Pro-Inflammatory Chemokines CCL5, CXCL12, and CX3CL1 Bind to and Activate Platelet Integrin αIIbβ3 in an Allosteric Manner
Abstract
:1. Introduction
2. Experimental Procedures
2.1. Binding of Site 2 Peptide to CCL5
2.2. Binding of Soluble αIIbβ3 to Chemokines
2.3. Activation of Soluble αIIbβ3 by Chemokines
2.4. Activation of Cell-Surface αIIbβ3 by Chemokines
2.5. Docking Simulation
2.6. Statistical Analysis
3. Results
3.1. CCL5 Binds to and Activates Integrin αvβ3
3.2. CCL5 Binds to and Activates Soluble αIIbβ3
3.3. CXCL12 Binds to and Activates Soluble αIIbβ3
3.4. CX3CL1 Binds to and Activates Soluble αIIbβ3
3.5. CCL5, CXCL12, and CX3CL1 more Efficiently Activate Cell-Surface αIIbβ3 Than Soluble αIIbβ3
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mori, S.; Wu, C.-Y.; Yamaji, S.; Saegusa, J.; Shi, B.; Ma, Z.; Kuwabara, Y.; Lam, K.S.; Isseroff, R.R.; Takada, Y.K.; et al. Direct Binding of Integrin Alphavbeta3 to Fgf1 Plays a Role in Fgf1 Signaling. J. Biol. Chem. 2008, 283, 18066–18075. [Google Scholar] [CrossRef]
- Saegusa, J.; Yamaji, S.; Ieguchi, K.; Wu, C.-Y.; Lam, K.S.; Liu, F.-T.; Takada, Y.K.; Takada, Y. The Direct Binding of Insulin-Like Growth Factor-1 (Igf-1) to Integrin Alphavbeta3 Is Involved in Igf-1 Signaling. J. Biol. Chem. 2009, 284, 24106–24114. [Google Scholar] [CrossRef]
- Takada, Y.; Ye, X.; Simon, S. The Integrins. Genome Biol. 2007, 8, 215. [Google Scholar] [CrossRef]
- Hynes, R.O. Integrins: Bidirectional, Allosteric Signaling Machines. Cell 2002, 110, 673–687. [Google Scholar] [CrossRef]
- Fujita, M.; Takada, Y.K.; Takada, Y. Integrins Alphavbeta3 and Alpha4beta1 Act as Coreceptors for Fractalkine, and the Integrin-Binding Defective Mutant of Fractalkine Is an Antagonist of Cx3cr1. J. Immunol. 2012, 189, 5809–5819. [Google Scholar] [CrossRef] [PubMed]
- Bazan, J.F.; Bacon, K.B.; Hardiman, G.; Wang, W.; Soo, K.; Rossi, D.; Greaves, D.R.; Zlotnik, A.; Schall, T.J. A New Class of Membrane-Bound Chemokine with a Cx3c Motif. Nature 1997, 385, 640–644. [Google Scholar] [CrossRef]
- Chapman, G.A.; Moores, K.; Harrison, D.; Campbell, C.A.; Stewart, B.R.; Strijbos, P.J. Fractalkine Cleavage from Neuronal Membranes Represents an Acute Event in the Inflammatory Response to Excitotoxic Brain Damage. J. Neurosci. 2000, 20, RC87. [Google Scholar] [CrossRef]
- Garton, K.J.; Gough, P.J.; Blobel, C.P.; Murphy, G.; Greaves, D.; Dempsey, P.J.; Raines, E.W. Tumor Necrosis Factor-Alpha-Converting Enzyme (Adam17) Mediates the Cleavage and Shedding of Fractalkine (Cx3cl1). J. Biol. Chem. 2001, 276, 37993–38001. [Google Scholar] [CrossRef]
