Multi- and Transgenerational Effects of Environmental Toxicants on Mammalian Reproduction
Abstract
1. Introduction
2. Environmental Toxicants Exposure and Reproductive Health
3. ETs Exposure Effects Transmitted across Generations
3.1. Phytoestrogens and Mycotoxins
Species | Sex | Exposure | Dose | Effects across Generations | Reference |
---|---|---|---|---|---|
Mouse | Male | Genistein Two weeks before delivery. After weaning up to PND 35. | 40 mg/kg BW */day 800 mg/kg BW/day | F1: increased serum testosterone levels (40 mg/kg); increased testis weight (40 mg/kg); decreased testis weight (800 mg/kg); higher diameter of seminiferous tubules (40 mg/kg); increased heights of seminiferous epithelium (40 mg/kg day); smaller diameter of seminiferous tubules (800 mg/kg); increased ESR2, CYP19A1 (all doses), SOX9 and BRD7 (40 mg/kg) mRNA expression in the testis; decreased SOX9 and BRD7 mRNA expression (800 mg/kg) in the testis; increased number of apoptotic germ cells (800 mg/kg); abnormal sperm (800 mg/kg) | [88] |
Rat | Male | Genistein from E1 to PND 21 | 1 mg/kg BW/day | F1: increased expression of Daz in the testis F2: increased expression of Stra8, Spo11 and Sycp3; decreased expression of Fas in the testis; decreased expression of Star, Cyp11a1, Cyp17a1 in the testis | [89] |
Rat | Female | Zearalenone From E0 to 21 | 5, 10, and 20 mg/kg | F1: increase of follicle-stimulating hormone concentration (10 and 20 mg/kg); estradiol decrease (10 and 20 mg/kg); follicular atresia (20 mg/kg); thin uterine layer (20 mg/kg); reduced expression of estrogen receptor-alpha (10 and 20 mg/kg) in the placenta; reduced expression of gonadotropin-releasing hormone receptor (10 and 20 mg/kg) in the placenta | [90] |
Mouse | Male | Zearalenone From E12.5 to E18.5 | 20 µg/kg BW/day 40 µg/kg BW/day | F1: decreased sperm motility; decreased sperm concentration (all doses); reduced testis weight (all doses); percentage alteration in the of cells at different stages of meiosis (increased percentage of leptotene cells; decreased percentage of diplotene cells; all doses); reduction of 5hmC (all doses) in the testis; increased percentage of H3K27me3-positive spermatogonial cells (all doses); increased expression of H3K9 in the testis; increased expression of G9a in the testis; reduced percentage of ERα-positive Leydig cells (all doses) | [91] |
Mouse | Male | Zearalenone From E1 a E18 | 2.5 and 5.0 mg/kg BW/day | F1: abnormal vacuole structures; testes loose connections (all doses); decreased semen quality (all doses); decreased sperm count (all doses); decreased testosterone levels (all doses) | [92] |
3.2. Bisphenol A
Species | Sex | Exposure | Dose | Effects across Generations | Reference |
---|---|---|---|---|---|
Mouse | Male | From E7 to E14 | 50 μg, 5 mg, and 50 mg/kg BW */day | F1: reduced testis weight (50 mg/kg at PND + 30; 5 and 50 mg/kg at PND 60); alterations in seminiferous epithelial stages (all doses at both PND 30 and PND 60) (increased lumen area of stage VII; decreased lumen area of stage VIII); apoptosis of germ cells (5 and 50 mg/kg); F2: drop of stemness properties of spermatogonia (5 mg/kg) | [94] |
Mouse | Male | From E7 to E14 | 50 μg, 5 mg, and 50 mg/kg BW/day | F1: decreased frequency of stage VIII testicular seminiferous epithelial cells (5 and 50 mg/kg); increased number of abnormal seminiferous tubules (5 and 50 mg/kg); decreased sperm count (5 and 50 mg/kg); decreased sperm motility (50 mg/kg); altered DNA methylation in spermatozoa (5 and 50 mg/kg); proteomic expression changes in spermatozoa (50 mg/kg) F2: decreased frequency of stage VIII testicular seminiferous epithelial cells (50 mg/kg); increased number of abnormal seminiferous tubules (50 mg/kg); disruption of testicular germ cell organization (50 mg/kg); disruption of spermatogenesis (5 and 50 mg/kg); decreased sperm count (50 mg/kg); decreased sperm motility (50 mg/kg); altered DNA methylation in spermatozoa (50 mg/kg); proteomic expression changes in spermatozoa (50 mg/kg) F3: altered DNA methylation in spermatozoa (50 mg/kg) | [95] |
Rat | Male | From E8 to 14 | Mixture: BPA 50 mg/kg DEHP 750 mg/kg DBP 66 mg/kg BW/day | F3: pubertal abnormalities; testis dysfunction; apoptosis of spermatogenic cell; differential DNA methylated regions in spermatozoa | [97] |
Rat | Male | Continuous during the whole fetal life | 0.5 mg/kg BW/day | F0 and F1: changes in lipid metabolism in the testis; altered protein secondary structures in the testis; decreased testosterone production F2: decline of testosterone level; structural and functional alterations of Leydig cells | [98] |
Rat | Female | From E8 to 14 | 50 mg/kg BW/day | F3: pubertal abnormalities; primary ovarian insufficiency; polycystic ovaries | [97] |
Mouse | Female | From E11 to birth | 0.5, 20, 50 µg/kg BW/day | F1: inhibited ovarian germ cell nest breakdown (all doses); decreased fertility (all doses); reduced litter size (50 μg/kg); reduction of primordial follicles number and increase of primary follicles (0.5 and 50 µg/kg); increase of preantral follicles (high doses); altered estradiol levels (20 µg/kg); increased expression of steroidogenic enzymes and steroidogenesis-related genes (Hsd17b1 and Cyp14a1; 50 µg/kg) in the ovary F2: preterm delivery; decrease of primary follicle (0.5 µg/kg); increase of preantral follicle (0.5 and 20 µg/kg); decrease of primordial follicles (20 and 50 µg/kg); increased expression of sex steroid hormone receptors (Ers1 and Ar; 50 μg/kg); increased expression of steroidogenic enzymes and steroidogenesis-related genes (Hsd17b1 and Fshr at 0.5 µg/kg; Fshr, Cyp17a1, Hsd17b1, and Star at 20 µg/kg) in the ovary F3: delayed puberty; altered estrous cyclicity (50 μg/kg); decreased fertility (0.5 μg/kg); decreased expression of sex steroid hormone receptors (Ers1; 0.5 μg/kg); increased expression of steroidogenic enzymes and steroidogenesis-related genes (Fshr and Cyp17a1 at 50 µg/kg) in the ovary | [52,99,100] |
3.3. Phthalates
Species | Sex | Exposure | Dose | Effects across Generations | Reference |
---|---|---|---|---|---|
Mouse | Male | DEHP from E7 to E14 | 500 mg/kg | F1–F4: disruption of testicular germ cell association; reduced sperm motility F3: alteration of spermatogonial stem cell function | [103] |
Mouse | Male | DEHP from E11 until birth | 20, 200 μg/kg/day | F3: decreased fertility (20 µg/kg); reduced testicular steroidogenic capacity (20 and 200 μg/kg); impaired spermatogenesis (20 and 200 μg/kg); decreased sperm concentration (20 and 200 μg/kg); decreased sperm motility (20 and 200 μg/kg); alteration of BTB integrity (20 and 200 μg/kg); alteration of Y genes expression (20 and 200 μg/kg) in the testis | [104] |
