Liquid Biopsy and the Translational Bridge from the TIME to the Clinic
Abstract
:1. Molecular Tumor Biology Can Reflect the TIME
2. Liquid Biopsy Reflects the Molecular Tumor Biology
3. A Composite Assay Liquid Biopsy Is Needed to Fully Reflect the TIME
4. Improving Liquid Biopsy to Better Assess the TIME
5. Improving the Bridge to Translate the TIME into Effective Therapy
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Binnewies, M.; Roberts, E.; Kersten, K.; Chan, V.; Fearon, D.; Merad, M.; Coussins, L.; Gabrilovich, D.; Ostrand-Rosenberg, S.; Hedrick, M.; et al. Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat. Med. 2018, 24, 541–550. [Google Scholar] [CrossRef] [PubMed]
- Kelly, R.; Turner, R.; Chen, Y.-W.; Rigas, J.; Fernandes, A.; Karve, S. Complications and Economic Burden Associated with Obtaining Tissue for Diagnosis and Molecular Analysis in Patients with Non-Small Cell Lung Cancer in the United States. J. Oncol. Pract. 2019, 15, e717–e727. [Google Scholar] [CrossRef] [PubMed]
- Shirasawa, M.; Yoshida, T.; Shimoda, Y.; Takayanagi, D.; Shiraishi, K.; Kubo, T.; Mitani, S.; Matsumoto, Y.; Masuda, K.; Shinno, Y.; et al. Differential Immune-related Microenvironment Determines Programmed Cell Death Protein-1/Programmed Death-Ligand 1 Blockade Efficacy in Patients with Advanced NSCLC. J. Thorac. Oncol. 2021, 16, 2078–2090. [Google Scholar] [CrossRef] [PubMed]
- Launonen, I.-M.; Lyytikainen, N.; Casado, J.; Anttila, E.; Szabo, A.; Haltia, U.-M.; Jacobson, C.; Lin, J.; Maliga, Z.; Howitt, B.; et al. Single-cell tumor-immune microenvironment of BRCA1/2 mutated high-grade serous ovarian cancer. Nat. Commun. 2022, 13, 835. [Google Scholar] [CrossRef]
- Gainor, J.; Shaw, A.; Sequist, L.; Fu, X.; Azzoli, C.; Piotrowska, Z.; Huynh, G.; Zhao, L.; Fulton, L.; Schultz, K.; et al. EGFR Mutations and ALK Rearrangement Are Associated with Low Response Rates to PD-1 Pathway Blockade in Non-Small Cell Lung Cancer: A Retrospective Analysis. Clin. Cancer Res. 2016, 22, 4585–4593. [Google Scholar] [CrossRef] [Green Version]
- Skoulidis, F.; Heymach, J. Co-occurring genomic alterations in non-small-cell lung cancer biology and therapy. Nat. Rev. Cancer 2019, 19, 495–509. [Google Scholar] [CrossRef]
- Corte, C.; Sen, T.; Gay, C.; Ramkumar, K.; Diao, L.; Cardnell, R.; Rodriguez, B.; Stewart, C.A.; Papadimitrakopoulou, V.; Gibson, L.; et al. STING Pathway Expression Identifies NSCLC with an Immune-Responsive Phenotype. J. Thorac. Oncol. 2020, 15, 777–791. [Google Scholar] [CrossRef]
- Mok, T.; Wu, Y.-L.; Kudoba, I.; Kowalski, D.; Cho, B.; Turna, H.; Castro, G., Jr.; Srimuninnimit, V.; Laktionov, K.; Bondarenko, I.; et al. Pembrolizumab versus chemotherapy for previously untreated, PD-L1 expressing, locally advanced or metastatic non-small-cell lung cancer (KEYNOTE-042): A randomized, open-label, controlled, phase 3 trial. Lancet 2019, 393, 1819–1830. [Google Scholar] [CrossRef]
- Conroy, J.; Pable, S.; Nesline, M.; Glenn, S.; Papanicolau-Sengos, A.; Burgher, B.; Andreas, J.; Giamo, V.; Wang, Y.; Lenzo, F.; et al. Next generation sequencing of PD-L1 for predicting response to immune checkpoint inhibitors. J. Immuno Ther. Cancer 2019, 7, 18. [Google Scholar] [CrossRef] [Green Version]