- Hundhausen, C.; Misztela, D.; Berkhout, T.A.; Broadway, N.; Saftig, P.; Reiss, K.; Hartmann, D.; Fahrenholz, F.; Postina, R.; Matthews, V.; et al. The Disintegrin-Like Metalloproteinase Adam10 Is Involved in Constitutive Cleavage of Cx3cl1 (Fractalkine) and Regulates Cx3cl1-Mediated Cell-Cell Adhesion. Blood 2003, 102, 1186–1195. [Google Scholar] [CrossRef]
- Fong, A.M.; Robinson, L.A.; Steeber, D.A.; Tedder, T.F.; Yoshie, O.; Imai, T.; Patel, D.D. Fractalkine and Cx3cr1 Mediate a Novel Mechanism of Leukocyte Capture, Firm Adhesion, and Activation under Physiologic Flow. J. Exp. Med. 1998, 188, 1413–1419. [Google Scholar] [CrossRef]
- Imai, T.; Hieshima, K.; Haskell, C.; Baba, M.; Nagira, M.; Nishimura, M.; Kakizaki, M.; Takagi, S.; Nomiyama, H.; Schall, T.J.; et al. Identification and Molecular Characterization of Fractalkine Receptor Cx3cr1, Which Mediates Both Leukocyte Migration and Adhesion. Cell 1997, 91, 521–530. [Google Scholar] [CrossRef]
- Goda, S.; Imai, T.; Yoshie, O.; Yoneda, O.; Inoue, H.; Nagano, Y.; Okazaki, T.; Imai, H.; Bloom, E.T.; Domae, N.; et al. Cx3c-Chemokine, Fractalkine-Enhanced Adhesion of Thp-1 Cells to Endothelial Cells through Integrin-Dependent and -Independent Mechanisms. J. Immunol. 2000, 164, 4313–4320. [Google Scholar] [CrossRef]
- Fujita, M.; Takada, Y.K.; Takada, Y. The Chemokine Fractalkine Can Activate Integrins without Cx3cr1 through Direct Binding to a Ligand-Binding Site Distinct from the Classical Rgd-Binding Site. PLoS ONE 2014, 9, e96372. [Google Scholar] [CrossRef]
- Fujita, M.; Davari, P.; Takada, Y.K.; Takada, Y. Stromal Cell-Derived Factor-1 (Cxcl12) Activates Integrins by Direct Binding to an Allosteric Ligand-Binding Site (Site 2) of Integrins without Cxcr4. Biochem. J. 2018, 475, 723–732. [Google Scholar] [CrossRef]
- Bleul, C.C.; Farzan, M.; Choe, H.; Parolin, C.; Clark-Lewis, I.; Sodroski, J.; Springer, T.A. The Lymphocyte Chemoattractant Sdf-1 Is a Ligand for Lestr/Fusin and Blocks Hiv-1 Entry. Nature 1996, 382, 829–833. [Google Scholar] [CrossRef]
- Bleul, C.C.; Fuhlbrigge, R.C.; Casasnovas, J.M.; Aiuti, A.; Springer, T.A. A Highly Efficacious Lymphocyte Chemoattractant, Stromal Cell-Derived Factor 1 (Sdf-1). J. Exp. Med. 1996, 184, 1101–1109. [Google Scholar] [CrossRef]
- Balabanian, K.; Lagane, B.; Infantino, S.; Chow, K.Y.C.; Harriague, J.; Moepps, B.; Arenzana-Seisdedos, F.; Thelen, M.; Bachelerie, F. The Chemokine Sdf-1/Cxcl12 Binds to and Signals through the Orphan Receptor Rdc1 in T Lymphocytes. J. Biol. Chem. 2005, 280, 35760–35766. [Google Scholar] [CrossRef]
- Burns, J.M.; Summers, B.C.; Wang, Y.; Melikian, A.; Berahovich, R.; Miao, Z.; Penfold, M.E.T.; Sunshine, M.J.; Littman, D.R.; Kuo, C.J.; et al. A Novel Chemokine Receptor for Sdf-1 and I-Tac Involved in Cell Survival, Cell Adhesion, and Tumor Development. J. Exp. Med. 2006, 203, 2201–2213. [Google Scholar] [CrossRef]
