Dietary Flavonoids and Insulin Signaling in Diabetes and Obesity
Abstract
:1. Introduction
2. Insulin Signaling, Diabetes and Obesity
3. Dietary Flavonoids
4. Effects of Flavonoids on Insulin Signaling in T2D
5. Effects of Dietary Flavanols on Insulin Signaling in Obesity
6. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- WHO. 2021. Available online: https://www.who.int/news-room/fact-sheets/detail/diabetes (accessed on 10 June 2021).
- WHO. 2021. Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 10 June 2021).
- Czech, M.P. Insulin action and resistance in obesity and type 2 diabetes. Nat. Med. 2017, 23, 804–814. [Google Scholar] [CrossRef] [PubMed]
- Johnson, A.M.; Olefsky, J.M. The origins and drivers of insulin resistance. Cell 2013, 152, 673–684. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dinda, B.; Dinda, M.; Roy, A.; Dinda, S. Dietary plant flavonoids in prevention of obesity and diabetes. In Advances in Protein Chemistry and Structural Biology; Elsevier: Amsterdam, The Netherlands, 2020; Volume 120, pp. 159–235. [Google Scholar]
- Martín, M.A.; Ramos, S. Impact of cocoa flavanols on human health. Food Chem. Toxicol. 2021, 151, 112121. [Google Scholar] [CrossRef] [PubMed]
- Klover, P.J.; Mooney, R.A. Hepatocytes: Critical for glucose homeostasis. Int. J. Biochem. Cell Biol. 2004, 36, 753–758. [Google Scholar] [CrossRef]
- Boucher, J.; Kleinridders, A.; Kahn, C.R. Insulin receptor signaling in normal and insulin-resistant states. Cold Spring Harb. Perspect. Biol. 2014, 6, a009191. [Google Scholar] [CrossRef] [Green Version]
- Panche, A.N.; Diwan, A.D.; Chandra, S.R. Flavonoids: An overview. J. Nutr. Sci. 2016, 5, e47. [Google Scholar] [CrossRef] [Green Version]
- Wang, T.-Y.; Li, Q.; Bi, K.-S. Bioactive flavonoids in medicinal plants: Structure, activity and biological fate. Asian J. Pharm. Sci. 2018, 13, 12–23. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, S.; Yu, O. Metabolic engineering of flavonoids in plants and microorganisms. Appl. Microbiol. Biotechnol. 2011, 91, 949–956. [Google Scholar] [CrossRef]
- Peterson, J.J.; Dwyer, J.T.; Jacques, P.F.; McCullough, M.L. Improving the estimation of flavonoid intake for study of health outcomes. Nutr. Rev. 2015, 73, 553–576. [Google Scholar] [CrossRef]
- Zamora-Ros, R.; Knaze, V.; Rothwell, J.A.; Hémon, B.; Moskal, A.; Overvad, K.; Tjønneland, A.; Kyrø, C.; Fagherazzi, G.; Boutron-Ruault, M.C.; et al. Dietary polyphenol intake in Europe: The European Prospective Investigation into Cancer and Nutrition (EPIC) study. Eur. J. Nutr. 2016, 55, 1359–1375. [Google Scholar] [CrossRef]
- Williamson, G.; Kay, C.D.; Crozier, A. The bioavailability, transport, and bioactivity of dietary flavonoids: A review from a historical perspective. Compr Rev. Food Sci. Food Saf. 2018, 17, 1054–1112. [Google Scholar] [CrossRef] [Green Version]
- Crozier, A.; Del Rio, D.; Clifford, M.N. Bioavailability of dietary flavonoids and phenolic compounds. Mol. Asp. Med. 2010, 31, 446–467. [Google Scholar] [CrossRef]
- Williamson, G.; Clifford, M.N. Role of the small intestine, colon and microbiota in determining the metabolic fate of polyphenols. Biochem. Pharmacol. 2017, 139, 24–39. [Google Scholar] [CrossRef] [Green Version]
- Mayorga-Gross, A.L.; Esquivel, P. Impact of cocoa products intake on plasma and urine metabolites: A review of targeted and non-targeted studies in humans. Nutrients 2019, 11, 1163. [Google Scholar] [CrossRef] [Green Version]
- Del Rio, D.; Rodriguez-Mateos, A.; Spencer, J.P.; Tognolini, M.; Borges, G.; Crozier, A. Dietary (poly)phenolics in human health: Structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxid. Redox Signal. 2013, 18, 1818–1892. [Google Scholar] [CrossRef] [Green Version]
- Martín, M.A.; Goya, L.; Ramos, S. Antidiabetic actions of cocoa flavanols. Mol. Nutr. Food Res. 2016, 60, 1756–1769. [Google Scholar] [CrossRef] [Green Version]
- Gentile, D.; Fornai, M.; Pellegrini, C.; Colucci, R.; Blandizzi, C.; Antonioli, L. Dietary flavonoids as a potential intervention to improve redox balance in obesity and related co-morbidities: A review. Nutr. Res. Rev. 2018, 31, 239–247. [Google Scholar] [CrossRef]
- Hussain, T.; Tan, B.; Yin, Y.; Blachier, F.; Tossou, M.C.; Rahu, N. Oxidative stress and inflammation: What polyphenols can do for us? Oxid. Med. Cell Longev. 2016, 16, 7432797. [Google Scholar] [CrossRef] [Green Version]
- Hussain, T.; Tan, B.; Murtaza, G.; Liu, G.; Rahu, N.; Saleem-Kalhoro, M.; Hussain-Kalhoro, D.; Adebowale, T.O.; Usman-Mazhar, M.; Rehman, Z.U.; et al. Flavonoids and type 2 diabetes: Evidence of efficacy in clinical and animal studies and delivery strategies to enhance their therapeutic efficacy. Pharmacol. Res. 2020, 152, 104629. [Google Scholar] [CrossRef]