- Goodman, A.; Piccioni, D.; Kato, S.; Boichard, A.; Wang, H.-Y.; Frampton, G.; Lippman, S.; Connelly, C.; Fabrizio, D.; Miller, V.; et al. Prevalence of PDL1 Amplification and Preliminary Response to Immune Checkpoint Blockade in Solid Tumors. JAMA Oncol. 2018, 4, 1237–1244. [Google Scholar] [CrossRef]
- Wang, F.; Zhao, Q.; Wang, Y.-N.; Jin, Y.; He, M.-M.; Liu, Z.-X.; Xu, R.-H. Evaluation of POLE and POLD1 Mutations as Biomarkers for Immunotherapy Outcomes Across Multiple Cancer Types. JAMA Oncol. 2019, 5, 1504–1506. [Google Scholar] [CrossRef] [Green Version]
- Garmezy, B.; Gheeya, J.; Lin, H.; Huang, Y.; Kim, T.; Jiang, X.; Thein, K.; Pilie, P.; Zeineddine, F.; Wang, W.; et al. Clinical and Molecular Characterization of POLE Mutations as Predictive Biomarkers of Response to Immune Checkpoint Inhibitors in Advanced Cancers. JCO Precis. Oncol. 2022, 6, e2100267. [Google Scholar] [CrossRef]
- Zhou, Z.; Li, M. Evaluation of BRCA1 and BRCA2 as Indicators of Response to Immune Checkpoint Inhibitors. JAMA Netw. Open 2021, 4, e217728. [Google Scholar] [CrossRef]
- Shen, J.; Ju, Z.; Zhao, W.; Wang, L.; Peng, Y.; Ge, Z.; Nagel, Z.; Zou, J.; Wang, C.; Kapoor, P.; et al. ARID1A deficiency promotes mutability and potentiates therapeutic antitumor immunity unleashed by immune checkpoint blockade. Nat. Med. 2018, 24, 556–562. [Google Scholar] [CrossRef]
- Lu, M.; Zhao, B.; Liu, M.; Wu, L.; Li, Y.; Zhai, Y.; Shen, X. Pan-cancer analysis of SETD2 mutation and its association with the efficacy of immunotherapy. Precis. Oncol. 2021, 5, 51. [Google Scholar] [CrossRef]
- Fountzilas, E.; Kurzrock, R.; Vo, H.; Tsimberidou, A.-M. Wedding of Molecular Alterations and Immune Checkpoint Blockade: Genomics as a Matchmaker. J. Natl. Cancer Inst. 2021, 113, 1634–1647. [Google Scholar] [CrossRef]
- Vidotto, T.; Melo, C.; Castelli, E.; Koti, M.; dos Reis, R.; Squire, J. Emerging role of PTEN loss in evasion of the immune response to tumours. Br. J. Cancer 2020, 122, 1732–1743. [Google Scholar] [CrossRef]
- Kim, Y.; Kim, C.; Lee, H.; Lee, S.-H.; Kim, H.; Lee, S.; Cha, H.; Hong, S.; Kim, K.; Seo, S.; et al. Comprehensive Clinical and Genetic Characterization of Hyperprogression Based on Volumetry in Advanced Non-Small Cell Lung Cancer Treated with Immune Checkpoint Inhibitor. J. Thorac. Oncol. 2019, 14, 1608–1618. [Google Scholar] [CrossRef]
- Lau, S.; Fares, A.; Le, L.; Mackay, K.; Soberano, S.; Cham, S.; Smith, E.; Ryan, M.; Tsao, M.; Badbury, P.; et al. Subtypes of EGFR- and HER2-Mutation Metastatic NSCLC Influence Response to Immune Checkpoint Inhibitors. Clin. Lung Cancer 2021, 22, 253–259. [Google Scholar] [CrossRef]
- Lin, A.; Zhang, J.; Luo, P. Crosstalk Between the MSI Status and Tumor Microenvironment in Colorectal Cancer. Front. Immunol. 2020, 11, 2039. [Google Scholar] [CrossRef]
- Narayanan, S.; Kawaguchi, T.; Peng, X.; Qi, Q.; Liu, S.; Yan, L.; Takabe, K. Tumor Infiltrating Lymphocytes and Macrophages Improve Survival in Microsatellite Unstable Colorectal Cancer. Sci. Rep. 2019, 9, 13455. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Otto, W.; Macrae, F.; Sierdzinski, J.; Smaga, J.; Krol, M.; Wilinska, E.; Zieniewicz, K. Microsatellite instability and manifestations of angiogenesis in stage IV of sporadic colorectal cancer. Medicine 2019, 98, e13956. [Google Scholar] [CrossRef] [PubMed]