Rat | Male | DBP from E8 to E14 | 500 mg/kg | F1–F3: spermatogenesis failure; altered reproduction; decrease sperm count; reduced Sertoli cells number; metabolic changes in the testis (increase level of betaine; drop of betaine homocysteine S-methyltransferase); DNA hypomethylation (in TM-4 cells, an immortalized cell line derived from mouse testis). | [105] |
Mouse | Female | DEHP Adult (12 weeks old) | 80 mg/kg/day | F0–F2: reduced expression of Esr1 in the ovary | [110] |
Rat | Female | DEHP from PN day 1 to 21 | 1, 10, and 100 mg/kg/BW * | F0: decrease of estradiol (all doses), testosterone and progesterone levels (10 and 100 mg/kg) F1: altered mRNA expression of follicle-stimulating (10 and 100 mg/kg), androgen (100 mg/kg), estrogen (100 mg/kg), progesterone (all doses) and peroxisome proliferator-activated (all doses) receptors, 3β hydroxysteroid dehydrogenase (all doses), aromatase and steroidogenic acute regulatory proteins (all doses) in the ovary; accelerated rate of follicle recruitment (10 and 100 mg/kg) | [111] |
Mouse | Female | DEHP from E11 until birth | 20, 200 µg/kg/day 500, 750 mg/kg/day | F1: estrous cyclicity impairment (750 mg/kg); increased ovarian cysts number (750 mg/kg); total follicle number decrease (750 mg/kg); increased estradiol levels (500 and 750 mg/kg); decreased testosterone (500 mg/kg), inhibin B (750 mg/kg) and FSH levels (500 mg/kg); increased LH levels (20 µg/kg) F2: altered follicle numbers (200 µg/kg and 500 mg/kg); decreased testosterone (20 µg/kg); decreased progesterone (200 µg/kg) F3: estrous cyclicity impairment (20 and 200 µg/kg and 500 and 750 mg/kg); decreased follicle numbers (200 µg/kg/d and 500 mg/kg); increased estradiol levels (20 µg/kg); decreased testosterone (20 µg/kg and 500 mg/kg); decreased inhibin B levels (500 mg/kg); increased FSH (500 mg/kg) and LH levels (500 mg/kg) | [107] |
Mouse | Female | DEHP from E10.5 until birth | 20 and 200 μg/kg/day 500, and 750 mg/kg/day | F1: accelerated puberty onset (200 µg/kg); disrupted estrous cyclicity (200 µg and 500 mg/kg); altered folliculogenesis (20 and 200 µg/kg); increased Dnmt expression in the ovary (750 mg/kg); increased presence of 5-mC in the ovary (20 µg/kg). F2: accelerated puberty onset (500 mg/kg); disrupted estrous cyclicity (20 and 200 µg/kg); increased 17β-estradiol levels (20 μg/kg); decreased expression of steroidogenic enzymes in the ovary (20 μg/kg); dysregulation of PI3K factors in the ovary (20 and 200 µg/kg; 750 mg/kg); decreased Tet expression in the ovary (all doses). F3: accelerated puberty onset (20, 200 µg, and 500 mg/kg); disrupted estrous cyclicity (20 µg/kg/day); decreased expression of steroidogenic enzymes in the ovary; decreased Dnmt in the ovary (all doses) and Tet expression in the ovary (200 μg/kg; 500 and 750 mg/kg) and 5-mC levels in the ovary (500 and 750 mg/kg) | [85,112] |
Mouse | Female | From E10 to birth | Mixture of 20 and 200 μg/kg/day—200 and 500 mg/kg/day [DEP (35.22%), DEHP (21.03%), DBP (14.91%), DiBP (8.61%), DiNP (15.10 %), and BzBP (5.13 %)] | F1: decreased FSH (500 mg/kg), estradiol (20 µg/kg; 200 and 500 mg/kg) testosterone (200 µg/kg; 200 and 500 mg/kg levels) and progesterone (500 mg/kg) levels; decreased steroidogenesis (20 and 200 µg/kg; 500 mg/kg); altered transition among follicle types (20 μg/kg and 200 mg/kg); higher incidence of atresia (500 mg/kg) F2 and F3: increased number of cystic ovaries (all doses); breeding, pregnancy and delivery complications (20 µg/kg and 500 mg/kg) | [106,107,108] |
Mouse | Female | DEHP from E0.5 to PND + 21 | 0.05, 5 mg/kg/day | F1-F3: accelerated follicular recruitment (all doses); reduction of primordial follicular reserve (all doses); increased pre-antral follicles number (all doses); diminished oocyte quality (0.05 mg/kg); diminished embryonic developmental competence (0.05 mg/kg); altered expression profile of ovarian and pre-implantation embryonic genes, observed in the ovary and in blastocysts, respectively (all doses) | [113] |
3.4. Pesticide
Species | Sex | Exposure | Dose | Effects across Generations | Reference |
---|---|---|---|---|---|
Rat | Male | Atrazine from E8 to E14 | 25 mg/kg BW/day | F2 and F3: azoospermia; atretic seminiferous tubules; vacuoles in the basal region of seminiferous tubules; sloughed germ cells; lack of seminiferous tubule lumen; high frequency of spermatogonia apoptosis; mammary tumors; early onset puberty; epimutations in spermatozoa F1–F3: epimutations in spermatozoa | [114] |
Rat | Male | Vinclozolin from E8 to E14 | 100 mg/kg/ day | F1: lowest number of DMRs in spermatozoa; altered quantity of lncRNA in spermatozoa F2: increased number of DMRs in spermatozoa; altered quantity of lncRNA in spermatozoa F3: the highest number of DMRs in spermatozoa; altered quantity of lncRNA in spermatozoa; increased number of differential histone retention sites (DHRs) in spermatozoa | [121] |
Mouse/Rat | Male | Vinclozolin from E8 to E14 | 100 mg/kg/ day (rat) 50 mg/kg/day (mouse) 100 mg/kg BW/day (rat; [115]) 1 mg/kg/day (rat; [120]) | F1–F3: increased spermatogenic cell apoptosis; decreased sperm number and motility; drop of epididymal sperm number; epigenetic alterations in spermatozoa (DMRs modified) (all doses) | [115,116,117,118,119,120] |
Rat | Male | DDT from E8 to E14 | 25 mg/kg BW/day | F1–F3: altered DNA methylation; altered noncoding RNAs expression in spermatozoa | [124] |
Rat | Male | DDE from E8 to E15 | 100 mg/kg BW/day | F1 and F2: downregulation of DNMT1 and DNMT3 in the testis F1–F3: infertility; decreased motile sperm concentration; decreased sperm fertility index; altered testis morphology; altered imprinted gene expression in spermatozoa | [125,126] |
Mouse | Female | Vinclozolin from E7 to E13 | 50 mg/kg BW/day | F3: polycystic ovary | [122] |
Rat | Female | Vinclozolin or DDT from E8 to E14 | 100 mg/kg BW/day (Vinclozolin) 25 mg/kg BW/day (DDT) | F3: differentially methylated regions in granulosa cells; altered expression of RNAs (492 sncRNAs and 123 lncRNAs in the vinclozolin-exposed granulosa cells; 1085 sncRNAs and 51 lncRNAs in the DDT granulosa cells; 174 mRNAs in vinclozolin-exposed granulosa cells; 212 mRNAs in DDT-exposed granulosa cells; predisposition to ovarian diseases) | [127] |
3.5. Persistent Environmental Contaminants
Species | Sex | Exposure | Dose | Effects across Generations | Reference |
---|---|---|---|---|---|