- Álvarez-Cilleros, D.; Martín, M.A.; Ramos, S. (−)-Epicatechin and the colonic 2,3-dihydroxybenzoic acid metabolite regulate glucose uptake, glucose production, and improve insulin signaling in renal NRK-52E cells. Mol. Nutr. Food Res. 2018, 2018, 1700470. [Google Scholar] [CrossRef]
- Cordero-Herrera, I.; Martín, M.A.; Bravo, L.; Goya, L.; Ramos, S. Cocoa flavonoids improve insulin signalling and modulate glucose production via AKT and AMPK in HepG2 cells. Mol. Nutr. Food Res. 2013, 57, 974–985. [Google Scholar] [CrossRef] [Green Version]
- Beh, J.E.; Khoo, L.T.; Latip, J.; Abdullah, M.P.; Alitheen, N.B.M.; Adam, Z.; Ismail, A.; Hamid, M. SDF7,agroupof Scoparia dulcis Linn. derived flavonoidcompounds, stimulates glucoseuptakeandregulatesadipocytokines in 3T3-F442a adipocytes. J. Ethnopharmacol. 2013, 150, 339–352. [Google Scholar] [CrossRef]
- Hassan, M.; El-Yazidi, C.; Malezet-Desmoulins, C.; Amiot, M.J.; Margotat, A. Gene expression profiling of 3T3-L1 adipocytes exposed to phloretin. J. Nutr. Biochem. 2010, 21, 645–652. [Google Scholar] [CrossRef]
- Lee, M.-J.; Rao, Y.K.; Chen, K.; Lee, Y.-C.; Tzeng, Y.-M. Effect of flavonol glycosides from Cinnamomum osmophloeum leaves on adiponectin secretion and phosphorylation of insulin receptor-b in 3T3-L1 adipocytes. J. Ethnopharmacol. 2009, 126, 79–85. [Google Scholar] [CrossRef]
- Bowser, S.M.; Moore, W.T.; McMillan, R.P.; Dorenkott, M.R.; Goodrich, K.M.; Ye, L.; O’Keefe, S.F.; Hulver, M.W.; Neilson, A.P. High-molecular-weight cocoa procyanidins possess enhanced insulin-enhancing and insulin mimetic activities in human primary skeletal muscle cells compared to smaller procyanidins. J. Nutr. Biochem. 2017, 39, 48–58. [Google Scholar] [CrossRef]
- Xu, L.; Li, W.; Chen, Z.; Guo, Q.; Wang, C.; Santhanam, R.K.; Chen, H. Inhibitory effect of epigallocatechin-3-O-gallate on α-glucosidase and its hypoglycemic effect via targeting PI3K/AKT signaling pathway in L6 skeletal muscle cells. Int. J. Biol. Macromol. 2019, 125, 605–611. [Google Scholar] [CrossRef]
- Zheng, Y.; Ley, S.H.; Hu, F.B. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat. Rev. Endocrinol. 2018, 14, 88–98. [Google Scholar] [CrossRef]
- Association, A.D. Classification and diagnosis of diabetes: Standards of medical care in diabetes-2019. Diabetes Care 2019, 42, S13–S28. [Google Scholar] [CrossRef] [Green Version]
- Batista, T.M.; Haider, N.; Kahn, C.R. Defining the underlying defect in insulin action in type 2 diabetes. Diabetologia 2021, 64, 994–1006. [Google Scholar] [CrossRef]
- Lee, C.C.; Hsu, W.H.; Shen, S.R.; Cheng, Y.H.; Wu, S.C. Fagopyrum tataricum (buckwheat) improved high-glucose-induced insulin resistance in mouse hepatocytes and diabetes in fructose-rich diet-induced mice. Exp. Diabetes Res. 2012, 2012, 375673. [Google Scholar] [CrossRef] [Green Version]
- Cordero-Herrera, I.; Martín, M.A.; Goya, L.; Ramos, S. Cocoa flavonoids attenuate high glucose-induced insulin signalling blockade and modulate glucose uptake and production in human HepG2 cells. Food Chem. Toxicol. 2014, 64, 10–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mokashi, P.; Khanna, A.; Pandita, N. Flavonoids from Enicostema littorale blume enhances glucose uptake of cells in insulin resistant human liver cancer (HepG2) cell line via IRS-1/PI3K/Akt pathway. Biomed. Pharmacother. 2017, 90, 268–277. [Google Scholar] [CrossRef] [PubMed]
- Mokashi, P.; Bhatt, L.K.; Khanna, A.; Pandita, N. Swertisin rich fraction from Enicostema littorale ameliorates hyperglycemia and hyperlipidemia in high-fat fed diet and low dose streptozotacin induced type 2 diabetes mellitus in rats. Biomed. Pharmacother. 2017, 96, 1427–1437. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Chen, J.; Ren, W.; Zhu, Y.; Zhao, Q.; Zhang, K.; Su, D.; Qiu, C.; Zhang, W.; Li, K. Citrus flavone tangeretin is a potential insulin sensitizer targeting hepatocytes through suppressing MEK-ERK1/2 pathway. Biochem. Biophys. Res. Commun. 2020, 529, 277–282. [Google Scholar] [CrossRef]
- Lalitha, N.; Sadashivaiah, B.; Talahalli, R.R.; Singh, S.A. Lectin rich horsegram protein and myricetin activates insulin signalling—A study targeting PTP1β. J. Funct. Foods 2020, 67, 103845. [Google Scholar] [CrossRef]
- Jayachandran, M.; Zhang, T.; Ganesan, K.; Xu, B.; Chung, S.S.M. Isoquercetin ameliorates hyperglycemia and regulates key enzymes of glucose metabolism via insulin signaling pathway in streptozotocin-induced diabetic rats. Eur. J. Pharmacol. 2018, 829, 112–120. [Google Scholar] [CrossRef]
- Cordero-Herrera, I.; Martín, M.Á.; Escrivá, F.; Álvarez, C.; Goya, L.; Ramos, S. Cocoa-rich diet ameliorates hepatic insulin resistance by modulating insulin signaling and glucose homeostasis in Zucker diabetic fatty rats. J. Nutr. Biochem. 2015, 26, 704–712. [Google Scholar] [CrossRef]
- Yan, F.; Dai, G.; Zheng, X. Mulberry anthocyanin extract ameliorates insulin resistance by regulating PI3K/AKT pathway in HepG2 cells and db/db mice. J. Nutr. Biochem. 2016, 36, 68–80. [Google Scholar] [CrossRef]