- Sha, D.; Jin, Z.; Budczies, J.; Kluck, K.; Stenzinger, A.; Sinicrope, F. Tumor Mutational Burden as a Predictive Biomarker in Solid Tumors. Cancer Discov. 2020, 10, 1808–1825. [Google Scholar] [CrossRef] [PubMed]
- Said, R.; Guibert, N.; Oxnard, G.; Tsimberidou, A. Circulating tumor DNA analysis in the era of precision oncology. Oncotarget 2020, 11, 188–211. [Google Scholar] [CrossRef] [Green Version]
- Aggarwal, C.; Thompson, J.; Black, T.; Katz, S.; Fan, R.; Yee, S.; Chien, A.; Evans, T.; Baumi, J.; Alley, E.; et al. Clinical Implications of Plasma-Based Genotyping with the Delivery of Personalized Therapy in Metastatic Non-Small Cell Lung Cancer. JAMA Oncol. 2019, 5, 173–180. [Google Scholar] [CrossRef]
- Leighl, N.; Page, R.; Raymond, V.; Daniel, D.; Divers, S.; Reckamp, K.; Villalona-Calero, M.; Dix, D.; Lanman, R.; Papadimitrakopoulou, V. Clinical Utility of Comprehensive Cell-free DNA Analysis to Identify Genomic Biomarkers in Patients with Newly Diagnosed Metastatic Non-Small Cell Lung Cancer. Clin Cancer Res. 2019, 25, 4691–4700. [Google Scholar] [CrossRef] [Green Version]
- Palmero, R.; Taus, A.; Viteri, S.; Majem, M.; Carcereny, E.; Garde-Noguera, J.; Felipd, E.; Nadal, E.; Malfettone, A.; Sampayo, M.; et al. Biomarker Discovery and Outcomes for Comprehensive Cell-Free Circulating Tumor DNA versus Standard-of-Care Tissue Testing in Advanced Non-Small Cell Lung Cancer. JCO Precis. Oncol. 2021, 5, 93–102. [Google Scholar] [CrossRef]
- Parikh, A.; Leshchiner, I.; Elagina, L.; Goyal, L.; Levovitz, C.; Siravegna, G.; Livitz, D.; Rhrissorrakrai, K.; Martin, E.; Van Seventer, E.; et al. Liquid versus tissue biopsy for detecting acquired resistance and tumor heterogeneity in gastrointestinal cancers. Nat. Med. 2019, 25, 1415–1421. [Google Scholar] [CrossRef]
- Vidula, N.; Niemierko, A.; Malvarosa, G.; Yuen, M.; Lennerz, J.; Iafrate, A.J.; Wander, S.; Spring, L.; Juric, D.; Isakoff, S.; et al. Tumor Tissue-versus Plasma-based Genotyping for Selection of Matched Therapy and Impact on Clinical Outcomes in Patients with Metastatic Breast Cancer. Clin. Cancer Res. 2021, 27, 3404–3413. [Google Scholar] [CrossRef]
- Rolfo, C.; Mack, P.; Scagliotti, G.; Aggarwal, C.; Arcila, M.; Barlesi, F.; Bivona, T.; Diehn, M.; Dive, C.; Dziadziuszko, R.; et al. Liquid Biopsy for Advanced NSCLC: A Consensus Statement from the International Association for the Study of Lung Cancer. J. Thorac. Oncol. 2021, 16, 1647–1662. [Google Scholar] [CrossRef]
- Phallen, J.; Sausen, M.; Adleff, V.; Leal, A.; Hruban, C.; White, J.; Anagnostou, V.; Fiksel, J.; Cristiano, S.; Papp, E.; et al. Direct detection of early-stage cancers using circulating tumor DNA. Sci. Transl. Med. 2017, 9, eaan2415. [Google Scholar] [CrossRef] [Green Version]
- Vu, P.; Khagi, Y.; Riviere, P.; Goodman, A.; Kurzrock, R. Total Number of Alterations in Liquid Biopsies Is an Independent Predictor for Survival in Patients with Advanced Cancers. JCO Precis. Oncol. 2020, 4, 192–201. [Google Scholar] [CrossRef]
