277. [Google Scholar] [CrossRef]
- Seals, D.R. Influence of active muscle size on sympathetic nerve discharge during isometric contractions in humans. J. Appl. Physiol. 1993, 75, 1426–1431. [Google Scholar] [CrossRef]
- Leone, A.M.; Valgimigli, M.; Giannico, M.B.; Zaccone, V.; Perfetti, M.; D’Amario, D.; Rebuzzi, A.G.; Crea, F. From bone marrow to the arterial wall: The ongoing tale of endothelial progenitor cells. Eur. Heart J. 2009, 30, 890–899. [Google Scholar] [CrossRef] [Green Version]
- Liao, Y.; Chen, L.; Zeng, T.; Li, Y.; Yu, F.; Hu, L.; Yue, L. Number of circulating endothelial progenitor cells as a marker of vascular endothelial function for type 2 diabetes. Vasc. Med. 2010, 15, 279–285. [Google Scholar] [CrossRef] [PubMed]
- Yoshizawa, M.; Maeda, S.; Miyaki, A.; Misono, M.; Saito, Y.; Tanabe, K.; Kuno, S.; Ajisaka, R. Effect of 12 weeks of moderate-intensity resistance training on arterial stiffness: A randomised controlled trial in women aged 32–59 years. Br. J. Sport. Med. 2009, 43, 615–618. [Google Scholar] [CrossRef] [PubMed]
- Turri-Silva, N.; Vale-Lira, A.; Verboven, K.; Quaglioti Durigan, J.L.; Hansen, D.; Cipriano, G., Jr. High-intensity interval training versus progressive high-intensity circuit resistance training on endothelial function and cardiorespiratory fitness in heart failure: A preliminary randomized controlled trial. PLoS ONE 2021, 16, e0257607. [Google Scholar] [CrossRef]
- Urbich, C.; Dimmeler, S. Endothelial progenitor cells: Characterization and role in vascular biology. Circ. Res. 2004, 95, 343–353. [Google Scholar] [CrossRef] [Green Version]
- Ribeiro, F.; Ribeiro, I.P.; Gonçalves, A.C.; Alves, A.J.; Melo, E.; Fernandes, R.; Costa, R.; Sarmento-Ribeiro, A.B.; Duarte, J.A.; Carreira, I.M.; et al. Effects of resistance exercise on endothelial progenitor cell mobilization in women. Sci. Rep. 2017, 7, 17880. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernández-Lázaro, D.; Díaz, J.; Caballero, A.; Córdova, A. The training of strength-resistance in hypoxia: Effect on muscle hypertrophy. Biomed. Rev. Del. Inst. Nac. Salud 2019, 39, 212–220. [Google Scholar] [CrossRef] [Green Version]
- Centner, C.; Wiegel, P.; Gollhofer, A.; König, D. Effects of Blood Flow Restriction Training on Muscular Strength and Hypertrophy in Older Individuals: A Systematic Review and Meta-Analysis. Sport. Med. 2019, 49, 95–108. [Google Scholar] [CrossRef] [Green Version]
- Patterson, S.D.; Hughes, L.; Warmington, S.; Burr, J.; Scott, B.R.; Owens, J.; Abe, T.; Nielsen, J.L.; Libardi, C.A.; Laurentino, G.; et al. Blood Flow Restriction Exercise: Considerations of Methodology, Application, and Safety. Front. Physiol. 2019, 10, 533. [Google Scholar] [CrossRef]
- Pope, Z.K.; Willardson, J.M.; Schoenfeld, B.J. Exercise and blood flow restriction. J. Strength Cond. Res. 2013, 27, 2914–2926. [Google Scholar] [CrossRef] [Green Version]
- Wilk, M.; Zajac, A.; Tufano, J.J. The Influence of Movement Tempo During Resistance Training on Muscular Strength and Hypertrophy Responses: A Review. Sport. Med. 2021, 51, 1629–1650. [Google Scholar] [CrossRef]
