Explainable Artificial Intelligence Helps in Understanding the Effect of Fibronectin on Survival of Sepsis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Group
2.2. Blood Sample Collection and Fibronectin Concentration Measurement
2.2.1. Plasma FN Concentrations
2.2.2. EDA-FN Concentrations
2.3. Statistical Methods
3. Results
3.1. Fibronectin Concentrations
3.2. Results of Modeling
3.3. Global-Level Methods for Model Explanation
3.4. Feature Importance with the Random Forest Model
3.5. Local-Level Methods for Model Explanation
Example of Clinical Application of the Random Forest Prediction Model
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Evans, L.; Rhodes, A.; Alhazzani, W.; Antonelli, M.; Coopersmith, C.M.; French, C.; Machado, F.R.; Mcintyre, L.; Ostermann, M.; Prescott, H.C.; et al. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock 2021. Crit. Care Med. 2021, 49, e1063–e1143. [Google Scholar] [CrossRef] [PubMed]
- Singer, M.; Deutschman, C.S.; Seymour, C.W.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Chiche, J.D.; Coopersmith, C.M.; et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA 2016, 315, 801–810. [Google Scholar] [CrossRef] [PubMed]
- Wełna, M.; Adamik, B.; Goździk, W.; Kübler, A. External validation of the sepsis severity score. Int. J. Immunopathol. Pharmacol. 2020, 34, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Power, G.S.; Harrison, D.A. Why try to predict ICU outcomes. Curr. Opin. Crit. Care 2014, 20, 544–549. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Khalid, S.; Jiang, J. Diagnostic and predictive performance of biomarkers in patients with sepsis in an intensive care unit. J. Int. Med. Res. 2019, 47, 44–58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Esteva, A.; Kuprel, B.; Novoa, R.A. Dermatologist-level classification of skin cancer with deep neural networks. Nature 2017, 542, 115–118. [Google Scholar] [CrossRef]
- Lundberg, S.M.; Nair, B.; Vavilala, M.S.; Horibe, M.; Eisses, M.J.; Adams, T.; Liston, D.E.; Low, D.K.; Newman, S.F.; Kim, J.; et al. Explainable machine-learning predictions for the prevention of hypoxaemia during surgery. Nat. Biomed. Eng. 2018, 2, 749–760. [Google Scholar] [CrossRef]
- Kobylińska, K.; Mikołajczyk, T.; Adamek, M.; Orłowski, T.; Biecek, P. Explainable Machine Learning for Modeling of Early Postoperative Mortality in Lung Cancer. In Artificial Intelligence in Medicine: Knowledge Representation and Transparent and Explainable Systems, KR4HC 2019, TEAAM 2019; Lecture Notes in Computer Science; Marcos, M., Juarez, J.M., Lenz, R., Nalepa, G.J., Nowaczyk, S., Peleg, M., Stefanowski, J., Stiglic, G., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 161–174. [Google Scholar]
- Blanco-Justicia, A.; Domingo-Ferrer, J.; Martínez, S.; Sánchez, D. Machine learning explainability via microaggregation and shallow decision trees. Knowl. Based Syst. 2020, 194, 105532. [Google Scholar] [CrossRef]
- Calvert, J.S.; Price, D.A.; Chettipally, U.K.; Barton, C.W.; Feldman, M.D.; Hoffman, J.L.; Jay, M.; Das, R. A computational approach to early sepsis detection. Comput. Biol. Med. 2016, 74, 69–73. [Google Scholar] [CrossRef] [Green Version]
- Calvert, J.; Desautels, T.; Chettipally, U.; Barton, C.; Hoffman, J.; Jay, M.; Mao, Q.; Mohamadlou, H.; Das, R. High-performance detection and early prediction of septic shock for alcohol-use disorder patients. Ann. Med. Surg. 2016, 10, 50–55. [Google Scholar] [CrossRef]
- Shimabukuro, D.W.; Barton, C.W.; Feldman, M.D.; Mataraso, S.J.; Das, R. Effect of a machine learning-based severe sepsis prediction algorithm on patient survival and hospital length of stay: A randomised clinical trial. BMJ Open Resp. Res. 2017, 4, e000234. [Google Scholar] [CrossRef] [PubMed]
- Lemańska-Perek, A.; Krzyżanowska-Gołąb, D.; Skalec, T.; Adamik, B. Plasma and cellular forms of fibronectin as prognostic markers in sepsis. Mediat. Inflamm. 2020, 2020, 8364247. [Google Scholar] [CrossRef] [PubMed]
- To, W.S.; Midwood, K.S. Plasma and cellular fibronectin: Distinct and independent functions during tissue repair. Fibrogen Tissue Repair 2011, 4, 21. [Google Scholar] [CrossRef] [Green Version]