- Lam, V.; Zhang, J.; Wu, C.; Tran, H.; Li, L.; Diao, L.; Wang, J.; Rinsurongkawong, W.; Raymond, V.; Lanman, R.; et al. Genotype-Specific Differences in Circulating Tumor DNA Levels in Advanced NSCLC. J. Thorac. Oncol. 2020, 16, 601–609. [Google Scholar] [CrossRef]
- Cho, M.-S.; Park, C.; Lee, S.; Park, H. Clinicopathological parameters for circulating tumor DNA shedding in surgically resected non-small cell lung cancer with EGFR or KRAS mutation. PLoS ONE 2020, 15, e0230622. [Google Scholar] [CrossRef] [Green Version]
- Vega, D.; Nishimura, K.; Zariffa, N.; Thompson, J.; Hoering, A.; Cilento, V.; Rosenthal, A.; Anagnostou, V.; Baden, J.; Beaver, J.; et al. Changes in Circulating Tumor DNA Reflect Clinical Benefit Across Multiple Studies of Patients with Non-Small-Cell Lung Cancer Treated with Immune Checkpoint Inhibitors. JCO Precis. Oncol. 2022, 6, e2100372. [Google Scholar] [CrossRef]
- Gouda, M.; Huang, H.; Piha-Paul, S.; Call, S.G.; Karp, D.; Fu, S.; Naing, A.; Subbiah, V.; Pant, S.; Dustin, D.; et al. Longitudinal Monitoring of Circulating Tumor DNA to Predict Treatment Outcomes in Advanced Cancers. JCO Precis. Oncol. 2022, 6, e2100512. [Google Scholar] [CrossRef]
- De Guillebon, E.; Dardenne, A.; Saldmann, A.; Seguier, S.; Tran, T.; Paolini, L.; Lebbe, C.; Tartour, E. Beyond the concept of cold and hot tumors for the development of novel predictive biomarkers and the rational design of immunotherapy combinations. Inter. J. Cancer. 2020, 147, 1509–1518. [Google Scholar] [CrossRef]
- Tawbi, H.; Schadendorf, D.; Lipson, E.; Ascierto, P.; Matamala, L.; Gutierrez, E.; Rutkowski, P.; Gogas, H.; Lao, C.; De Menezes, J.; et al. Relatlimab and Nivolumab versus Nivolumab in Untreated Advanced Melanoma. N. Engl. J. Med. 2022, 386, 24–34. [Google Scholar] [CrossRef]
- Cho, B.; Abreu, D.; Hussein, M.; Cobo, M.; Patel, A.; Secen, N.; Lee, K.; Massuti, B.; Hiret, S.; Yang, J.; et al. Tiragolumab plus atezolizumab versus placebo plus atezolizumab as a first-line treatment for PD-L1 selected non-small-cell lung cancer (CITYSCAPE): Primary and follow-up analyses of a randomized, double-blind, phase 2 study. Lancet Oncol. 2022, 23, 781–792. [Google Scholar] [CrossRef]
- Tang, T.; Huang, X.; Zhang, G.; Hong, Z.; Bai, X.; Liang, T. Advantages of targeting the tumor immune microenvironment over blocking immune checkpoint in cancer immunotherapy. Signal Transduct. Target. Ther. 2021, 6, 72. [Google Scholar] [CrossRef]
- Ballot, E.; Ladoire, S.; Routy, B.; Truntzer, C.; Ghiringhelli, F. Tumor Infiltrating Lymphocytes Signature as a New Pan-Cancer Predictive Biomarker of Anti PD-1/PD-L1 Efficacy. Cancers 2020, 12, 2418. [Google Scholar] [CrossRef] [PubMed]
- Naqash, A.; Stroud, G.; Butt, M.; Dy, G.; Hegde, A.; Muzaffar, M.; Yang, L.; Hafiz, M.; Cherry, C.; Walker, P. Co-relation of overall survival with peripheral blood-based inflammatory biomarkers in advanced stage non-small cell lung cancer treated with anti-programmed cell death-1 therapy: Results from a single institutional database. Acta Oncol. 2017, 57, 867–872. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rich, P.; Mitchell, B.; Schaefer, E.; Walker, P.; Dubay, J.; Boyd, J.; Oubre, D.; Page, R.; Khalil, M.; Sinha, S.; et al. Real-world performance of blood-based proteomic profiling in first-line immunotherapy treatment in advanced stage non-small cell lung cancer. J. Immunother. Cancer 2021, 9, e002989. [Google Scholar] [CrossRef] [PubMed]