- Okamoto, T.; Min, S.; Sakamaki-Sunaga, M. Arterial compliance and stiffness following low-intensity resistance exercise. Eur. J. Appl. Physiol. 2014, 114, 235–241. [Google Scholar] [CrossRef] [PubMed]
- Hortmann, K.; Boutouyrie, P.; Locatelli, J.C.; de Oliveira, G.H.; Simoes, C.F.; de Souza Mendes, V.H.; Reck, H.B.; Okawa, R.T.P.; Lopes, W.A. Acute effects of high-intensity interval training and moderate-intensity continuous training on arterial stiffness in young obese women. Eur. J. Prev. Cardiol. 2021, 28, e7–e10. [Google Scholar] [CrossRef] [PubMed]
- Francois, M.E.; Pistawka, K.J.; Halperin, F.A.; Little, J.P. Cardiovascular benefits of combined interval training and post-exercise nutrition in type 2 diabetes. J. Diabetes Its Complicat. 2018, 32, 226–233. [Google Scholar] [CrossRef] [PubMed]
- Aghaei Bahmanbeglou, N.; Ebrahim, K.; Maleki, M.; Nikpajouh, A.; Ahmadizad, S. Short-Duration High-Intensity Interval Exercise Training Is More Effective Than Long Duration for Blood Pressure and Arterial Stiffness But Not for Inflammatory Markers and Lipid Profiles in Patients With Stage 1 Hypertension. J. Cardiopulm. Rehabil. Prev. 2019, 39, 50–55. [Google Scholar] [CrossRef] [PubMed]
- Endes, S.; Schaffner, E.; Caviezel, S.; Dratva, J.; Autenrieth, C.S.; Wanner, M.; Martin, B.; Stolz, D.; Pons, M.; Turk, A.; et al. Physical activity is associated with lower arterial stiffness in older adults: Results of the SAPALDIA 3 Cohort Study. Eur. J. Epidemiol. 2016, 31, 275–285. [Google Scholar] [CrossRef] [PubMed]
- Ryan, B.J.; Schleh, M.W.; Ahn, C.; Ludzki, A.C.; Gillen, J.B.; Varshney, P.; Van Pelt, D.W.; Pitchford, L.M.; Chenevert, T.L.; Gioscia-Ryan, R.A.; et al. Moderate-Intensity Exercise and High-Intensity Interval Training Affect Insulin Sensitivity Similarly in Obese Adults. J. Clin. Endocrinol. Metab. 2020, 105, e2941–e2959. [Google Scholar] [CrossRef]
- Collier, S.R.; Kanaley, J.A.; Carhart, R., Jr.; Frechette, V.; Tobin, M.M.; Hall, A.K.; Luckenbaugh, A.N.; Fernhall, B. Effect of 4 weeks of aerobic or resistance exercise training on arterial stiffness, blood flow and blood pressure in pre- and stage-1 hypertensives. J. Hum. Hypertens. 2008, 22, 678–686. [Google Scholar] [CrossRef]
- Rakobowchuk, M.; Tanguay, S.; Burgomaster, K.A.; Howarth, K.R.; Gibala, M.J.; MacDonald, M.J. Sprint interval and traditional endurance training induce similar improvements in peripheral arterial stiffness and flow-mediated dilation in healthy humans. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2008, 295, R236–R242. [Google Scholar] [CrossRef]
- Miyachi, M. Effects of resistance training on arterial stiffness: A meta-analysis. Br. J. Sport. Med. 2013, 47, 393–396. [Google Scholar] [CrossRef]
- Currie, K.D.; Dubberley, J.B.; McKelvie, R.S.; MacDonald, M.J. Low-volume, high-intensity interval training in patients with CAD. Med. Sci. Sport. Exerc. 2013, 45, 1436–1442. [Google Scholar] [CrossRef] [Green Version]
- Schjerve, I.E.; Tyldum, G.A.; Tjønna, A.E.; Stølen, T.; Loennechen, J.P.; Hansen, H.E.; Haram, P.M.; Heinrich, G.; Bye, A.; Najjar, S.M.; et al. Both aerobic endurance and strength training programmes improve cardiovascular health in obese adults. Clin. Sci. 2008, 115, 283–293. [Google Scholar] [CrossRef] [PubMed]