Rat | Male | TCDD from E8 to E14 | 100 ng/kg BW */day | F3: sperm epigenome alteration; reduction of testosterone levels | [96] |
Rat | Male | A1221 (mixture of PCBs) from E8 to E18 | 1 mg/kg BW/day | F1 and F3: epigenetic alterations in spermatozoa (DMRs modified) | [120] |
Rat | Male | POP mixture (polychlorinated biphenyls and organochlorine pesticides) | 500 µg/kg BW three times a week for 5 weeks, before mating through mating and parturition of the F1 litters | F1: decreased conception; decreased fertility; reduced number of fetuses; low sperm quality; advanced puberty; lower testosterone concentration; small epididymis; low prostate weights; reduced sperm counts; reduced sperm motility; hyper-methylation of Dnmt3l gene in spermatozoa F2: decreased fertility reduced number of fetuses; low sperm quality; delayed puberty; lower testosterone concentration; small epididymis; low prostate weights; reduced sperm counts; hypo-methylation of Dnmt3l gene in spermatozoa F3: hypo-methylation of Dnmt3l gene in spermatozoa | [130] |
Mouse | Male | PCBs (mixture of two congeners) from E0 to PND + 21 | 0, 1, 10, and 100 µg PCB/kg BW/day | F1 and F2: reduced testis weight (all doses); reduced seminiferous tubule diameter (all doses); low sperm viability (all doses); reduced fertility (all doses) | [129] |
Rat | Female | TCDD from E8 to E14 | 100 ng/kg BW/day | F1: primordial follicle loss; polycystic ovary disease | [96] |
Mouse | Female | TCDD on E15.5 | 10 µg/kg BW/day | F3: adenomyosis; reduced fertility; dysmenorrhea; preterm birth | [131,132] |
Rat | Female | A1221 from E16 to E18 | 1 mg/kg BW/day | F2 and F3: altered serum progesterone and estradiol levels; low fertility | [133] |
Mouse | Female | PCBs (mixture of two congeners) from E0 to PND 21 | 0, 1, 10, and 100 µg/kg BW/day | F1: reduced ovary weight (all doses); low oocyte developmental capacity (100 µg/kg); increased follicular atresia (all doses); smaller litters (all doses) | [129] |
4. Epigenetic Mechanisms of Transmission across Generations
5. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gore, A.C.; Chappell, V.A.; Fenton, S.E.; Flaws, J.A.; Nadal, A.; Prins, G.S.; Toppari, J.; Zoeller, R.T. Executive Summary to EDC-2: The Endocrine Society’s Second Scientific Statement on Endocrine-Disrupting Chemicals. Endocr. Rev. 2015, 36, 593–602. [Google Scholar] [CrossRef]
- Gallo, A. Reprotoxic Impact of Environment, Diet, and Behavior. Int. J. Environ. Res. Public Health 2022, 19, 1303. [Google Scholar] [CrossRef]
- Sun, H.; Gong, T.T.; Jiang, Y.T.; Zhang, S.; Zhao, Y.H.; Wu, Q.J. Global, regional, and national prevalence and disability-adjusted life-years for infertility in 195 countries and territories, 1990-2017: Results from a global burden of disease study, 2017. Aging 2019, 11, 10952–10991. [Google Scholar] [CrossRef]
- Zhu, Q.; Kirby, J.A.; Chu, C.; Gou, L.T. Small Noncoding RNAs in Reproduction and Infertility. Biomedicines 2021, 9, 1884. [Google Scholar] [CrossRef] [PubMed]
- Marić, T.; Fučić, A.; Aghayanian, A. Environmental and occupational exposures associated with male infertility. Arh. Hig. Rada Toksikol. 2021, 72, 101–113. [Google Scholar] [CrossRef]
- Ding, T.; Yan, W.; Zhou, T.; Shen, W.; Wang, T.; Li, M.; Zhou, S.; Wu, M.; Dai, J.; Huang, K.; et al. Endocrine disrupting chemicals impact on ovarian aging: Evidence from epidemiological and experimental evidence. Environ. Pollut. 2022, 305, 119269. [Google Scholar] [CrossRef] [PubMed]
- Basso, C.G.; de Araújo-Ramos, A.T.; Martino-Andrade, A.J. Exposure to phthalates and female reproductive health: A literature review. Reprod. Toxicol. 2022, 109, 61–79. [Google Scholar] [CrossRef] [PubMed]
- Predieri, B.; Alves, C.A.D.; Iughetti, L. New insights on the effects of endocrine-disrupting chemicals on children. J. Pediatr. (Rio J.). 2022, 98, S73–S85. [Google Scholar] [CrossRef]
- Montjean, D.; Neyroud, A.S.; Yefimova, M.G.; Benkhalifa, M.; Cabry, R.; Ravel, C. Impact of Endocrine Disruptors upon Non-Genetic Inheritance. Int. J. Mol. Sci. 2022, 23, 3350. [Google Scholar] [CrossRef] [PubMed]
- Gong, M.; Song, H.; Dong, Y.; Huai, Z.; Fu, Y.; Yu, P.; Huang, B.; Yang, R.; Guo, Y.; Meng, Q.; et al. Sex-dependent and long-lasting effects of bisphenol AF exposure on emotional behaviors in mice. Physiol. Behav. 2022, 249, 113747. [Google Scholar] [CrossRef] [PubMed]
- Bronson, S.C.; Seshiah, V. Transgenerational Transmission of Non-communicable Diseases: How to Break the Vicious Cycle? Cureus 2021, 13, e18754. [Google Scholar] [CrossRef] [PubMed]
- Wheatley, L.M.; Holloway, J.W.; Svanes, C.; Sears, M.R.; Breton, C.; Fedulov, A.V.; Nilsson, E.; Vercelli, D.; Zhang, H.; Togias, A.; et al. The Role of Epigenetics in Multi-generational Transmission of Asthma: An NIAID Workshop Report-based narrative review. Clin. Exp. Allergy 2022, accepted. [Google Scholar] [CrossRef]
- Claxton, L.D.; Houk, V.S. Hughes TJ. Genotoxicity of industrial wastes and effluents. Mutat. Res. 1998, 410, 237–243. [Google Scholar] [CrossRef]
- Choudhuri, S.; Kaur, T.; Jain, S.; Sharma, C.; Asthana, S. A review on genotoxicity in connection to infertility and cancer. Chem. Biol. Interact. 2021, 345, 109531. [Google Scholar] [CrossRef] [PubMed]
- Filardi, T.; Panimolle, F.; Lenzi, A.; Morano, S. Bisphenol A and Phthalates in Diet: An Emerging Link with Pregnancy Complications. Nutrients 2020, 12, 525. [Google Scholar] [CrossRef] [PubMed]
- Gore, A.C.; Balthazart, J.; Bikle, D.; Carpenter, D.O.; Crews, D.; Czernichow, P.; Diamanti-Kandarakis, E.; Dores, R.M.; Grattan, D.; Hof, P.R.; et al. Reprint of: Policy decisions on endocrine disruptors should be based on science across disciplines: A response to Dietrich et al. Horm. Behav. 2014, 65, 190–193. [Google Scholar] [CrossRef] [PubMed]
- Arsenescu, V.; Arsenescu, R.I.; King, V.; Swanson, H.; Cassis, L.A. Polychlorinated biphenyl-77 induces adipocyte differentiation and proinflammatory adipokines and promotes obesity and atherosclerosis. Environ. Health Perspect. 2008, 116, 761–768. [Google Scholar] [CrossRef]
- Diamanti-Kandarakis, E.; Bourguignon, J.P.; Giudice, L.C.; Hauser, R.; Prins, G.S.; Soto, A.M.; Zoeller, R.T.; Gore, A.C. Endocrine-disrupting chemicals: An Endocrine Society scientific statement. Endocr. Rev. 2009, 30, 293–342. [Google Scholar] [CrossRef]
- Kabir, E.R.; Rahman, M.S.; Rahman, I. A review on endocrine disruptors and their possible impacts on human health. Environ. Toxicol. Pharmacol. 2015, 40, 241–258. [Google Scholar] [CrossRef] [PubMed]
- Monneret, C. What is an endocrine disruptor? C R Biol. 2017, 340, 403–405. [Google Scholar] [CrossRef]