- Hemminki, O.; dos Santos, J.; Hemminki, A. Oncolytic viruses for cancer immunotherapy. J. Hemat. Oncol. 2020, 13, 84. [Google Scholar] [CrossRef]
- Zhao, J.; Chen, S.; Zhu, L.; Zhang, L.; Liu, J.; Xu, D.; Tian, G.; Jiang, T. Antitumor Effect and Immune Response of Nanosecond Pulsed Fields in Pancreatic Cancer. Front. Oncol. 2020, 10, 621092. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; Probst, H.; Vuong, V.; Landshammer, A.; Muth, S.; Yagita, H.; Schwendener, R.; Pruschy, M.; Knuth, A.; van den Broek, M. Radiotherapy Promotes tumor-Specific Effector CD8+ T Cells via Dendritic Cell Activation. J. Immunol. 2012, 189, 558–566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, P.; Chen, D.; Zhu, B.; Chen, W.; Xie, Q.; Wang, Y.; Tan, Q.; Yuan, B.; Zuo, X.; Huang, C.; et al. Stereotactic Body radiotherapy is Effective in Modifying the Tumor Genome and Tumor Immune Microenvironment in Non-Small Cell Lung Cancer or Lung Metastatic Cancer. Front. Immunol. 2020, 11, 594212. [Google Scholar] [CrossRef]
- Chen, E.; Chaudhari, A.; Nabet, B.; Chabon, J.; Merriott, D.; Loo, B.; Alizadeh, A.; Diehn, M. Analysis of Circulating Tumor DNA Kinetics during Stereotactic Ablative Radiation Therapy for Non-Small Cell Lung Cancer. Int. J. Raad Oncol. Biol. Phys. 2018, 102, e767. [Google Scholar] [CrossRef]
- Bortolin, M.; Tedeschi, R.; Bidoli, E.; Furlan, C.; Basaglia, G.; Minatel, E.; Gobitti, C.; Franchin, G.; Trovo, M.; De Paoli, P. Cell-free DNA as a prognostic marker in stage I non-small-cell lung cancer patients undergoing stereotactic body radiotherapy. Biomarkers 2015, 20, 422–428. [Google Scholar] [CrossRef]
- Kageyama, S.; Nihei, K.; Karasawa, K.; Sawada, T.; Koizumi, E.; Yamaguchi, S.; Kato, S.; Hojo, H.; Motegi, A.; Tsuchiharaa, K.; et al. Radiotherapy increases plasma levels of tumoral cell-free DNA in non-small cell lung cancer patients. Oncotarget 2018, 9, 19368–19378. [Google Scholar] [CrossRef]
- Corbetta, M.; Chiereghin, C.; De Simone, I.; Solda, G.; Zuradelli, M.; Giunta, M.; Lughezzani, G.; Buffi, N.; Hurle, R.; Saita, A.; et al. Post-biopsy Cell-Free DNA From Blood: An Open Window on Primary Prostate Cancer Genetics and Biology. Front. Oncol. 2021, 11, 654140. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Walker, P. Liquid Biopsy and the Translational Bridge from the TIME to the Clinic. Cells 2022, 11, 3114. https://doi.org/10.3390/cells11193114
Walker P. Liquid Biopsy and the Translational Bridge from the TIME to the Clinic. Cells. 2022; 11(19):3114. https://doi.org/10.3390/cells11193114
Chicago/Turabian StyleWalker, Paul. 2022. "Liquid Biopsy and the Translational Bridge from the TIME to the Clinic" Cells 11, no. 19: 3114. https://doi.org/10.3390/cells11193114
APA StyleWalker, P. (2022). Liquid Biopsy and the Translational Bridge from the TIME to the Clinic. Cells, 11(19), 3114. https://doi.org/10.3390/cells11193114