- Dua, T.K.; Joardar, S.; Chakraborty, P.; Bhowmick, S.; Saha, A.; De Feo, V.; Dewanjee, S. Myricitrin, a glycosyloxyflavone in Myrica esculenta bark ameliorates diabetic nephropathy via improving glycemic status, reducing oxidative stress, and suppressing inflammation. Molecules 2021, 26, 258. [Google Scholar] [CrossRef]
- Su, C.; Yang, C.; Gong, M.; Ke, Y.; Yuan, P.; Wang, X.; Li, M.; Zheng, X.; Feng, W. Antidiabetic activity and potential mechanism of amentoflavone in diabetic mice. Molecules 2019, 24, 2184. [Google Scholar] [CrossRef] [Green Version]
- Cai, S.; Sun, W.; Fan, Y.; Guo, X.; Xu, G.; Xu, T.; Hou, Y.; Zhao, B.; Feng, X.; Liu, T. Effect of mulberry leaf (Folium Mori) on insulin resistance via IRS-1/PI3K/Glut-4 signalling pathway in type 2 diabetes mellitus rats. Pharm. Biol. 2016, 54, 2685–2691. [Google Scholar] [CrossRef] [Green Version]
- Shen, X.; Zhou, N.; Mi, L.; Hu, Z.; Wang, L.; Liu, X.; Zhang, S. Phloretin exerts hypoglycemic effect in streptozotocin-induced diabetic rats and improves insulin resistance in vitro. Drug Des. Dev. Ther. 2017, 11, 313–324. [Google Scholar] [CrossRef] [Green Version]
- Satyanarayana, K.; Sravanthi, K.; Shaker, I.A.; Ponnulakshmi, R.; Selvaraj, J. Role of chrysin on expression of insulin signaling molecules. J. Ayurveda Integr. Med. 2015, 6, 248–258. [Google Scholar] [CrossRef] [Green Version]
- de Bem, G.F.; Costa, C.A.; Santos, I.B.; Cordeiro, V.D.S.C.; de Carvalho, L.C.R.M.; de Souza, M.A.V.; Soares, R.D.A.; Sousa, P.J.D.C.; Ognibene, D.T.; Resende, A.C.; et al. Antidiabetic effect of Euterpe oleracea Mart. (açaí) extract and exercise training on high-fat diet and streptozotocin-induced diabetic rats: A positive interaction. PLoS ONE 2018, 13, e0199207. [Google Scholar] [CrossRef]
- Lee, Y.S.; Cha, B.Y.; Saito, K.; Yamakawa, H.; Choi, S.S.; Yamaguchi, K.; Yonezawa, T.; Teruya, T.; Nagai, K.; Woo, J.T. Nobiletin improves hyperglycemia and insulin resistance in obese diabetic ob/ob mice. Biochem. Pharmacol. 2010, 79, 1674–1683. [Google Scholar] [CrossRef]
- Ahmed, O.M.; Hassan, M.A.; Abdel-Twab, S.M.; Abdel-Azeem, M.N. Navel orange peel hydroethanolic extract, naringin and naringenin have anti-diabetic potentials in type 2 diabetic rats. Biomed. Pharmacother. 2017, 94, 197–205. [Google Scholar] [CrossRef]
- Ali, A.M.; Gabbar, M.A.; Abdel-Twab, S.M.; Fahmy, E.M.; Ebaid, H.; Alhazza, I.M.; Ahmed, O.M. Antidiabetic potency, antioxidant effects, and mode of actions of Citrus reticulata fruit peel hydroethanolic extract, hesperidin, and quercetin in nicotinamide/streptozotocin-induced Wistar diabetic rats. Oxid. Med. Cell Longev. 2020, 2020, 1730492. [Google Scholar] [CrossRef]
- Bhardwaj, P.; Khanna, D.; Balakumar, P. Catechin averts experimental diabetes mellitus-induced vascular endothelial structural and functional abnormalities. Cardiovasc. Toxicol. 2014, 14, 41–51. [Google Scholar] [CrossRef]
- Álvarez-Cilleros, D.; Martín, M.Á.; Ramos, S. Protective effects of (−)-epicatechin and the colonic metabolite 3,4-dihydroxyphenylacetic acid against glucotoxicity-induced insulin signalling blockade and altered glucose uptake and production in renal tubular NRK-52E cells. Food Chem. Toxicol. 2018, 120, 119–128. [Google Scholar] [CrossRef]
- Chen, L.; Tian, G.; Tang, W.; Luo, W.; Liu, P.; Ma, Z.P. Protective effect of luteolin on streptozotocin-induced diabetic renal damage in mice via the regulation of RIP140/NF-кB pathway and insulin signalling pathway. J. Funct. Foods 2016, 22, 93–100. [Google Scholar] [CrossRef]
- Sandeep, M.S.; Nandini, C.D. Influence of quercetin, naringenin and berberine on glucose transporters and insulin signalling molecules in brain of streptozotocin-induced diabetic rats. Biomed. Pharmacother. 2017, 94, 605–611. [Google Scholar]
- Cordero-Herrera, I.; Martin, M.A.; Goya, L.; Ramos, S. Cocoa flavonoids protect hepatic cells against high-glucose induced oxidative stress: Relevance of MAPKs. Mol. Nutr. Food Res. 2015, 59, 597–609. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, X.; Wang, L.; Zhou, N.; Gai, S.; Liu, X.; Zhang, S. Beneficial effects of combination therapy of phloretin and metformin in streptozotocin-induced diabetic rats and improved insulin sensitivity in vitro. Food Funct. 2020, 11, 392. [Google Scholar] [CrossRef] [PubMed]
- Vincent, M.A.; Montagnani, M.; Quon, M.J. Molecular and physiologic actions of insulin related to production of nitric oxide in vascular endothelium. Curr. Diabetes Rep. 2003, 3, 279–288. [Google Scholar] [CrossRef]
- Wang, X.M.; Yao, M.; Liu, S.X.; Hao, J.; Liu, Q.J.; Gao, F. Interplay between the Notch and PI3K/Akt pathways in high glucose-induced podocyte apoptosis. Am. J. Physiol. Renal Physiol. 2014, 306, F205–F213. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Liu, F.; Grundke-Iqbal, I.; Iqbal, K.; Gong, C.-X. Deficient brain insulin signalling pathway in Alzheimer’s disease and diabetes. J. Pathol. 2011, 225, 54–62. [Google Scholar] [CrossRef] [Green Version]