- Pankov, R.; Yamada, K.M. Fibronectin at a glance. J. Cell Sci. 2002, 115, 3861–3863. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- White, E.S.; Muro, A.F. Fibronectin splice variants: Understanding their multiple roles in health and disease using engineered mouse models. IUBMB Life 2011, 63, 538–546. [Google Scholar] [CrossRef]
- White, E.S.; Baralle, F.E.; Muro, A.F. New insights into form and function of fibronectin splice variants. J. Pathol. 2008, 216, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Reheman, A.; Spring, C.M.; Kalantari, J.; Marshall, A.H.; Wolberg, A.S.; Gross, P.L.; Weitz, J.I.; Rand, M.L.; Mosher, D.F.; et al. Plasma fibronectin supports hemostasis and regulates thrombosis. J. Clin. Investig. 2014, 124, 4281–4293. [Google Scholar] [CrossRef] [Green Version]
- Dhanesha, N.; Chorawala, M.R.; Jain, M.; Bhalla, A.; Thedens, D.; Nayak, M.; Doddapattar, P.; Chauhan, A.K. Fn-EDA (Fibronectin Containing Extra Domain A) in the Plasma, but Not Endothelial Cells, Exacerbates Stroke Outcome by Promoting Thrombo-Inflammation. Stroke 2019, 50, 1201–1209. [Google Scholar] [CrossRef]
- Shinji, H.; Yosizawa, Y.; Tajima, A.; Iwase, T.; Sugimoto, S.; Seki, K.; Mizunoe, Y. Role of fibronectin-binding proteins A and B in vitro cellular infections and in vivo septic infections by staphylococcus aureus. Infect. Immun. 2011, 79, 2215–2223. [Google Scholar] [CrossRef] [Green Version]
- Schröder, A.; Schröder, B.; Roppenser, B.; Linder, S.; Sinha, B.; Fässler, R.; Aepfelbacher, M. Staphylococcus aureus fibronectin binding protein-A induces motile attachment sites and complex actin remodelling in living endothelial cells. Mol. Biol. Cell 2006, 17, 5198–5210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lundberg, S.M.; Erion, G.; Chen, H.; DeGrave, A.; Prutkin, J.M.; Nair, B.; Katz, R.; Himmelfarb, J.; Bansal, N.; Lee, S.-I. From local explanations to global understanding with explainable AI for trees. Nature 2020, 2, 56–67. [Google Scholar] [CrossRef]
- Kobylińska, K.; Orłowski, T.; Adamek, M.; Biecek, P. Explainable Machine Learning for Lung Cancer Screening Models. Appl. Sci. 2022, 12, 1926. [Google Scholar] [CrossRef]
- Rhodes, A.; Evans, L.E.; Alhazzani, W.; Levy, M.M.; Antonelli, M.; Ferrer, R.; Kumar, A.; Sevransky, J.E.; Sprung, C.L.; Nunnally, M.E.; et al. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock: 2016. Intensive Care Med. 2017, 43, 304–377. [Google Scholar] [CrossRef]
- Knaus, W.A.; Draper, E.A.; Wagner, D.P.; Zimmerman, J.E. APACHE II: A severity of disease classification system. Crit. Care Med. 1985, 13, 818–829. [Google Scholar] [CrossRef]
- Lemańska-Perek, A.; Pupek, M.; Polańska, B.; Leszek, J.; Kątnik-Prastowska, I. Alterations in molecular status of plasma fibronectin associated with aging of normal human individuals. Clin. Biochem. 2013, 46, 787–794. [Google Scholar] [CrossRef] [PubMed]
- Ziffels, B.; Ospel, J.; Grün, K.; Neri, D.; Pfeil, A.; Fritzenwanger, M.; Figulla, H.R.; Jung, C.; Berndt, A.; Franz, M. Detection of soluble ED-A+ fibronectin and evaluation as novel serum biomarker for cardiac tissue remodeling. Dis. Markers 2016, 2016, 3695454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Friedman, J.H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 2001, 29, 1189–1232. [Google Scholar] [CrossRef]
- Fisher, A.; Rudin, C.; Dominici, F. All Models Are Wrong, but Many Are Useful: Learning a Variable’s Importance by Studying an Entire Class of Predic-tion Models Simultaneously. J. Mach. Learn. Res. 2019, 20, 1–81. [Google Scholar]
- Biecek, P.; Burzykowski, T. Explanatory Models Analysis; Chapman and Hall/CRC: New York, NY, USA, 2021; ISBN 9780367135591. [Google Scholar] [CrossRef]
- Staniak, M.; Biecek, P. Explanations of model predictions with live and breakdown pack-ages. R J. 2018, 10, 359–409. [Google Scholar] [CrossRef] [Green Version]
- Lundberg, S.M.; Lee, S. A Unified Approach to Interpreting Model Predictions. arXiv 2017, arXiv:1705.07874. [Google Scholar]
- R Core Team 2020. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2017; Available online: https://www.R-project.org (accessed on 8 June 2022).