- Busillo, J.M.; Benovic, J.L. Regulation of Cxcr4 Signaling. Biochim. Biophys. Acta 2007, 1768, 952–963. [Google Scholar] [CrossRef]
- Vlahakis, S.R.; Villasis-Keever, A.; Gomez, T.; Vanegas, M.; Vlahakis, N.; Paya, C.V. G Protein-Coupled Chemokine Receptors Induce Both Survival and Apoptotic Signaling Pathways. J. Immunol. 2002, 169, 5546–5554. [Google Scholar] [CrossRef] [Green Version]
- Nanki, T.; Hayashida, K.; El-Gabalawy, H.S.; Suson, S.; Shi, K.; Girschick, H.J.; Yavuz, S.; Lipsky, P.E. Stromal Cell-Derived Factor-1-Cxc Chemokine Receptor 4 Interactions Play a Central Role in Cd4+ T Cell Accumulation in Rheumatoid Arthritis Synovium. J. Immunol. 2000, 165, 6590–6598. [Google Scholar] [CrossRef]
- Dotan, I.; Werner, L.; Vigodman, S.; Weiss, S.; Brazowski, E.; Maharshak, N.; Chen, O.; Tulchinsky, H.; Halpern, Z.; Guzner-Gur, H. Cxcl12 Is a Constitutive and Inflammatory Chemokine in the Intestinal Immune System. Inflamm. Bowel Dis. 2010, 16, 583–592. [Google Scholar] [CrossRef]
- Wang, A.; Guilpain, P.; Chong, B.F.; Chouzenoux, S.; Guillevin, L.; Du, Y.; Zhou, X.J.; Lin, F.; Fairhurst, A.-M.; Boudreaux, C.; et al. Dysregulated Expression of Cxcr4/Cxcl12 in Subsets of Patients with Systemic Lupus Erythematosus. Arthritis Rheum. 2010, 62, 3436–3446. [Google Scholar] [CrossRef]
- Krumbholz, M.; Theil, D.; Cepok, S.; Hemmer, B.; Kivisäkk, P.; Ransohoff, R.M.; Hofbauer, M.; Farina, C.; Derfuss, T.; Hartle, C.; et al. Chemokines in Multiple Sclerosis: Cxcl12 and Cxcl13 up-Regulation Is Differentially Linked to Cns Immune Cell Recruitment. Brain 2006, 129, 200–211. [Google Scholar] [CrossRef]
- Bakogiannis, C.; Sachse, M.; Stamatelopoulos, K.; Stellos, K. Platelet-Derived Chemokines in Inflammation and Atherosclerosis. Cytokine 2019, 122, 154157. [Google Scholar] [CrossRef]
- Ginsberg, M.H. Integrin Activation. BMB Rep. 2014, 47, 655–659. [Google Scholar] [CrossRef]
- Shattil, S.J.; Kim, C.; Ginsberg, M.H. The Final Steps of Integrin Activation: The End Game. Nat. Rev. Mol. Cell Biol. 2010, 11, 288–300. [Google Scholar] [CrossRef]
- Han, J.; Lim, C.J.; Watanabe, N.; Soriani, A.; Ratnikov, B.; Calderwood, D.A.; Puzon-McLaughlin, W.; Lafuente, E.M.; Boussiotis, V.A.; Shattil, S.J.; et al. Reconstructing and Deconstructing Agonist-Induced Activation of Integrin Alphaiibbeta3. Curr. Biol. 2006, 16, 1796–1806. [Google Scholar] [CrossRef]
- Schurpf, T.; Springer, T.A. Regulation of Integrin Affinity on Cell Surfaces. EMBO J. 2011, 30, 4712–4727. [Google Scholar] [CrossRef]
- Bunch, T.A. Integrin Alphaiibbeta3 Activation in Chinese Hamster Ovary Cells and Platelets Increases Clustering Rather than Affinity. J. Biol. Chem. 2010, 285, 1841–1849. [Google Scholar] [CrossRef] [Green Version]