- Alkhalidy, H.; Wang, Y.; Liu, D. Dietary flavonoids in the prevention of T2D: An overview. Nutrients 2018, 10, 438. [Google Scholar] [CrossRef] [Green Version]
- Russo, B.; Picconi, F.; Malandrucco, I.; Frontoni, S. Flavonoids and insulin-resistance: From molecular evidences to clinical trials. Int. J. Mol. Sci. 2019, 20, 2061. [Google Scholar] [CrossRef] [Green Version]
- Curtis, P.J.; Sampson, M.; Potter, J.; Dhatariya, K.; Kroon, P.A.; Cassidy, A. Chronic ingestion of flavan-3-ols and isoflavones improves insulin sensitivity and lipoprotein status and attenuates estimated 10-year CVD risk in medicated postmenopausal women with type 2 diabetes: A 1-year, double-blind, randomized, controlled trial. Diabetes Care 2012, 35, 226–232. [Google Scholar] [CrossRef] [Green Version]
- Hsu, C.H.; Liao, Y.L.; Lin, S.C.; Tsai, T.H.; Huang, C.J.; Chou, P. Does supplementation with green tea extract improve insulin resistance in obese type 2 diabetics? A randomized, double-blind, and placebo-controlled clinical trial. Altern. Med. Rev. 2011, 16, 157–163. [Google Scholar] [CrossRef]
- Basu, A.; Betts, N.M.; Leyva, M.J.; Fu, D.; Aston, C.E.; Lyons, T.J. Acute cocoa supplementation increases postprandial HDL cholesterol and insulin in obese adults with type 2 diabetes after consumption of a high-fat breakfast. J. Nutr. 2015, 145, 2325–2332. [Google Scholar] [CrossRef]
- Dicks, L.; Kirch, N.; Gronwald, D.; Wernken, K.; Zimmermann, B.F.; Helfrich, H.P.; Ellinger, S. Regular intake of a usual serving size of flavanol-rich cocoa powder does not affect cardiometabolic parameters in stably treated patients with type 2 diabetes and hypertension-A double-blinded, randomized, placebo-controlled trial. Nutrients 2018, 10, 1435. [Google Scholar] [CrossRef] [Green Version]
- Mellor, D.D.; Sathyapalan, T.; Kilpatrick, E.S.; Beckett, S.; Atkin, S.L. High cocoa polyphenol-rich chocolate improves HDL cholesterol in type 2 diabetes patients. Diabetes Med. 2010, 27, 1318–1321. [Google Scholar] [CrossRef]
- Rynarzewski, J.; Dicks, L.; Zimmermann, B.F.; Stoffel-Wagner, B.; Ludwig, N.; Helfrich, H.P.; Ellinger, S. Impact of a usual serving size of flavanol-rich cocoa powder ingested with a diabetic-suitable meal on postprandial cardiometabolic parameters in type 2 diabetics-A randomized, placebo-controlled, double-blind crossover study. Nutrients 2019, 11, 417. [Google Scholar] [CrossRef] [Green Version]
- Lirussi, F.; Beccarello, A.; Zanette, G.; De Monte, A.; Donadon, V.; Velussi, M.; Crepaldi, G. Silybin-beta-cyclodextrin in the treatment of patients with diabetes mellitus and alcoholic liver disease. Efficacy study of a new preparation of an anti-oxidant agent. Diabetes Nutr. Metab. 2002, 15, 222–231. [Google Scholar]
- Kar, P.; Laight, D.; Rooprai, H.K.; Shaw, K.M.; Cummings, M. Effects of grape seed extract in Type 2 diabetic subjects at high cardiovascular risk: A double blind randomized placebo controlled trial examining metabolic markers, vascular tone, inflammation, oxidative stress and insulin sensitivity. Diabet Med. 2009, 26, 526–531. [Google Scholar] [CrossRef]
- Ali, F.; Ismail, A.; Kersten, S. Molecular mechanisms underlying the potential antiobesity-related diseases effect of cocoa polyphenols. Mol. Nutr. Food Res. 2014, 58, 33–48. [Google Scholar] [CrossRef]
- Tkachenko, O.; Polishchuk, I.; Gorchakova, N.; Zaychenko, H. Metabolic syndrome and lipid metabolism disorders: Molecular and biochemical aspects. Acta Fac. Med. Naissensis 2020, 37, 5–22. [Google Scholar] [CrossRef]
- Bray, G.A.; Heisel, W.E.; Afshin, A.; Jensen, M.D.; Dietz, W.H.; Long, M.; Kushner, R.F.; Daniels, S.R.; Wadden, T.A.; Tsai, A.G.; et al. The science of obesity management: An Endocrine Society Scientific statement. Endocr. Rev. 2018, 39, 1–54. [Google Scholar] [CrossRef] [Green Version]
- Molonia, M.S.; Occhiuto, C.; Muscarà, C.; Speciale, A.; Bashllari, R.; Villarroya, F.; Saija, A.; Cimino, F.; Cristani, M. Cyanidin-3-O-glucoside restores insulin signaling and reduces inflammation in hypertrophic adipocytes. Arch. Biochem. Biophys. 2020, 691, 108488. [Google Scholar] [CrossRef]
- Ormazabal, P.; Herrera, K.; Cifuentes, M.; Paredes, A.; Morales, G.; Cruzd, G. Protective effect of the hydroalcoholic extract from Lampaya medicinalis Phil. (Verbenaceae) on palmitic acid- impaired insulinsignaling in 3T3-L1 adipocytes. Obes. Res. Clin. Pract. 2018, 14, 573–579. [Google Scholar] [CrossRef]
- Bao, S.; Cao, Y.; Fan, C.; Fan, Y.; Bai, S.; Teng, W.; Shan, Z. Epigallocatechin gallate improves insulin signaling by decreasing toll-like receptor 4 (TLR4) activity in adipose tissues of high-fat diet rats. Mol. Nutr. Food Res. 2014, 58, 677–686. [Google Scholar] [CrossRef]