- La Merrill, M.A.; Vandenberg, L.N.; Smith, M.T.; Goodson, W.; Browne, P.; Patisaul, H.B.; Guyton, K.Z.; Kortenkamp, A.; Cogliano, V.J.; Woodruff, T.J.; et al. Consensus on the key characteristics of endocrine-disrupting chemicals as a basis for hazard identification. Nat. Rev. Endocrinol. 2020, 16, 45–57. [Google Scholar] [CrossRef]
- Skinner, M.K. Endocrine disruptors and epigenetic transgenerational disease etiology. Pediatr. Res. 2007, 61, 48R–50R. [Google Scholar] [CrossRef]
- Del Pup, L.; Mantovani, A.; Cavaliere, C.; Facchini, G.; Luce, A.; Sperlongano, P.; Caraglia, M.; Berretta, M. Carcinogenetic mechanisms of endocrine disruptors in female cancers (Review). Oncol Rep. 2016, 36, 603–612. [Google Scholar] [CrossRef]
- Calaf, G.M.; Ponce-Cusi, R.; Aguayo, F.; Muñoz, J.P.; Bleak, T.C. Endocrine disruptors from the environment affecting breast cancer. Oncol. Lett. 2020, 20, 19–32. [Google Scholar] [CrossRef]
- Onuzulu, C.D.; Rotimi, O.A.; Rotimi, S.O. Epigenetic modifications associated with in utero exposure to endocrine disrupting chemicals BPA, DDT and Pb. Rev. Environ. Health 2019, 34, 309–325. [Google Scholar] [CrossRef]
- Rattan, S.; Flaws, J.A. The epigenetic impacts of endocrine disruptors on female reproduction across generations. Biol. Reprod. 2019, 101, 635–644. [Google Scholar] [CrossRef]
- Lucaccioni, L.; Trevisani, V.; Marrozzini, L.; Bertoncelli, N.; Predieri, B.; Lugli, L.; Berardi, A.; Iughetti, L. Endocrine-Disrupting Chemicals and Their Effects during Female Puberty: A Review of Current Evidence. Int J. Mol. Sci. 2020, 21, 2078. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Y.; Wen, X.; Liu, H.; Zhang, M.; Zhang, Y. Bisphenol a affects endometrial stromal cells decidualization, involvement of epigenetic regulation. J. Steroid Biochem. Mol. Biol. 2020, 200, 105640. [Google Scholar] [CrossRef]
- Natarajan, R.; Aljaber, D.; Au, D.; Thai, C.; Sanchez, A.; Nunez, A.; Resto, C.; Chavez, T.; Jankowska, M.M.; Benmarhnia, T.; et al. Environmental Exposures during Puberty: Window of Breast Cancer Risk and Epigenetic Damage. Int. J. Environ. Res. Public Health 2020, 17, 493. [Google Scholar] [CrossRef] [PubMed]
- Menezo, Y.; Dale, B.; Elder, K. The negative impact of the environment on methylation/epigenetic marking in gametes and embryos: A plea for action to protect the fertility of future generations. Mol. Reprod. Dev. 2019, 86, 1273–1282. [Google Scholar] [CrossRef] [PubMed]
- Van Cauwenbergh, O.; Di Serafino, A.; Tytgat, J.; Soubry, A. Transgenerational epigenetic effects from male exposure to endocrine-disrupting compounds: A systematic review on research in mammals. Clin. Epigenet. 2020, 12, 65. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.S.; Pang, W.K.; Ryu, D.Y.; Park, Y.J.; Pang, M.G. Multigenerational and transgenerational impact of paternal bisphenol A exposure on male fertility in a mouse model. Hum. Reprod. 2020, 35, 1740–1752. [Google Scholar] [CrossRef]
- Robaire, B.; Delbes, G.; Head, J.A.; Marlatt, V.L.; Martyniuk, C.J.; Reynaud, S.; Trudeau, V.L.; Mennigen, J.A. A cross-species comparative approach to assessing multi- and transgenerational effects of endocrine disrupting chemicals. Environ. Res. 2022, 204, 112063. [Google Scholar] [CrossRef]
- Lauretta, R.; Sansone, A.; Sansone, M.; Romanelli, F.; Appetecchia, M. Endocrine Disrupting Chemicals: Effects on Endocrine Glands. Front. Endocrinol. 2019, 10, 178. [Google Scholar] [CrossRef]
- Lopez-Rodriguez, D.; Franssen, D.; Bakker, J.; Lomniczi, A.; Parent, A.S. Cellular and molecular features of EDC exposure: Consequences for the GnRH network. Nat. Rev. Endocrinol. 2021, 17, 83–96. [Google Scholar] [CrossRef] [PubMed]
- You, H.H.; Song, G. Review of endocrine disruptors on male and female reproductive systems. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2021, 244, 109002. [Google Scholar] [CrossRef] [PubMed]
- Zachow, R.; Uzumcu, M. The methoxychlor metabolite, 2,2-bis-(p-hydroxyphenyl)-1,1,1-trichloroethane, inhibits steroidogenesis in rat ovarian granulosa cells in vitro. Reprod. Toxicol. 2006, 22, 659–665. [Google Scholar] [CrossRef]
- Grochowalski, A.; Piekło, R.; Gasińska, A.; Chrzaszcz, R.; Gregoraszczuk, E.L. Accumulation of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in porcine preovulatory follicles after in vitro exposure to TCDD: Effects on steroid secretion and cell proliferation. Cytobios 2000, 102, 21–31. [Google Scholar] [PubMed]
- Basavarajappa, M.S.; Craig, Z.R.; Hernández-Ochoa, I.; Paulose, T.; Leslie, T.C.; Flaws, J.A. Methoxychlor reduces estradiol levels by altering steroidogenesis and metabolism in mouse antral follicles in vitro. Toxicol. Appl. Pharmacol. 2011, 253, 161–169. [Google Scholar] [CrossRef]
- Lee, B.E.; Park, H.; Hong, Y.C.; Ha, M.; Kim, Y.; Chang, N.; Kim, B.N.; Kim, Y.J.; Yu, S.D.; Ha, E.H. Prenatal bisphenol A and birth outcomes: MOCEH (Mothers and Children’s Environmental Health) study. Int. J. Hyg. Environ. Health 2014, 217, 328–334. [Google Scholar] [CrossRef] [PubMed]
- Peretz, J.; Neese, S.L.; Flaws, J.A. Mouse strain does not influence the overall effects of bisphenol a-induced toxicity in adult antral follicles. Biol. Reprod. 2013, 89, 108. [Google Scholar] [CrossRef][Green Version]
- Hannon, P.R.; Brannick, K.E.; Wang, W.; Gupta, R.K.; Flaws, J.A. Di(2-ethylhexyl) phthalate inhibits antral follicle growth, induces atresia, and inhibits steroid hormone production in cultured mouse antral follicles. Toxicol. Appl. Pharmacol. 2015, 284, 42–53. [Google Scholar] [CrossRef] [PubMed]
- Johansson, H.K.L.; Svingen, T.; Fowler, P.A.; Vinggaard, A.M.; Boberg, J. Environmental influences on ovarian dysgenesis—Developmental windows sensitive to chemical exposures. Nat. Rev. Endocrinol. 2017, 13, 400–414. [Google Scholar] [CrossRef]
- Patel, S.; Zhou, C.; Rattan, S.; Flaws, J.A. Effects of Endocrine-Disrupting Chemicals on the Ovary. Biol. Reprod. 2015, 93, 20. [Google Scholar] [CrossRef] [PubMed]
- Uzumcu, M.; Kuhn, P.E.; Marano, J.E.; Armenti, A.E.; Passantino, L. Early postnatal methoxychlor exposure inhibits folliculogenesis and stimulates anti-Mullerian hormone production in the rat ovary. J. Endocrinol. 2006, 191, 549–558. [Google Scholar] [CrossRef] [PubMed]
- Symonds, D.A.; Merchenthaler, I.; Flaws, J.A. Methoxychlor and estradiol induce oxidative stress DNA damage in the mouse ovarian surface epithelium. Toxicol. Sci. 2008, 105, 182–187. [Google Scholar] [CrossRef]
- Armenti, A.E.; Zama, A.M.; Passantino, L.; Uzumcu, M. Developmental methoxychlor exposure affects multiple reproductive parameters and ovarian folliculogenesis and gene expression in adult rats. Toxicol. Appl. Pharmacol. 2008, 233, 286–296. [Google Scholar] [CrossRef] [PubMed]