- Appay, V.; Rowland-Jones, S.L. Rantes: A Versatile and Controversial Chemokine. Trends Immunol. 2001, 22, 83–87. [Google Scholar] [CrossRef]
- Zeng, Z.; Lan, T.; Wei, Y.; Wei, X. Ccl5/Ccr5 Axis in Human Diseases and Related Treatments. Genes Dis. 2022, 9, 12–27. [Google Scholar] [CrossRef]
- Krensky, A.M.; Ahn, Y.T. Mechanisms of Disease: Regulation of Rantes (Ccl5) in Renal Disease. Nat. Clin. Pract. Nephrol. 2007, 3, 164–170. [Google Scholar] [CrossRef]
- Lv, D.; Zhang, Y.; Kim, H.J.; Zhang, L.; Ma, X. Ccl5 as a Potential Immunotherapeutic Target in Triple-Negative Breast Cancer. Cell Mol. Immunol. 2013, 10, 303–310. [Google Scholar] [CrossRef]
- Kamata, T.; Irie, A.; Tokuhira, M.; Takada, Y. Critical Residues of Integrin Alphaiib Subunit for Binding of Alphaiibbeta3 (Glycoprotein Iib-Iiia) to Fibrinogen and Ligand-Mimetic Antibodies (Pac-1, Op-G2, and Lj-Cp3). J. Biol. Chem. 1996, 271, 18610–18615. [Google Scholar] [CrossRef]
- Yokoyama, K.; Zhang, X.P.; Medved, L.; Takada, Y. Specific Binding of Integrin Alpha V Beta 3 to the Fibrinogen Gamma and Alpha E Chain C-Terminal Domains. Biochemistry 1999, 38, 5872–5877. [Google Scholar] [CrossRef]
- Zhang, X.P.; Kamata, T.; Yokoyama, K.; Puzon-McLaughlin, W.; Takada, Y. Specific Interaction of the Recombinant Disintegrin-Like Domain of Mdc-15 (Metargidin, Adam-15) with Integrin Alphavbeta3. J. Biol. Chem. 1998, 273, 7345–7350. [Google Scholar] [CrossRef]
- Craig, D.B.; Dombkowski, A.A. Disulfide by Design 2.0: A Web-Based Tool for Disulfide Engineering in Proteins. BMC Bioinform. 2013, 14, 346. [Google Scholar] [CrossRef]
- Langer, H.; May, A.E.; Bultmann, A.; Gawaz, M. Adam 15 Is an Adhesion Receptor for Platelet Gpiib-Iiia and Induces Platelet Activation. Thromb. Haemost. 2005, 94, 555–561. [Google Scholar] [CrossRef]
- Fujita, M.; Zhu, K.; Fujita, C.K.; Zhao, M.; Lam, K.S.; Kurth, M.J.; Takada, Y.K.; Takada, Y. Proinflammatory Secreted Phospholipase A2 Type Iia (Spla-Iia) Induces Integrin Activation through Direct Binding to a Newly Identified Binding Site (Site 2) in Integrins Alphavbeta3, Alpha4beta1, and Alpha5beta1. J. Biol. Chem. 2015, 290, 259–271. [Google Scholar] [CrossRef] [Green Version]
- Farrell, D.H.; Thiagarajan, P. Binding of Recombinant Fibrinogen Mutants to Platelets. J. Biol. Chem. 1994, 269, 226–231. [Google Scholar] [CrossRef]
- Yokoyama, K.; Erickson, H.P.; Ikeda, Y.; Takada, Y. Identification of Amino Acid Sequences in Fibrinogen Gamma-Chain and Tenascin C C-Terminal Domains Critical for Binding to Integrin Alpha Vbeta 3. J. Biol. Chem. 2000, 275, 16891–16898. [Google Scholar] [CrossRef]