- Lee, Y.-S.; Cha, B.-Y.; Choi, S.-S.; Choi, B.-K.; Yonezawa, T.; Teruya, T.; Nagai, K.; Woo, J.-T. Nobiletin improves obesity and insulin resistance in high-fat diet-induced obese mice. J. Nutr. Biochem. 2013, 24, 156–162. [Google Scholar] [CrossRef]
- Da Costa, G.F.; Santos, I.B.; de Bem, G.F.; Cordeiro, V.S.C.; da Costa, C.A.; de Carvalho, L.C.R.M.; Ognibene, D.T.; Resende, A.C.; de Moura, R.S. The beneficial effect of anthocyanidin-rich Vitis vinifera L. grape skin extract on metabolic changes induced by high-fat diet in mice involves antiinflammatory and antioxidant actions. Phytother. Res. 2017, 31, 1621–1632. [Google Scholar] [CrossRef]
- Wang, N.; Liu, Y.; Ma, Y.; Wen, D. Hydroxytyrosol ameliorates insulin resistance by modulating endoplasmic reticulum stress and prevents hepatic steatosis in diet-induced obesity mice. J. Nutr. Biochem. 2018, 57, 180–188. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, S.; Zhang, W.; Zhao, P.; He, B.; Wua, N.; Han, P. Epigallocatechin-3-O-gallate (EGCG) attenuates FFAs-induced peripheral insulin resistance through AMPK pathway and insulin signaling pathway in vivo. Diabetes Res. Clin. Pract. 2011, 93, 205–214. [Google Scholar] [CrossRef]
- Xing, T.; Kang, Y.; Xu, X.; Wang, B.; Du, M.; Zhu, M.-J. Raspberry supplementation improves insulin signaling and promotes brown-like adipocyte development in white adipose tissue of obese mice. Mol. Nutr. Food Res. 2018, 62, 1701035. [Google Scholar] [CrossRef]
- Fang, P.; Yu, M.; Zhang, L.; Wan, D.; Shi, M.; Zhu, Y.; Bo, P.; Zhang, Z. Baicalin against obesity and insulin resistance through activation of AKT/AS160/GLUT4 pathway. Mol. Cell Endocrinol. 2017, 448, 77–86. [Google Scholar] [CrossRef] [PubMed]
- Arunkumar, E.; Anuradha, C.V. Genistein promotes insulin action through adenosine monophosphate-activated protein kinase activation and p70 ribosomal protein S6 kinase 1 inhibition in the skeletal muscle of mice fed a high energy diet. Nutr. Res. 2012, 32, 617–625. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.; Tan, Y.; Zhou, J.; Xiao, L.; Johnson, M.; Qu, X. Green tea polyphenols ameliorate metabolic abnormalities and insulin resistance by enhancing insulin signalling in skeletal muscle of Zucker fatty rats. Clin. Sci. 2020, 134, 1167–1180. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.-W.; Wei, C.-C.; Chen, Y.-J.; Chen, Y.-A.; Chang, S.-J. Flavanol-rich lychee fruit extract alleviates diet-induced insulin resistance via suppressing mTOR/SREBP-1 mediated lipogenesis in liver and restoring insulin signaling in skeletal muscle. Mol. Nutr. Food Res. 2016, 60, 2288–2296. [Google Scholar] [CrossRef]
- Stewart, L.K.; Wang, Z.; Ribnicky, D.; Soileau, J.L.; Cefalu, W.T.; Gettys, T.W. Failure of dietary quercetin to alter the temporal progression of insulin resistance among tissues of C57BL/6J mice during the development of diet-induced obesity. Diabetologia 2009, 52, 514–523. [Google Scholar] [CrossRef] [Green Version]
- Mazibuko-Mbeje, S.E.; Dludla, P.V.; Roux, C.; Johnson, R.; Ghoor, S.; Joubert, E.; Louw, J.; Opoku, A.R.; Muller, C.J.F. Aspalathin-enriched green rooibos extract reduces hepatic insulin resistance by modulating PI3K/AKT and AMPK pathways. Int. J. Mol. Sci. 2019, 20, 633. [Google Scholar] [CrossRef] [Green Version]
- Arunkumar, E.; Karthik, D.; Anuradha, C.V. Genistein sensitizes hepatic insulin signaling and modulates lipid regulatory genes through p70 ribosomal S6 kinase-1 inhibition in high-fat-high-fructose diet-fed mice. Pharm. Biol. 2013, 51, 815–824. [Google Scholar] [CrossRef] [Green Version]
- Hou, H.; Yang, W.; Bao, S.; Cao, Y. Epigallocatechin gallate suppresses inflammatory responses by inhibiting Toll-like receptor 4 signaling and alleviates insulin resistance in the livers of high-fat-diet rats. J. Oleo Sci. 2020, 69, 479–486. [Google Scholar] [CrossRef] [Green Version]
- Abdulmalek, S.A.; Fessal, M.; El-Sayed, M. Effective amelioration of hepatic inflammation and insulin response in high fat diet-fed rats via regulating AKT/mTOR signaling: Role of Lepidium sativum seed extracts. J. Ethnopharmacol. 2021, 266, 113439. [Google Scholar] [CrossRef]
- Zhang, Z.-F.; Lu, J.; Zheng, Y.-L.; Wu, D.-M.; Hu, B.; Shan, Q.; Cheng, W.; Li, M.-Q.; Sun, Y.-Y. Purple sweet potato color attenuates hepatic insulin resistance via blocking oxidative stress and endoplasmic reticulum stress in high-fat-diet-treated mice. J. Nutr. Biochem. 2013, 24, 1008–1018. [Google Scholar] [CrossRef]
- Santos, I.B.; de Bem, G.F.; Cordeiro, V.S.C.; da Costa, C.A.; de Carvalho, L.C.R.M.; da Rocha, A.P.M.; da Costa, G.F.; Ognibene, D.T.; de Moura, R.S.; Resende, A.C. Supplementation with Vitis vinifera L. skin extract improves insulin resistance and prevents hepatic lipid accumulation and steatosis in high-fat diet-fed mice. Nutr. Res. 2017, 43, 69–81. [Google Scholar] [CrossRef]