- Bischl, B.; Lang, M.; Kotthoff, L.; Schiffner, J.; Richter, J.; Studerus, E.; Casalicchio, G.; Jones, Z.M. mlr: Machine Learning in R. J. Mach. Learn. Res. 2016, 17, 5938–5942. [Google Scholar]
- Biecek, P. DALEX: Explainers for Complex Predictive Models in R. J. Mach. Learn. Res. 2018, 19, 3245–3249. [Google Scholar]
- Awad, A.; Bader-El-Den, M.; McNicholas, J.; Briggs, J. Early hospital mortality prediction of intensive care unit patients using an ensemble learning approach. Int. J. Med. Inform. 2017, 108, 185–195. [Google Scholar] [CrossRef] [Green Version]
- Nemati, S.; Holder, A.; Razmi, F.; Stanley, M.D.; Clifford, G.D.; Buchman, T.G. An interpretable machine learning model for accurate prediction of sepsis in the ICU. Crit. Care Med. 2018, 46, 547–553. [Google Scholar] [CrossRef]
- Ford, D.W.; Goodwin, A.J.; Simpson, A.N.; Johnson, E.; Nadig, N.; Simpson, K.N. A severe sepsis mortality prediction model and score for use with administrative data. Crit. Care Med. 2016, 44, 319–327. [Google Scholar] [CrossRef]
- Kutz, A.; Hausfater, P.; Amin, D.; Amin, A.; Canavaggio, P.; Sauvin, G.; Bernard, M.; Conca, A.; Haubitz, S.; Struja, T.; et al. The TRIAGE-ProADM score for an early risk stratification of medical patients in the emergency department—Development based on a multi-national, prospective, observational study. PLoS ONE 2016, 11, e0168076. [Google Scholar] [CrossRef]
- Yu, H.; Nie, L.; Liu, A.; Wu, K.; Hsein, Y.C.; Yen, D.W.; Lee, M.G.; Lee, C.C. Combining procalcitonin with the qSOFA and sepsis mortality prediction. Med. Baltim. 2019, 98, e15981. [Google Scholar] [CrossRef]
- Liu, D.; Su, L.; Han, G.; Yan, P.; Xie, L. Prognostic value of procalcitonin in adult patients with sepsis: A systematic review and meta-analysis. PLoS ONE 2015, 10, e0129450. [Google Scholar] [CrossRef]
- Ruiz Martín, G.; Prieto Prieto, J.; Veiga de Cabo, J.; Gomez Lus, L.; Barberán, J.; González Landa, J.M.; Fernández, C. Plasma fibronectin as a marker of sepsis. Int. J. Infect. Dis. 2004, 8, 236–243. [Google Scholar] [CrossRef] [Green Version]
- Reichsoellner, M.; Raggam, R.B.; Wagner, J.; Krause, R.; Hoenigl, M. Clinical evaluation of multiple inflammation biomarkers for diagnosis and prognosis for patients with systemic inflammatory response syndrome. J. Clin. Microbiol. 2014, 52, 4063–4066. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeerleder, S.; Hack, C.E.; Wuillemin, W.A. Disseminated intravascular coagulation in sepsis. Chest 2005, 128, 2864–2875. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mamani, M.; Hashemi, S.H.; Hajilooi, M.; Saedi, F.; Niayesh, A.; Fallah, M. Evaluation of fibronectin and C-reactive protein levels in patients with sepsis: A case-control study. Acta. Med. Iran. 2012, 50, 404–410. [Google Scholar] [PubMed]