- Lishko, V.K.; Podolnikova, N.P.; Yakubenko, V.P.; Yakovlev, S.; Medved, L.; Yadav, S.P.; Ugarova, T.P. Multiple Binding Sites in Fibrinogen for Integrin Alphambeta2 (Mac-1). J. Biol. Chem. 2004, 279, 44897–44906. [Google Scholar] [CrossRef]
- Gailit, J.; Ruoslahti, E. Regulation of the Fibronectin Receptor Affinity by Divalent Cations. J. Biol. Chem. 1988, 263, 12927–12932. [Google Scholar] [CrossRef]
- Mould, A.P.; Akiyama, S.K.; Humphries, M.J. Regulation of Integrin Alpha 5 Beta 1-Fibronectin Interactions by Divalent Cations. Evidence for Distinct Classes of Binding Sites for Mn2+, Mg2+, and Ca2+. J. Biol. Chem. 1995, 270, 26270–26277. [Google Scholar] [CrossRef]
- Altieri, D.C. Occupancy of Cd11b/Cd18 (Mac-1) Divalent Ion Binding Site(S) Induces Leukocyte Adhesion. J. Immunol. 1991, 147, 1891–1898. [Google Scholar]
- Elices, M.J.; Urry, L.A.; Hemler, M.E. Receptor Functions for the Integrin Vla-3: Fibronectin, Collagen, and Laminin Binding Are Differentially Influenced by Arg-Gly-Asp Peptide and by Divalent Cations. J. Cell Biol. 1991, 112, 169–181. [Google Scholar] [CrossRef]
- Kolset, S.O.; Mann, D.M.; Uhlin-Hansen, L.; Winberg, J.O.; Ruoslahti, E. Serglycin-Binding Proteins in Activated Macrophages and Platelets. J. Leukoc. Biol. 1996, 59, 545–554. [Google Scholar] [CrossRef]
- Ye, F.; Kim, C.; Ginsberg, M.H. Reconstruction of Integrin Activation. Blood 2012, 119, 26–33. [Google Scholar] [CrossRef]
- Parody, T.R.; Stone, M.J. High Level Expression, Activation, and Antagonism of Cc Chemokine Receptors Ccr2 and Ccr3 in Chinese Hamster Ovary Cells. Cytokine 2004, 27, 38–46. [Google Scholar] [CrossRef]
- Ali, S.; Palmer, A.C.; Banerjee, B.; Fritchley, S.J.; Kirby, J.A. Examination of the Function of Rantes, Mip-1alpha, and Mip-1beta Following Interaction with Heparin-Like Glycosaminoglycans. J. Biol. Chem. 2000, 275, 11721–11727. [Google Scholar] [CrossRef] [Green Version]
- Mueller, A.; Mahmoud, N.G.; Goedecke, M.C.; McKeating, J.A.; Strange, P.G. Pharmacological Characterization of the Chemokine Receptor, Ccr5. Br. J. Pharmacol. 2002, 135, 1033–1043. [Google Scholar] [CrossRef]
- Ni, H.; Li, A.; Simonsen, N.; Wilkins, J.A. Integrin Activation by Dithiothreitol or Mn2+ Induces a Ligand-Occupied Conformation and Exposure of a Novel Nh2-Terminal Regulatory Site on the Beta1 Integrin Chain. J. Biol. Chem. 1998, 273, 7981–7987. [Google Scholar] [CrossRef]
- Luque, A.; Gomez, M.; Puzon, W.; Takada, Y.; Sanchez-Madrid, F.; Cabanas, C. Activated Conformations of Very Late Activation Integrins Detected by a Group of Antibodies (Huts) Specific for a Novel Regulatory Region (355–425) of the Common Beta 1 Chain. J. Biol. Chem. 1996, 271, 11067–11075. [Google Scholar] [CrossRef]