- Lee, S.; Keirsey, K.I.; Kirkland, R.; Grunewald, Z.I.; Fischer, J.G.; de La Serre, C.B. Blueberry supplementation influences the gut microbiota, inflammation, and insulin resistance in high-fat-diet-red rats. J. Nutr. 2018, 148, 209–219. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Gao, X.J.; Zhao, W.W.; Zhao, W.J.; Jiang, C.H.; Huang, F.; Kou, J.P.; Liu, B.L.; Liu, K. Opposite effects of genistein on the regulation of insulin-mediated glucose homeostasis in adipose tissue. Brit. J. Pharmacol. 2017, 170, 328–340. [Google Scholar] [CrossRef] [Green Version]
- Deqiu, Z.; Kang, L.; Jiali, Y.; Baolin, L.; Gaolin, L. Luteolin inhibits inflammatory response and improves insulin sensitivity in the endothelium. Biochmie 2011, 93, 506–512. [Google Scholar] [CrossRef] [PubMed]
- Qin, S.; Sun, D.; Mu, J.; Ma, D.; Tang, R.; Zheng, Y. Purple sweet potato color improves hippocampal insulin resistance via down-regulating SOCS3 and galectin-3 in high-fat diet mice. Behav. Brain Res. 2019, 359, 370–377. [Google Scholar] [CrossRef] [PubMed]
- Solverson, P.M.; Rumpler, W.V.; Leger, J.L.; Redan, B.W.; Ferruzzi, M.G.; Baer, D.J.; Castonguay, T.W.; Novotny, J.A. Blackberry feeding increases fat oxidation and improves insulin sensitivity in overweight and obese males. Nutrients 2018, 10, 1048. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katanasaka, Y.; Miyazaki, Y.; Sunagawa, Y.; Funamoto, M.; Shimizu, K.; Shimizu, S.; Sari, N.; Shimizu, Y.; Wada, H.; Hasegawa, K.; et al. Kosen-cha, a polymerized catechin-rich green tea, as a potential functional beverage for the reduction of body weight and cardiovascular risk factors: A pilot study in obese patients. Biol. Pharm. Bull. 2020, 43, 675–681. [Google Scholar]
- McKay, D.L.; Eliasziw, M.; Chen, C.Y.O.; Blumberg, J.B. A pecan-rich diet improves cardiometabolic risk factors in overweight and obese adults: A randomized controlled trial. Nutrients 2018, 10, 339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsang, C.; Smail, N.F.; Almoosawi, S.; Davidson, I.; Al-Dujaili, E.A.S. Intake of polyphenol-rich pomegranate pure juice influences urinary glucocorticoids, blood pressure and homeostasis model assessment of insulin resistance in human volunteers. J. Nutr. Sci. 2012, 1, e9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Almoosawi, S.; Tsang, C.; Ostertag, L.M.; Fyfed, L.; Al-Dujaili, E.A.S. Differential effect of polyphenol-rich dark chocolate on biomarkers of glucose metabolism and cardiovascular risk factors in healthy, overweight and obese subjects: A randomized clinical trial. Food Funct. 2012, 3, 1035–1043. [Google Scholar] [CrossRef] [Green Version]
- Dourado, G.K.Z.S.; Cesar, T.B. Investigation of cytokines, oxidative stress, metabolic, and inflammatory biomarkers after orange juice consumption by normal and overweight subjects. Food Nutr. Res. 2015, 59, 28147. [Google Scholar] [CrossRef] [Green Version]
- Stendell-Hollis, N.R.; Thomson, C.A.; Thompson, P.A.; Bea, J.W.; Cussler, E.C.; Hakim, I.A. Green tea improves metabolic biomarkers, not weight or body composition: A pilot study in overweight breast cancer survivors. J. Hum. Nutr. Diet 2010, 23, 590–600. [Google Scholar] [CrossRef]
- Ormazabal, P.; Scazzocchio, B.; Varì, R.; Santangelo, C.; D’Archivio, M.; Silecchia, G.; Iacovelli, A.; Giovannini, C.; Masella, R. Effect of protocatechuic acid on insulin responsiveness and inflammation in visceral adipose tissue from obese individuals: Possible role for PTP1B. Int. J. Obes 2018, 42, 2012–2021. [Google Scholar] [CrossRef] [Green Version]
Flavonoid Subgroups | Representative Compounds | Main Dietary Sources |
---|---|---|
FLAVONES | Luteolin Apigenin Acacetin Chrysin Diosmetin | Chamomile, parsley, tea, fenugreek seed, oregano, peppermint |
FLAVANONES | Hesperidin Naringenin Isosakuratenin Eriodictyol | Orange, grapefruit, lime, mandarin, bergamot, lemon, chinotto, tangor and tangerine |
FLAVONOLS | Quercetin Myricetin Kaempherol Rutin | Onion, blueberry, apple, broccoli, tomato, tea, red wine |
FLAVANOLS | Epicatechin Catechin Epigalocatechin Epigalocatechin-3-gallate | Cocoa, red wine, green tea, red grape, berries, apple, cherry, apricot, peach |
ISOFLAVONES | Genistein Daidzein | Soya, legumes |
ANTHOCYANIDINS | Cyanidin Malvidin Delphinidin Pelargonidin Peonidin | Berries, cherry, grape, pomegranate, red onion, red wine |
Cell/Animal Model | Treatment | Effect on Insulin Signaling | Main Metabolic Outcomes | Reference |
---|---|---|---|---|
Liver | ||||
Mouse FL83B cells | Rutin (23 μg/mL) or quercetin (6 μg/mL) with glucose (30 mM) during 48 h | ↑p-AKT, ↑AMPK, ↓PTP1B, ↑GLUT-2 | ↑Glucose uptake | [33] |
Human HepG2 cells | Epicatechin (10 µM) or cocoa flavonoid extract (1 µg/mL) during 24 h and glucose (30 mM) for additional 24 h | ↓p-(Ser)-IRS-1, ↑IR, ↑IRS-1, ↑IRS-2, ↑p-AKT, ↑p-GSK3, ↑p-AMPK, ↑GLUT-2, ↓PEPCK | ↑Glucose uptake ↑Glycogen levels | [34] |
Human HepG2 cells | High glucose (25 mM) + insulin (2.5 µg/mL) for 24 h and swertisin rich flavonoid extract (50 µg/mL) for additional 24 h | ↑IRS-1, ↑AKT-2, ↑GLUT-4 | ↑Glucose uptake | [35] |