- Mok-Lin, E.; Ehrlich, S.; Williams, P.L.; Petrozza, J.; Wright, D.L.; Calafat, A.M.; Ye, X.; Hauser, R. Urinary bisphenol A concentrations and ovarian response among women undergoing IVF. Int. J. Androl. 2010, 33, 385–393. [Google Scholar] [CrossRef]
- Souter, I.; Smith, K.W.; Dimitriadis, I.; Ehrlich, S.; Williams, P.L.; Calafat, A.M.; Hauser, R. The association of bisphenol-A urinary concentrations with antral follicle counts and other measures of ovarian reserve in women undergoing infertility treatments. Reprod. Toxicol. 2013, 42, 224–231. [Google Scholar] [CrossRef]
- Gupta, R.K.; Miller, K.P.; Babus, J.K.; Flaws, J.A. Methoxychlor inhibits growth and induces atresia of antral follicles through an oxidative stress pathway. Toxicol. Sci. 2006, 93, 382–389. [Google Scholar] [CrossRef] [PubMed]
- Peretz, J.; Gupta, R.K.; Singh, J.; Hernández-Ochoa, I.; Flaws, J.A. Bisphenol A impairs follicle growth, inhibits steroidogenesis, and downregulates rate-limiting enzymes in the estradiol biosynthesis pathway. Toxicol. Sci. 2011, 119, 209–217. [Google Scholar] [CrossRef]
- Ziv-Gal, A.; Wang, W.; Zhou, C.; Flaws, J.A. The effects of in utero bisphenol A exposure on reproductive capacity in several generations of mice. Toxicol. Appl. Pharmacol. 2015, 284, 354–362. [Google Scholar] [CrossRef]
- Hunt, P.A.; Koehler, K.E.; Susiarjo, M.; Hodges, C.A.; Ilagan, A.; Voigt, R.C.; Thomas, S.; Thomas, B.F.; Hassold, T.J. Bisphenol a exposure causes meiotic aneuploidy in the female mouse. Curr. Biol. 2003, 13, 546–553. [Google Scholar] [CrossRef]
- Mlynarcíková, A.; Nagyová, E.; Ficková, M.; Scsuková, S. Effects of selected endocrine disruptors on meiotic maturation, cumulus expansion, synthesis of hyaluronan and progesterone by porcine oocyte-cumulus complexes. Toxicol. Vitr. 2009, 23, 371–377. [Google Scholar] [CrossRef]
- Trapphoff, T.; Heiligentag, M.; El Hajj, N.; Haaf, T.; Eichenlaub-Ritter, U. Chronic exposure to a low concentration of bisphenol A during follicle culture affects the epigenetic status of germinal vesicles and metaphase II oocytes. Fertil. Steril. 2013, 100, 1758–1767. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Petroff, B.K.; Rozman, K.K.; Terranova, P.F. Gonadotropin-releasing hormone (GnRH) partially reverses the inhibitory effect of 2,3,7,8-tetrachlorodibenzo-p-dioxin on ovulation in the immature gonadotropin-treated rat. Toxicology 2000, 147, 15–22. [Google Scholar] [CrossRef]
- Greenspan, L.C.; Lee, M.M. Endocrine disrupters and pubertal timing. Curr. Opin. Endocrinol. Diabetes Obes. 2018, 25, 49–54. [Google Scholar] [CrossRef]
- Barker, D.J. The developmental origins of adult disease. Eur. J. Epidemiol. 2003, 18, 733–736. [Google Scholar] [CrossRef] [PubMed]
- Nandi, S.; Gupta, P.S.; Roy, S.C.; Selvaraju, S.; Ravindra, J.P. Chlorpyrifos and endosulfan affect buffalo oocyte maturation, fertilization, and embryo development in vitro directly and through cumulus cells. Environ. Toxicol. 2011, 26, 57–67. [Google Scholar] [CrossRef] [PubMed]
- Priya, K.; Setty, M.; Babu, U.V.; Pai, K.S.R. Implications of environmental toxicants on ovarian follicles: How it can adversely affect the female fertility? Environ. Sci. Pollut. Res. Int. 2021, 28, 67925–67939. [Google Scholar] [CrossRef] [PubMed]
- Pan, G.; Hanaoka, T.; Yoshimura, M.; Zhang, S.; Wang, P.; Tsukino, H.; Inoue, K.; Nakazawa, H.; Tsugane, S.; Takahashi, K. Decreased serum free testosterone in workers exposed to high levels of di-n-butyl phthalate (DBP) and di-2-ethylhexyl phthalate (DEHP): A cross-sectional study in China. Environ. Health Perspect. 2006, 114, 1643–1648. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Wang, J.; Sun, X.; Ye, Y.; Xu, M.; Wang, J.; Chen, S.; Fu, Z. Exposure of maternal mice to cis-bifenthrin enantioselectively disrupts the transcription of genes related to testosterone synthesis in male offspring. Reprod. Toxicol. 2013, 42, 156–163. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, D.; Yanagiba, Y.; Duan, Z.; Ito, Y.; Okamura, A.; Asaeda, N.; Tagawa, Y.; Li, C.; Taya, K.; Zhang, S.Y.; et al. Bisphenol A may cause testosterone reduction by adversely affecting both testis and pituitary systems similar to estradiol. Toxicol. Lett. 2010, 194, 16–25. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, N.; Pandolfi, M.; Lavalle, J.; Carbone, S.; Ponzo, O.; Scacchi, P.; Reynoso, R. Probable gamma-aminobutyric acid involvement in bisphenol A effect at the hypothalamic level in adult male rats. J. Physiol. Biochem. 2011, 67, 559–567. [Google Scholar] [CrossRef] [PubMed]
- Wisniewski, P.; Romano, R.M.; Kizys, M.M.; Oliveira, K.C.; Kasamatsu, T.; Giannocco, G.; Chiamolera, M.I.; Dias-da-Silva, M.R.; Romano, M.A. Adult exposure to bisphenol A (BPA) in Wistar rats reduces sperm quality with disruption of the hypothalamic-pituitary-testicular axis. Toxicology 2015, 329, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Ye, L.; Zhao, B.; Hu, G.; Chu, Y.; Ge, R.S. Inhibition of human and rat testicular steroidogenic enzyme activities by bisphenol A. Toxicol. Lett. 2011, 207, 137–142. [Google Scholar] [CrossRef] [PubMed]
- Qiu, L.L.; Wang, X.; Zhang, X.H.; Zhang, Z.; Gu, J.; Liu, L.; Wang, Y.; Wang, X.; Wang, S.L. Decreased androgen receptor expression may contribute to spermatogenesis failure in rats exposed to low concentration of bisphenol A. Toxicol. Lett. 2013, 219, 116–124. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Mao, R.; Zhou, Q.; Ding, L.; Tao, J.; Ran, M.M.; Gao, E.S.; Yuan, W.; Wang, J.T.; Hou, L.F. Exposure to bisphenol A (BPA) in Wistar rats reduces sperm quality with disruption of ERK signal pathway. Toxicol. Mech. Methods. 2016, 26, 180–188. [Google Scholar] [CrossRef] [PubMed]
- Xing, C.; Marchetti, F.; Li, G.; Weldon, R.H.; Kurtovich, E.; Young, S.; Schmid, T.E.; Zhang, L.; Rappaport, S.; Waidyanatha, S.; et al. Benzene exposure near the U.S. permissible limit is associated with sperm aneuploidy. Environ. Health Perspect. 2010, 118, 833–839. [Google Scholar] [CrossRef]
- Katukam, V.; Kulakarni, M.; Syed, R.; Alharbi, K.; Naik, J. Effect of benzene exposure on fertility of male workers employed in bulk drug industries. Genet. Test. Mol. Biomark. 2012, 16, 592–597. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.Y.; Wang, R.X.; Fu, Y.; Luo, L.L.; Guo, W.; Liu, R.Z. Outcomes of intracytoplasmic sperm injection in oligozoospermic men with Y chromosome AZFb or AZFc microdeletions. Andrologia 2017, 49, e12602. [Google Scholar] [CrossRef]