- Mould, A.P.; Barton, S.J.; Askari, J.A.; McEwan, P.A.; Buckley, P.A.; Craig, S.E.; Humphries, M.J. Conformational Changes in the Integrin Beta a Domain Provide a Mechanism for Signal Transduction Via Hybrid Domain Movement. J. Biol. Chem. 2003, 278, 17028–17035. [Google Scholar] [CrossRef]
- Du, X.P.; Plow, E.F.; Frelinger, A.L.; O’Toole, T.E., 3rd; Loftus, J.C.; Ginsberg, M.H. Ligands “Activate” Integrin Alpha Iib Beta 3 (Platelet Gpiib-Iiia). Cell 1991, 65, 409–416. [Google Scholar] [CrossRef]
- Arimori, T.; Miyazaki, N.; Mihara, E.; Takizawa, M.; Taniguchi, Y.; Cabañas, C.; Sekiguchi, K.; Takagi, J. Structural Mechanism of Laminin Recognition by Integrin. Nat. Commun. 2021, 12, 4012. [Google Scholar] [CrossRef]
CCL5 | αv | β3 |
---|---|---|
Phe12, Ala13, Tyr14, Ile15, Ala16, Arg17, Pro18, Met19, Pro20, Arg21, Ala22, His23, Thr43, Lys45, Arg47, Val49, Cys50, Asn52, Glu54, Lys55, Lys56, Trp57, Arg59, Glu60 Tyr61 | Met118, Lys119, Gln145, Asp146, Ile147, Asp148, Asp150, Gly151, Tyr178, Thr212, Ala215, Ile216, Phe217, Asp218, Asp219, Arg248, | Asp119, Ser121. Tyr122, Ser123, Met124, Lys125, Asp126, Asp127, Tyr166, Asp179, Met180, Thr182, Arg214, Asn215, Arg216, Asp217, Ala218, Pro219, Glu220, Asp251, Ala252, Lys253, Asn313, |
CCL5 | αv | β3 |
---|---|---|
Thr7, Thr8, Cys10, Phe12, Ala13, Tyr14, Ile15, Ala16, Arg17, Pro18, Met19, Pro20, Arg21, His23, Ser35, Asn36, Pro37, Thr43, Lys45, Arg47, Gln48, Val49, Asn52, Glu55, Lys56, Trp57, Tyr61 | Glu15, Gly16, Tyr18, Lys42, Asn44, Thr45, Thr46, Gln47, Pro48, Gly49, Ile50, Val51, Glu52, Ser90, His91 | Lys159, Pro160, Val161, Ser162, Met165, Glu171, Glu174, Asn175, Pro186, Met187, Phe188, Val266, Gln267, Val275, Gly276, Ser277, Asp278, His280, Tyr281, Ser282, Ala283, Thr285, Thr286 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Takada, Y.K.; Fujita, M.; Takada, Y. Pro-Inflammatory Chemokines CCL5, CXCL12, and CX3CL1 Bind to and Activate Platelet Integrin αIIbβ3 in an Allosteric Manner. Cells 2022, 11, 3059. https://doi.org/10.3390/cells11193059
Takada YK, Fujita M, Takada Y. Pro-Inflammatory Chemokines CCL5, CXCL12, and CX3CL1 Bind to and Activate Platelet Integrin αIIbβ3 in an Allosteric Manner. Cells. 2022; 11(19):3059. https://doi.org/10.3390/cells11193059
Chicago/Turabian StyleTakada, Yoko K., Masaaki Fujita, and Yoshikazu Takada. 2022. "Pro-Inflammatory Chemokines CCL5, CXCL12, and CX3CL1 Bind to and Activate Platelet Integrin αIIbβ3 in an Allosteric Manner" Cells 11, no. 19: 3059. https://doi.org/10.3390/cells11193059
APA StyleTakada, Y. K., Fujita, M., & Takada, Y. (2022). Pro-Inflammatory Chemokines CCL5, CXCL12, and CX3CL1 Bind to and Activate Platelet Integrin αIIbβ3 in an Allosteric Manner. Cells, 11(19), 3059. https://doi.org/10.3390/cells11193059