HFD-fed and STZ-induced type 2 diabetic rats | Swertisin rich flavonoid extract (25, 50 and 100 mg/kg body weight), 28 days | ↑IRS-1, ↑GLUT-2, ↑GLUT-4, ↑GK | ↓Blood glucose ↑Glucose tolerance ↓HOMA-IR, ↓TG ↑Glycogen levels | [36] |
(db/db) diabetic mice | Tangeretin (50 mg/kg bw), 30 days | ↑IR, ↑AKT, ↑GSK3 | ↓Blood glucose ↑Glucose tolerance ↓HOMA-IR | [37] |
HFD-fed and STZ-induced type 2 diabetic rats | Myricetin (20 mg/kg bw), 4 weeks | ↑p-IR, ↑p-IRS1, ↑p-AKT, ↓PTP1B enzyme activity | ↓Blood glucose, ↓HbA1c ↓HOMA-IR ↓TG, ↓LDL, ↑HDL | [38] |
STZ-induced diabetic rats | Isoquercetin (40 mg/kg bw), 45 days | ↑IR, ↑IRS-1, ↑IRS-2, ↑AKT ↑GLUT-2, ↑GK, ↓G6Pase, ↓PEPCK | ↓Blood glucose ↑Glucose tolerance ↑Glycogen levels | [39] |
Zucker diabetic fatty rats [ZDF/crl-lepr (fa/fa)] | 10% cocoa rich diet, 9 weeks | ↓p-(Ser)-IRS-1, ↑p-GSK3, ↓p-GS, ↑GLUT-2 ↓PEPCK, ↑GK | ↓Blood glucose, ↓HbA1c ↑Glucose tolerance ↓HOMA-IR ↓ Glycogen levels | [40] |
(db/db) diabetic mice | Mulberry anthocyanin extract (50 and 125 mg/kg bw), 8 weeks | ↑AKT, =p-GSK3, ↑FOXO1 | ↓Blood glucose ↑Glucose tolerance, ↓HOMA-IR, ↓TG, ↓LDL ↓Glycogen levels | [41] |
Muscle | ||||
HFD-fed and STZ-induced type 2 diabetic rats | Myricetin (300 mg/kg bw), 28 days | ↑p-IRS-1, ↑p85-PI3K, ↑GLUT-4 | ↓Blood glucose ↓HOMA-IR, ↑HOMA-β ↓TG, ↓LDL, ↑HDL | [42] |
HFD-fed and STZ-induced type 2 diabetic mice | Amentoflavone (20–40 mg/kg, bw), 8 weeks | ↑AKT, ↑GLUT-4 | ↓Blood glucose ↑Glucose tolerance ↓TG, ↓LDL, ↑HDL | [43] |
HFD-fed and STZ-induced type 2 diabetic rats | Flavonoids mulberry leaf extract (2 g/kg bw), 4 weeks | ↑IRS-1, ↑p85-PI3K, ↑AKT, ↑GLUT-4 | ↓Blood glucose ↑Glucose tolerance ↓HOMA-IR, ↓TG, ↓LDL | [44] |
High fat and high sugar fed and STZ-induced type 2 diabetic rats | Phloretin (100 mg/kg, bw), 4 weeks | ↑IRS-1, ↑p85-PI3K, ↑AKT, ↑GLUT-4 | ↓Blood glucose ↑Glucose tolerance ↓HOMA-IR ↓TG, ↓LDL, ↓HDL, ↓FFA | [45] |
High fat and sucrose fed-induced type-2 diabetic rats | Chrysin (25–200 mg/Kg. bw), 30 days | ↑IR, ↑IRS-1, ↑AKT, ↑GLUT-4 | ↓Blood glucose ↑Glucose tolerance ↓TG, ↓LDL, ↑HDL, ↓FFA ↑Muscle glycogen levels | [46] |
(db/db) diabetic mice | Mulberry anthocyanin extract (50 and 125 mg/kg bw) | ↑AKT, ↑p-GSK3β | ↓Blood glucose ↑Glucose tolerance ↓HOMA-IR ↑Muscle glycogen levels | [41] |
Adipose | ||||
HFD-fed and STZ-induced type 2 diabetic rats | Açai seed extract (200 mg/kg bw) | ↑p-AKT, ↑GLUT-4 | ↓Blood glucose, ↓HbA1c ↓HOMA-IR, ↑ HOMA-β ↓TG, ↓LDL, ↑HDL | [47] |
(ob/ob) obese diabetic mice | Nobiletin (200 mg/kg bw), 5 weeks | ↑p-AKT, ↑GLUT-4, ↑GLUT-1 | ↓Blood glucose ↑Glucose tolerance ↓HOMA-IR | [48] |
NA/STZ-induced type 2 diabetic rats | Navel orange peel hydroethanolic extract, naringin, and naringenin (100 mg/kg bw), 4 weeks | ↑IR, ↑GLUT-4, | ↓Blood glucose ↑Glucose tolerance ↓TG, ↓LDL, ↑HDL, ↓FFA | [49] |
NA/STZ-induced type 2 diabetic rats | C. reticulata fruit peel hydroethanolic extract, hesperidin, and quercetin (100 mg/kg bw), 4 weeks | ↑IR, ↑GLUT-4, | ↓Blood glucose ↑Glucose tolerance ↓HOMA-IR, ↑ HOMA-β ↓TG, ↓LDL, ↑HDL, ↓FFA | [50] |
Others tissues | ||||
STZ-induced diabetic rats | Catechin (50 mg/kg bw), 3 weeks | ↑PI3K in endothelium | ↓Blood glucose ↑Aortic nitrite/nitrate concentration. ↑Endothelium-dependent relaxation | [51] |
Rat NRK-52E renal cells | Epicatechin (10 µM) or DHPAA (10 µM) during 2 h and glucose (30 mM) for additional 22 h | ↑IR, ↑p-IR, ↑p-GSK3, ↓GS, ↓PEPCK in renal cells | ↑Glucose uptake ↓Glucose production | [52] |
STZ-induced diabetic mice | Luteolin (10 mg/kg bw), 4 weeks | ↑IR, ↑PI3K, ↑AKT in kidney | ↓Blood glucose, ↓TG, ↓LDL ↑Glucose tolerance ↓serum and urine levels of creatinine and uric acid | [53] |
STZ-induced diabetic rats | Quercetin (0.1%) or Naringenin (0.05%), 2 months | ↑IRS-1, ↑PI3K, ↑AKT ↑GLUT-1, ↑GLUT-3 in brain | ↓Blood glucose | [54] |
Type of Study | Number of Participants | Treatment | Effect on Metabolism | Reference |
---|---|---|---|---|
RCDB, parallel | 93♀ (post-menopausal (type 2 diabetic patients) | 850 mg flavanols and 100 mg isoflavones/day, 1 year | =Glycemia, =HbA1c, ↓Insulinemia, ↓HOMA-IR, ↓LDL, =HDL | [62] |
RCDB, parallel | 68 (35♂ + 33♀) (type 2 diabetic patients) | 1500 mg of green tea extract (856 mg of ECGC)/day, 16 weeks | =Glycemia, ↓Insulinemia, ↓HOMA-IR, ↑HDL, =LDL, =TG | [63] |
RCDB, crossover | 12 (3♂ + 9♀) (hypertensive type 2 diabetic patients) | 83.6 mg of cocoa flavanols, acute | =Glycemia, =Insulinemia, =HOMA-IR, =LDL, =HDL, =TG | [67] |
RCDB, crossover | 18 (4♂ + 14♀) (type 2 diabetic patients) | Cocoa beverage (960 mg polyphenols), acute | =Glycemia, ↑Insulinemia, =HOMA-IR, ↑HDL, =LDL, =TG | [64] |
RCDB, parallel | 35 (18♂ + 17♀) (hypertensive type 2 diabetic patients) | 83.6 mg of cocoa flavanols/day, 12 weeks | =Glycemia, =HbA1c, =Insulinemia, =HOMA-IR, =LDL, =HDL, =TG | [65] |