- Daoud, S.; Sellami, A.; Bouassida, M.; Kebaili, S.; Ammar Keskes, L.; Rebai, T.; Chakroun Feki, N. Routine assessment of occupational exposure and its relation to semen quality in infertile men: A cross-sectional study. Turk. J. Med. Sci. 2017, 47, 902–907. [Google Scholar] [CrossRef] [PubMed]
- Ianos, O.; Sari-Minodier, I.; Villes, V.; Lehucher-Michel, M.P.; Loundou, A.; Perrin, J. Meta-Analysis Reveals the Association Between Male Occupational Exposure to Solvents and Impairment of Semen Parameters. J. Occup. Environ. Med. 2018, 60, e533–e542. [Google Scholar] [CrossRef] [PubMed]
- Lwin, T.Z.; Than, A.A.; Min, A.Z.; Robson, M.G.; Siriwong, W. Effects of pesticide exposure on reproductivity of male groundnut farmers in Kyauk Kan village, Nyaung-U, Mandalay region, Myanmar. Risk Manag. Healthc. Policy 2018, 11, 235–241. [Google Scholar] [CrossRef] [PubMed]
- Ziv-Gal, A.; Flaws, J.A.; Mahoney, M.M.; Miller, S.R.; Zacur, H.A.; Gallicchio, L. Genetic polymorphisms in the aryl hydrocarbon receptor-signaling pathway and sleep disturbances in middle-aged women. Sleep Med. 2013, 14, 883–887. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Duan, W.; Li, R.; Xu, S.; Zhang, L.; Chen, C.; He, M.; Lu, Y.; Wu, H.; Pi, H.; et al. Exposure to bisphenol A disrupts meiotic progression during spermatogenesis in adult rats through estrogen-like activity. Cell Death Dis. 2013, 4, e676. [Google Scholar] [CrossRef]
- Jin, P.; Wang, X.; Chang, F.; Bai, Y.; Li, Y.; Zhou, R.; Chen, L. Low dose bisphenol A impairs spermatogenesis by suppressing reproductive hormone production and promoting germ cell apoptosis in adult rats. J. Biomed. Res. 2013, 27, 135–144. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Luo, C.; Li, Q.; Chen, S.; Hu, Y. Mitochondrion-mediated apoptosis is involved in reproductive damage caused by BPA in male rats. Environ. Toxicol. Pharmacol. 2014, 38, 1025–1033. [Google Scholar] [CrossRef]
- Othman, A.I.; Edrees, G.M.; El-Missiry, M.A.; Ali, D.A.; Aboel-Nour, M.; Dabdoub, B.R. Melatonin controlled apoptosis and protected the testes and sperm quality against bisphenol A-induced oxidative toxicity. Toxicol. Ind. Health. 2016, 32, 1537–1549. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Zhou, X.; Miao, M.; Li, D.K.; Wang, Z.; Li, R.; Liang, H.; Yuan, W. Association of Bisphenol A Exposure with LINE-1 Hydroxymethylation in Human Semen. Int. J. Environ. Res. Public Health. 2018, 15, 1770. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.; Zhou, X.; Li, D.K.; Yang, F.; Pan, H.; Li, T.; Miao, M.; Li, R.; Yuan, W. Genome-wide alteration in DNA hydroxymethylation in the sperm from bisphenol A-exposed men. PLoS ONE 2017, 12, e0178535. [Google Scholar] [CrossRef] [PubMed]
- Skakkebaek, N.E. Testicular dysgenesis syndrome. Horm. Res. 2003, 60, 49. [Google Scholar] [CrossRef] [PubMed]
- Skinner, M.K. What is an epigenetic transgenerational phenotype? F3 or F2. Reprod. Toxicol. 2008, 25, 2–6. [Google Scholar] [CrossRef] [PubMed]
- Xin, F.; Susiarjo, M.; Bartolomei, M.S. Multigenerational and transgenerational effects of endocrine disrupting chemicals: A role for altered epigenetic regulation? Semin. Cell Dev. Biol. 2015, 43, 66–75. [Google Scholar] [CrossRef] [PubMed]
- Rattan, S.; Brehm, E.; Gao, L.; Flaws, J.A. Di(2-Ethylhexyl) Phthalate Exposure During Prenatal Development Causes Adverse Transgenerational Effects on Female Fertility in Mice. Toxicol. Sci. 2018, 163, 420–429. [Google Scholar] [CrossRef]
- Brehm, E.; Flaws, J.A. Transgenerational Effects of Endocrine-Disrupting Chemicals on Male and Female Reproduction. Endocrinology 2019, 160, 1421–1435. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Chen, H.; Dai, H.; Zhou, L.; Wang, Y.; Xin, X.; Chen, C.; Li, Z.; Ge, R.S. Effects of bis(2-butoxyethyl) phthalate exposure in utero on the development of fetal Leydig cells in rats. Toxicol. Lett. 2021, 351, 65–77. [Google Scholar] [CrossRef] [PubMed]
- Shi, Z.; Lv, Z.; Hu, C.; Zhang, Q.; Wang, Z.; Hamdard, E.; Dai, H.; Mustafa, S.; Shi, F. Oral Exposure to Genistein during Conception and Lactation Period Affects the Testicular Development of Male Offspring Mice. Animals 2020, 10, 377. [Google Scholar] [CrossRef] [PubMed]
- Eustache, F.; Bennani Smires, B.; Moison, D.; Bergès, R.; Canivenc-Lavier, M.C.; Vaiman, D.; Auger, J. Different exposure windows to low doses of genistein and/or vinclozolin result in contrasted disorders of testis function and gene expression of exposed rats and their unexposed progeny. Environ. Res. 2020, 190, 109975. [Google Scholar] [CrossRef]
- Gao, X.; Sun, L.; Zhang, N.; Li, C.; Zhang, J.; Xiao, Z.; Qi, D. Gestational Zearalenone Exposure Causes Reproductive and Developmental Toxicity in Pregnant Rats and Female Offspring. Toxins 2017, 21, 21. [Google Scholar] [CrossRef]
- Men, Y.; Zhao, Y.; Zhang, P.; Zhang, H.; Gao, Y.; Liu, J.; Feng, Y.; Li, L.; Shen, W.; Sun, Z.; et al. Gestational exposure to low-dose zearalenone disrupting offspring spermatogenesis might be through epigenetic modifications. Basic Clin. Pharmacol. Toxicol. 2019, 125, 382–393. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Zhang, D.; Sun, D.; Cui, S. Zearalenone affects reproductive functions of male offspring via transgenerational cytotoxicity on spermatogonia in mouse. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2020, 234, 108766. [Google Scholar] [CrossRef] [PubMed]
- Vandenberg, L.N.; Hunt, P.A.; Gore, A.C. Endocrine disruptors and the future of toxicology testing—Lessons from CLARITY-BPA. Nat. Rev. Endocrinol. 2019, 15, 366–374. [Google Scholar] [CrossRef] [PubMed]
- Karmakar, P.C.; Ahn, J.S.; Kim, Y.H.; Jung, S.E.; Kim, B.J.; Lee, H.S.; Ryu, B.Y. Gestational Exposure to Bisphenol A Affects Testicular Morphology, Germ Cell Associations, and Functions of Spermatogonial Stem Cells in Male Offspring. Int. J. Mol. Sci. 2020, 21, 8644. [Google Scholar] [CrossRef]
- Rahman, M.S.; Pang, W.K.; Ryu, D.Y.; Park, Y.J.; Ryu, B.Y.; Pang, M.G. Multigenerational impacts of gestational bisphenol A exposure on the sperm function and fertility of male mice. J. Hazard. Mater. 2021, 416, 125791. [Google Scholar] [CrossRef]
- Manikkam, M.; Guerrero-Bosagna, C.; Tracey, R.; Haque, M.M.; Skinner, M.K. Transgenerational actions of environmental compounds on reproductive disease and identification of epigenetic biomarkers of ancestral exposures. PLoS ONE 2012, 7, e31901. [Google Scholar] [CrossRef]