- Ramos, J.S.; Dalleck, L.C.; Tjonna, A.E.; Beetham, K.S.; Coombes, J.S. The impact of high-intensity interval training versus moderate-intensity continuous training on vascular function: A systematic review and meta-analysis. Sport. Med. 2015, 45, 679–692. [Google Scholar] [CrossRef] [PubMed]
- Ramírez-Vélez, R.; Hernández-Quiñones, P.A.; Tordecilla-Sanders, A.; Álvarez, C.; Ramírez-Campillo, R.; Izquierdo, M.; Correa-Bautista, J.E.; Garcia-Hermoso, A.; Garcia, R.G. Effectiveness of HIIT compared to moderate continuous training in improving vascular parameters in inactive adults. Lipids Health Dis. 2019, 18, 42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Da Silva, M.R.; Waclawovsky, G.; Perin, L.; Camboim, I.; Eibel, B.; Lehnen, A.M. Effects of high-intensity interval training on endothelial function, lipid profile, body composition and physical fitness in normal-weight and overweight-obese adolescents: A clinical trial. Physiol. Behav. 2020, 213, 112728. [Google Scholar] [CrossRef]
- Tabata, I.; Nishimura, K.; Kouzaki, M.; Hirai, Y.; Ogita, F.; Miyachi, M.; Yamamoto, K. Effects of moderate-intensity endurance and high-intensity intermittent training on anaerobic capacity and VO2max. Med. Sci. Sport. Exerc. 1996, 28, 1327–1330. [Google Scholar] [CrossRef] [Green Version]
- Hanssen, H.; Nussbaumer, M.; Moor, C.; Cordes, M.; Schindler, C.; Schmidt-Trucksass, A. Acute effects of interval versus continuous endurance training on pulse wave reflection in healthy young men. Atherosclerosis 2015, 238, 399–406. [Google Scholar] [CrossRef]
- Harris, R.A.; Padilla, J.; Hanlon, K.P.; Rink, L.D.; Wallace, J.P. The flow-mediated dilation response to acute exercise in overweight active and inactive men. Obesity 2008, 16, 578–584. [Google Scholar] [CrossRef]
- Johnson, B.D.; Padilla, J.; Wallace, J.P. The exercise dose affects oxidative stress and brachial artery flow-mediated dilation in trained men. Eur. J. Appl. Physiol. 2012, 112, 33–42. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kresnajati, S.; Lin, Y.-Y.; Mündel, T.; Bernard, J.R.; Lin, H.-F.; Liao, Y.-H. Changes in Arterial Stiffness in Response to Various Types of Exercise Modalities: A Narrative Review on Physiological and Endothelial Senescence Perspectives. Cells 2022, 11, 3544. https://doi.org/10.3390/cells11223544
Kresnajati S, Lin Y-Y, Mündel T, Bernard JR, Lin H-F, Liao Y-H. Changes in Arterial Stiffness in Response to Various Types of Exercise Modalities: A Narrative Review on Physiological and Endothelial Senescence Perspectives. Cells. 2022; 11(22):3544. https://doi.org/10.3390/cells11223544
Chicago/Turabian StyleKresnajati, Sandhya, Yi-Yuan Lin, Toby Mündel, Jeffrey R. Bernard, Hsin-Fu Lin, and Yi-Hung Liao. 2022. "Changes in Arterial Stiffness in Response to Various Types of Exercise Modalities: A Narrative Review on Physiological and Endothelial Senescence Perspectives" Cells 11, no. 22: 3544. https://doi.org/10.3390/cells11223544