- Lemańska-Perek, A.; Krzyżanowska-Gołąb, D.; Pupek, M.; Klimeczek, P.; Witkiewicz, W.; Kątnik-Prastowska, I. Analysis of soluble molecular fibronectin-fibrin complexes and EDA-fibronectin concentration in plasma of patients with atherosclerosis. Inflammation 2016, 39, 1059–1068. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Satoi, S.; Kitade, H.; Hiramatsu, Y.; Kwon, A.H.; Takahashi, H.; Sekiguchi, K.; Uehara, M.; Oda, M.; Yanagimoto, Y.; Miyashita, K. Increased extra domain-A containing fibronectin and hepatic dysfunction during septic response: An in vivo and in vitro study. Shock 2000, 13, 492–496. [Google Scholar] [CrossRef] [Green Version]
- Lemańska-Perek, A.; Krzyżanowska-Gołąb, D.; Dragan, B.; Tyszko, M.; Adamik, B. Fibronectin as a Marker of Disease Severity in Critically Ill COVID-19 Patients. Cells 2022, 11, 1566. [Google Scholar] [CrossRef]
Parameter | All | Nonsurvivors | Survivors | p |
---|---|---|---|---|
n = 122 | n = 54 | n = 68 | ||
Age (years) | 68.0 | 71.0 | 64.0 | 0.001 |
(60.0–77.0) | (65.0–79.0) | (56.0–74.0) | ||
Female/male (n) | 58/64 | 27/27 | 31/37 | 0.627 |
APACHE II score | 24.0 | 28.0 | 20.0 | <0.001 |
(points) | (17.0–29.0) | (22.0–33.0) | (15.0–26.0) | |
SOFA score | 10.0 | 11.5 | 9.0 | <0.001 |
(points) | (8.0–13.0) | (10.0–15.0) | (7.0–11.0) | |
Procalcitonin | 8.38 | 14.57 | 4.47 | <0.001 |
(ng/mL) | (1.76–30.4) | (3.90–34.20) | (0.80–15.47) | |
C-reactive protein | 192.3 | 197.3 | 186.7 | 0.726 |
(mg/L) | (112.6–302.5) | (123.0–307.9) | (100.4–302.5) | |
INR | 1.34 | 1.49 | 1.20 | <0.001 |
(1.16–1.60) | (1.32–1.80) | (1.12–1.43) | ||
Platelet count | 182.5 | 138.5 | 209.5 | 0.001 |
(103/μL) | (124.0–310.0) | (74.0–243.0) | (155.0–335.0) | |
D-dimers | 5.68 | 5.70 | 5.54 | 0.294 |
(μg/mL) | (3.64–12.59) | (3.97–15.59) | (3.37–11.47) | |
ICU stay | 9.5 | 5.5 | 12.5 | <0.001 |
(days) | (4.0–18.0) | (3.0–12.0) | (6.5–29.5) | |
Leukocytes | 15.5 | 15.9 | 15.0 | 0.660 |
(103/μL) | (11.0–22.5) | (9.7–22.5) | (11.2–22.9) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lemańska-Perek, A.; Krzyżanowska-Gołąb, D.; Kobylińska, K.; Biecek, P.; Skalec, T.; Tyszko, M.; Gozdzik, W.; Adamik, B. Explainable Artificial Intelligence Helps in Understanding the Effect of Fibronectin on Survival of Sepsis. Cells 2022, 11, 2433. https://doi.org/10.3390/cells11152433
Lemańska-Perek A, Krzyżanowska-Gołąb D, Kobylińska K, Biecek P, Skalec T, Tyszko M, Gozdzik W, Adamik B. Explainable Artificial Intelligence Helps in Understanding the Effect of Fibronectin on Survival of Sepsis. Cells. 2022; 11(15):2433. https://doi.org/10.3390/cells11152433
Chicago/Turabian StyleLemańska-Perek, Anna, Dorota Krzyżanowska-Gołąb, Katarzyna Kobylińska, Przemysław Biecek, Tomasz Skalec, Maciej Tyszko, Waldemar Gozdzik, and Barbara Adamik. 2022. "Explainable Artificial Intelligence Helps in Understanding the Effect of Fibronectin on Survival of Sepsis" Cells 11, no. 15: 2433. https://doi.org/10.3390/cells11152433
APA StyleLemańska-Perek, A., Krzyżanowska-Gołąb, D., Kobylińska, K., Biecek, P., Skalec, T., Tyszko, M., Gozdzik, W., & Adamik, B. (2022). Explainable Artificial Intelligence Helps in Understanding the Effect of Fibronectin on Survival of Sepsis. Cells, 11(15), 2433. https://doi.org/10.3390/cells11152433