- Manikkam, M.; Tracey, R.; Guerrero-Bosagna, C.; Skinner, M.K. Plastics derived endocrine disruptors (BPA, DEHP and DBP) induce epigenetic transgenerational inheritance of obesity, reproductive disease and sperm epimutations. PLoS ONE 2013, 8, e55387. [Google Scholar] [CrossRef] [PubMed]
- Xia, S.; Zhang, W.; Yang, J.; Wang, S.; Yang, C.; Wang, J. A single-cell atlas of bisphenol A (BPA)-induced testicular injury in mice. Clin. Transl. Med. 2022, 12, e789. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Hafner, K.S.; Flaws, J.A. In utero bisphenol A exposure disrupts germ cell nest breakdown and reduces fertility with age in the mouse. Toxicol. Appl. Pharmacol. 2014, 276, 157–164. [Google Scholar] [CrossRef]
- Berger, A.; Ziv-Gal, A.; Cudiamat, J.; Wang, W.; Zhou, C.; Flaws, J.A. The effects of in utero bisphenol A exposure on the ovaries in multiple generations of mice. Reprod. Toxicol. 2016, 60, 39–52. [Google Scholar] [CrossRef] [PubMed]
- Giuliani, A.; Zuccarini, M.; Cichelli, A.; Khan, H.; Reale, M. Critical Review on the Presence of Phthalates in Food and Evidence of Their Biological Impact. Int. J. Environ. Res. Public Health. 2020, 17, 5655. [Google Scholar] [CrossRef] [PubMed]
- Eales, J.; Bethel, A.; Galloway, T.; Hopkinson, P.; Morrissey, K.; Short, R.E.; Garside, R. Human health impacts of exposure to phthalate plasticizers: An overview of reviews. Environ. Int. 2022, 158, 106903. [Google Scholar] [CrossRef] [PubMed]
- Doyle, T.J.; Bowman, J.L.; Windell, V.L.; McLean, D.J.; Kim, K.H. Transgenerational effects of di-(2-ethylhexyl) phthalate on testicular germ cell associations and spermatogonial stem cells in mice. Biol. Reprod. 2013, 88, 112. [Google Scholar] [CrossRef] [PubMed]
- Barakat, R.; Lin, P.C.; Park, C.J.; Zeineldin, M.; Zhou, S.; Rattan, S.; Brehm, E.; Flaws, J.A.; Ko, C.J. Germline-dependent transmission of male reproductive traits induced by an endocrine disruptor, di-2-ethylhexyl phthalate, in future generations. Sci. Rep. 2020, 10, 5705. [Google Scholar] [CrossRef]
- Yuan, B.; Wu, W.; Chen, M.; Gu, H.; Tang, Q.; Guo, D.; Chen, T.; Chen, Y.; Lu, C.; Song, L.; et al. From the Cover: Metabolomics Reveals a Role of Betaine in Prenatal DBP Exposure-Induced Epigenetic Transgenerational Failure of Spermatogenesis in Rats. Toxicol Sci. 2017, 158, 356–366. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Gao, L.; Flaws, J.A. Exposure to an Environmentally Relevant Phthalate Mixture Causes Transgenerational Effects on Female Reproduction in Mice. Endocrinology 2017, 158, 1739–1754. [Google Scholar] [CrossRef] [PubMed]
- Brehm, E.; Rattan, S.; Gao, L.; Flaws, J.A. Prenatal Exposure to Di(2-Ethylhexyl) Phthalate Causes Long-Term Transgenerational Effects on Female Reproduction in Mice. Endocrinology 2018, 159, 795–809. [Google Scholar] [CrossRef] [PubMed]
- Gill, S.; Brehm, E.; Leon, K.; Chiu, J.; Meling, D.D.; Flaws, J.A. Prenatal exposure to an environmentally relevant phthalate mixture alters ovarian steroidogenesis and folliculogenesis in the F1 generation of adult female mice. Reprod. Toxicol. 2021, 106, 25–31. [Google Scholar] [CrossRef] [PubMed]
- Brehm, E.; Flaws, J.A. Prenatal exposure to a mixture of phthalates accelerates the age-related decline in reproductive capacity but may not affect direct biomarkers of ovarian aging in the F1 generation of female mice. Environ. Epigenet. 2021, 7, dvab010. [Google Scholar] [CrossRef] [PubMed]
- Kawano, M.; Qin, X.Y.; Yoshida, M.; Fukuda, T.; Nansai, H.; Hayashi, Y.; Nakajima, T.; Sone, H. Peroxisome proliferator-activated receptor α mediates di-(2-ethylhexyl) phthalate transgenerational repression of ovarian Esr1 expression in female mice. Toxicol. Lett. 2014, 228, 235–240. [Google Scholar] [CrossRef]
- Somasundaram, D.B.; Selvanesan, B.C.; Ramachandran, I.; Bhaskaran, R.S. Lactational Exposure to Di (2-ethylhexyl) Phthalate Impairs the Ovarian and Uterine Function of Adult Offspring Rat. Reprod. Sci. 2016, 23, 549–559. [Google Scholar] [CrossRef] [PubMed]
- Rattan, S.; Beers, H.K.; Kannan, A.; Ramakrishnan, A.; Brehm, E.; Bagchi, I.; Irudayaraj, J.M.K.; Flaws, J.A. Prenatal and ancestral exposure to di(2-ethylhexyl) phthalate alters gene expression and DNA methylation in mouse ovaries. Toxicol. Appl. Pharmacol. 2019, 379, 114629. [Google Scholar] [CrossRef] [PubMed]
- Pocar, P.; Fiandanese, N.; Berrini, A.; Secchi, C.; Borromeo, V. Maternal exposure to di(2-ethylhexyl)phthalate (DEHP) promotes the transgenerational inheritance of adult-onset reproductive dysfunctions through the female germline in mice. Toxicol. Appl. Pharmacol. 2017, 322, 113–121. [Google Scholar] [CrossRef] [PubMed]
- McBirney, M.; King, S.E.; Pappalardo, M.; Houser, E.; Unkefer, M.; Nilsson, E.; Sadler-Riggleman, I.; Beck, D.; Winchester, P.; Skinner, M.K. Atrazine induced epigenetic transgenerational inheritance of disease, lean phenotype and sperm epimutation pathology biomarkers. PLoS ONE 2017, 12, e0184306. [Google Scholar] [CrossRef]
- Anway, M.D.; Rekow, S.S.; Skinner, M.K. Comparative anti-androgenic actions of vinclozolin and flutamide on transgenerational adult onset disease and spermatogenesis. Reprod. Toxicol. 2008, 26, 100–106. [Google Scholar] [CrossRef] [PubMed]
- Anway, M.D.; Cupp, A.S.; Uzumcu, M.; Skinner, M.K. Epigenetic transgenerational actions of endocrine disruptors and male fertility. Science 2005, 308, 1466–1469. [Google Scholar] [CrossRef] [PubMed]
- Guerrero-Bosagna, C.; Settles, M.; Lucker, B.; Skinner, M.K. Epigenetic transgenerational actions of vinclozolin on promoter regions of the sperm epigenome. PLoS ONE 2010, 5, e13100. [Google Scholar] [CrossRef]
- Stouder, C.; Paoloni-Giacobino, A. Transgenerational effects of the endocrine disruptor vinclozolin on the methylation pattern of imprinted genes in the mouse sperm. Reproduction 2010, 139, 373–379. [Google Scholar] [CrossRef]
- Beck, D.; Sadler-Riggleman, I.; Skinner, M.K. Generational comparisons (F1 versus F3) of vinclozolin induced epigenetic transgenerational inheritance of sperm differential DNA methylation regions (epimutations) using MeDIP-Seq. Environ. Epigenet. 2017, 3, dvx016. [Google Scholar] [CrossRef]
- Gillette, R.; Son, M.J.; Ton, L.; Gore, A.C.; Crews, D. Passing experiences on to future generations: Endocrine disruptors and transgenerational inheritance of epimutations in brain and sperm. Epigenetics 2018, 13, 1106–1126. [Google Scholar] [CrossRef]
- Ben Maamar, M.; Sadler-Riggleman, I.; Beck, D.; McBirney, M.; Nilsson, E.; Klukovich, R.; Xie, Y.; Tang, C.; Yan, W.; Skinner, M.K. Alterations in sperm DNA methylation, non-coding RNA expression, and histone retention mediate vinclozolin-induced epigenetic transgenerational inheritance of disease. Environ. Epigenet. 2018, 4, dvy010. [Google Scholar] [CrossRef] [PubMed]
- Guerrero-Bosagna, C.; Covert, T.R.; Haque, M.M.; Settles, M.; Nilsson, E.E.; Anway, M.D.; Skinner, M.K. Epigenetic transgenerational inheritance of vinclozolin induced mouse adult onset disease and associated sperm epigenome biomarkers. Reprod. Toxicol. 2012, 34, 694–707. [Google Scholar] [CrossRef] [PubMed]
- Turusov, V.; Rakitsky, V.; Tomatis, L. Dichlorodiphenyltrichloroethane (DDT): Ubiquity, persistence, and risks. Environ. Health Perspect. 2002, 110, 125–128. [Google Scholar] [CrossRef] [PubMed]
- Skinner, M.K.; Ben Maamar, M.; Sadler-Riggleman, I.; Beck, D.; Nilsson, E.; McBirney, M.; Klukovich, R.; Xie, Y.; Tang, C.; Yan, W. Alterations in sperm DNA methylation, non-coding RNA and histone retention associate with DDT-induced epigenetic transgenerational inheritance of disease. Epigenet. Chromatin. 2018, 11, 8. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Wu, N.; Wang, S.; Gao, M.; Song, P.; Lou, J.; Tan, Y.; Liu, K. Transgenerational impaired male fertility with an Igf2 epigenetic defect in the rat are induced by the endocrine disruptor p,p’-DDE. Hum. Reprod. 2014, 29, 2512–2521. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Yang, L. Transgenerational impaired spermatogenesis with sperm H19 and Gtl2 hypomethylation induced by the endocrine disruptor p,p’-DDE. Toxicol. Lett. 2018, 297, 34–41. [Google Scholar] [CrossRef] [PubMed]
- Nilsson, E.; Klukovich, R.; Sadler-Riggleman, I.; Beck, D.; Xie, Y.; Yan, W.; Skinner, M.K. Environmental toxicant induced epigenetic transgenerational inheritance of ovarian pathology and granulosa cell epigenome and transcriptome alterations: Ancestral origins of polycystic ovarian syndrome and primary ovarian insufiency. Epigenetics 2018, 13, 875–895. [Google Scholar] [CrossRef]
- Toft, G. Persistent organochlorine pollutants and human reproductive health. Dan Med. J. 2014, 61, B4967. [Google Scholar]
- Pocar, P.; Fiandanese, N.; Secchi, C.; Berrini, A.; Fischer, B.; Schmidt, J.S.; Schaedlich, K.; Rhind, S.M.; Zhang, Z.; Borromeo, V. Effects of polychlorinated biphenyls in CD-1 mice: Reproductive toxicity and intergenerational transmission. Toxicol. Sci. 2012, 126, 213–226. [Google Scholar] [CrossRef]
- Maurice, C.; Dalvai, M.; Lambrot, R.; Deschênes, A.; Scott-Boyer, M.P.; McGraw, S.; Chan, D.; Côté, N.; Ziv-Gal, A.; Flaws, J.A.; et al. Early-Life Exposure to Environmental Contaminants Perturbs the Sperm Epigenome and Induces Negative Pregnancy Outcomes for Three Generations via the Paternal Lineage. Epigenomes 2021, 5, 10. [Google Scholar] [CrossRef]
- Bruner-Tran, K.L.; Duleba, A.J.; Taylor, H.S.; Osteen, K.G. Developmental Toxicant Exposure Is Associated with Transgenerational Adenomyosis in a Murine Model. Biol. Reprod. 2016, 95, 73. [Google Scholar] [CrossRef] [PubMed]
- Bruner-Tran, K.L.; Ding, T.; Yeoman, K.B.; Archibong, A.; Arosh, J.A.; Osteen, K.G. Developmental exposure of mice to dioxin promotes transgenerational testicular inflammation and an increased risk of preterm birth in unexposed mating partners. PLoS ONE 2014, 9, e105084. [Google Scholar] [CrossRef]
- Mennigen, J.A.; Thompson, L.M.; Bell, M.; Tellez Santos, M.; Gore, A.C. Transgenerational effects of polychlorinated biphenyls: 1. Development and physiology across 3 generations of rats. Environ. Health. 2018, 17, 18. [Google Scholar] [CrossRef] [PubMed]
- Sekaran, S.; Jagadeesan, A. In utero exposure to phthalate downregulates critical genes in Leydig cells of F1 male progeny. J. Cell Biochem. 2015, 116, 1466–1477. [Google Scholar] [CrossRef] [PubMed]
- Brieño-Enríquez, M.A.; García-López, J.; Cárdenas, D.B.; Guibert, S.; Cleroux, E.; Děd, L.; Hourcade Jde, D.; Pěknicová, J.; Weber, M.; Del Mazo, J. Exposure to endocrine disruptor induces transgenerational epigenetic deregulation of microRNAs in primordial germ cells. PLoS ONE 2015, 10, e0124296. [Google Scholar] [CrossRef]
- Nilsson, E.E.; Ben Maamar, M.; Skinner, M.K. Role of epigenetic transgenerational inheritance in generational toxicology. Environ. Epigenet. 2022, 8, dvac001. [Google Scholar] [CrossRef]
- Okano, M.; Xie, S.; Li, E. Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltransferases. Nat. Genet. 1998, 19, 219–220. [Google Scholar] [CrossRef]
- Okano, M.; Bell, D.W.; Haber, D.A.; Li, E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 1999, 99, 247–257. [Google Scholar] [CrossRef]
- Kohli, R.M.; Zhang, Y. TET enzymes, TDG and the dynamics of DNA demethylation. Nature 2013, 502, 472–479. [Google Scholar] [CrossRef] [PubMed]
- Ito, S.; D’Alessio, A.C.; Taranova, O.V.; Hong, K.; Sowers, L.C.; Zhang, Y. Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature 2010, 466, 1129–1133. [Google Scholar] [CrossRef]
- Putiri, E.L.; Tiedemann, R.L.; Thompson, J.J.; Liu, C.; Ho, T.; Choi, J.H.; Robertson, K.D. Distinct and overlapping control of 5-methylcytosine and 5-hydroxymethylcytosine by the TET proteins in human cancer cells. Genome Biol. 2014, 15, R81. [Google Scholar] [CrossRef] [PubMed]
- Waddell, A.R.; Huang, H.; Liao, D. CBP/p300: Critical Co-Activators for Nuclear Steroid Hormone Receptors and Emerging Therapeutic Targets in Prostate and Breast Cancers. Cancers 2021, 13, 2872. [Google Scholar] [CrossRef] [PubMed]
- Osada, S.; Nishikawa, J.; Nakanishi, T.; Tanaka, K.; Nishihara, T. Some organotin compounds enhance histone acetyltransferase activity. Toxicol. Lett. 2005, 155, 329–335. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rebuzzini, P.; Fabozzi, G.; Cimadomo, D.; Ubaldi, F.M.; Rienzi, L.; Zuccotti, M.; Garagna, S. Multi- and Transgenerational Effects of Environmental Toxicants on Mammalian Reproduction. Cells 2022, 11, 3163. https://doi.org/10.3390/cells11193163
Rebuzzini P, Fabozzi G, Cimadomo D, Ubaldi FM, Rienzi L, Zuccotti M, Garagna S. Multi- and Transgenerational Effects of Environmental Toxicants on Mammalian Reproduction. Cells. 2022; 11(19):3163. https://doi.org/10.3390/cells11193163
Chicago/Turabian StyleRebuzzini, Paola, Gemma Fabozzi, Danilo Cimadomo, Filippo Maria Ubaldi, Laura Rienzi, Maurizio Zuccotti, and Silvia Garagna. 2022. "Multi- and Transgenerational Effects of Environmental Toxicants on Mammalian Reproduction" Cells 11, no. 19: 3163. https://doi.org/10.3390/cells11193163
APA StyleRebuzzini, P., Fabozzi, G., Cimadomo, D., Ubaldi, F. M., Rienzi, L., Zuccotti, M., & Garagna, S. (2022). Multi- and Transgenerational Effects of Environmental Toxicants on Mammalian Reproduction. Cells, 11(19), 3163. https://doi.org/10.3390/cells11193163