RCDB, crossover | 12 (7♂ + 5♀) (hypertensive type 2 diabetic patients) | Dark chocolate (450 mg flavanols)/day, 8 weeks | =Glycemia, =HbA1c, =Insulinemia, =HOMA-IR, ↑HDL, =LDL | [66] |
RCDB, parallel | 42 (20♂ + 22♀) (type 2 diabetic patients) | 135 mg silybin/day, 6 months | ↓Glycemia, =Insulinemia, =HOMA-IR, =HDL, ↓TG | [68] |
RCDB, crossover | 32 (16♂ + 16♀) (type 2 diabetic patients) | Grape seed extract (600 mg of flavonoids)/day, 4 weeks | =HOMA-IR, =HDL, =TG, ↓TC | [69] |
Cell/Animal Model | Treatment | Effect on Insulin Signaling | Main Metabolic Outcomes | Reference |
---|---|---|---|---|
Adipose | ||||
Mouse 3T3L1 cells | Cyanidin-3-O-glucoside (5–10 μM, 24 h) followed by palmitic acid (500 μM, 24 h) | ↓p-(Ser)-IRS-1, ↑p-(Tyr)-IRS-1, ↑p85-PI3K, ↑pAKT, ↑GLUT-1 | ↓Insulin resistance ↓Lipid accumulation | [73] |
Mouse 3T3L1 cells | Hydroethanolic extracts of lampaya (0.1 µg/mL) for 2 h followed by palmitic acid (650 µM) during additional 16 h | ↑p-(Tyr)-IRS-1, ↑p-AKT, ↑pAS160 | ↑Glucose uptake | [74] |
HFD-fed rats (40% fat) | EGCG (3.2 g/kg food), 16 weeks | ↓p-(Ser)-IRS-1, ↑p85-PI3K, ↑GLUT-4 | ↓Glycemia, ↑GIR ↓Insulinemia, ↓HOMA-IR ↓BW, ↓FFA | [75] |
HFD-fed mice (61% fat) | Nobiletin (10 and 100 mg/kg bw), 5 weeks | ↑p-AKT, ↑GLUT-4 | ↑Glucose tolerance ↓BW, ↓TG | [76] |
HFD-fed mice (60% fat) | Anthocyanidin-rich Vitis vinifera L. grape skin extract (200 mg/kg bw), 12 weeks | ↑IR, ↑p-(Tyr)-IRS, ↑PI3K, ↑pAKT, ↑GLUT-4 | ↓Glycemia ↓Insulinemia ↓HOMA-IR ↓BW, ↓lipidemia | [77] |
HFD-fed mice (45% fat) | Hydroxytyrosol (20 mg/kg bw), 10 weeks | ↓p-(Ser)-IRS-1, ↑p-AKT, ↑GLUT-4, ↓p-JNK | ↓Glycemia ↓Insulinemia ↓HOMA-IR ↓Insulin resistance ↑Glucose tolerance | [78] |
Lipid-injected rats (infusion 20% intralipid plus 20 U/mL heparin at 5.5 mL/min) (co-injection) | EGCG (5 and 10 mg/kg bw), 48 h | ↓p-(Ser)-IRS-1, ↑p-AKT, ↑p-AMPK, ↑GLUT-4 translocation, ↓p-PKCθ translocation | ↓Glycemia, ↑GIR ↓Insulinemia, ↓FFA | [79] |
HFD-fed mice (35% fat) | 5% Freeze dried raspberry-rich diet, 12 days | ↓p-(Ser)-IRS-1, ↑p-AKT, ↓p-(Ser)-PKCθ, ↑GLUT-4, ↓p-p38, ↑p-ERK, ↑p-AMPK | ↓Insulin resistance | [80] |
Muscle | ||||
Mouse C2C12 cells | Baicalin (100, 200 and 400 µM, 12 h) | ↑p-AKT, ↑p-AS160, ↑p-p38, ↑GLUT-4, ↑mRNA GLUT-1 | ↑Glucose uptake | [81] |
HFD-fed mice (59% fat) | Baicalin (50 mg/kg bw), 16 weeks | ↑p-AKT, ↑p-AS160, ↑p-p38, ↑GLUT-4, ↑mRNA GLUT-1 | ↓Glycemia ↓Insulinemia ↓HOMA-IR ↑Glucose tolerance, ↓BW | |
Rat L6 cells | Phloretin (50 μM, 24 h) followed by palmitic acid (400 μM, 12 h) | ↑IRS-1, ↑p-AKT, ↑PI3K, ↑GLUT-4 | ↑Glucose utilization | [56] |
HFD-fed mice (60% fat) | Anthocyanidin-rich Vitis vinifera L. grape skin extract (200 mg/kg b.w.), 12 weeks | ↑IR, ↑p-(Tyr)-IRS, ↑PI3K, ↑p-AKT, ↑GLUT-4, ↑p-AMPK | ↓Glycemia ↓Insulinemia ↓HOMA-IR ↓BW, ↓lipidemia | [77] |
High fat (20%)-high fructose (45%) diet | Genistein (1 mg/kg bw/day), 60 days | ↑p-(Y)-IR, ↑p-(Y)-IRS-1, ↓p-(Ser)-IRS-1, ↑p85-PI3K, ↑p-AKT, ↑GLUT-4, ↑p-AMPK | ↓Glycemia ↓Insulinemia ↓HOMA-IR ↓QUICKI ↓BW | [82] |
Lipid-injected rats (infusion 20% intralipid plus 20 U/mL heparin at 5.5 mL/min) (co-injection) | EGCG (5 and 10 mg/kg bw), 48 h | ↓p-(Ser)-IRS-1, ↑p-AKT, ↑p-AMPK, ↑GLUT-4 translocation, ↓p-PKCθ translocation | ↓Glycemia, ↑GIR ↓Insulinemia ↓FFA | [79] |
HFD-fed Zucker fatty rats (59% fat) | Green tea polyphenols (70.9% EGCG + 1.7% EGC + 7.4% ECG, 19.3% EC) (200 mg/kg bw), 8 weeks | ↑total GLUT-4, ↑GLUT-4 translocation, ↓p-(Ser)-IRS-1, ↑p-AKT, =PKCβ2, =PKCε, ↓p-PKCθ translocation, ↓PKCξ | ↓Glycemia ↓Insulinemia ↓HOMA-IR ↑Glucose tolerance ↓Insulin resistance ↓BW, ↓visceral adiposity ↓Lipid accumulation | [83] |
HFD-fed mice (60% fat) | Oligonol (20 and 200 mg/kg bw), 12 weeks | =IRβ, ↑IRS-1, ↑p-(Tyr)-IRS-1, ↑p-AS160, ↑p-AMPK | ↓Glycemia ↓Insulinemia ↑Glucose tolerance ↓BW, ↓TG ↓lipid accumulation | [84] |
HFD-fed mice (45% fat) | 1.2% quercetin-rich diet, 8 weeks | =pAKT, =PI3K | =Glycemia ↓Insulinemia =GIR =peripheral glucose uptake =BW =TG, =NEFA =short-fatty acylcarnitines ↑long-fatty acylcarnitines | [85] |
Liver | ||||
Human C3A cells | Aspalathin-enriched green rooibos (10 µg/mL, 30 min) + palmitic acid (0.75 mM, 3 h) | ↑p-AKT, ↑GLUT-2, ↑p-AMPK, ↓FOXO1 | ↑Glucose uptake ↑Fatty acid uptake ↑Glycerol release ↓Lipid accumulation | [86] |
High fat (40%)-high-sugar (44%) diet fed rats (obese insulin-resistant rats) | Aspalathin-enriched green rooibos (32, 97 and 195 mg/kg), 12 weeks | ↑Ins, ↑Irs1, ↑Irs-2, ↑Pi3k, ↑Ampk, =glut-2 | =Glycemia ↓Insulinemia ↓HOMA-IR | |
Rat BRL3A cells | Phloretin (50 μM, 24 h) followed by palmitic acid (200 μM, 12 h) | ↑IRS-1, ↑p-AKT, ↑PI3K, ↑GLUT-4 | ↑Glucose consumption | [56] |
High fat (20%)-high fructose (45%) diet | Genistein (1 mg/kg bw/day), 45 days | ↑IRS-1, ↑IRS-2, ↑p-AKT, ↑p-AMPK, ↓p-S6K1 | ↓Glycemia ↓Lipid accumulation ↓FFA, ↓TG, ↓Cho ↓BW | [87] |
HFD fed rats (60% fat) | EGCG (3.2 g/kg bw), 16 weeks | ↑p-(Y)-IRS-1, ↑IRS-2, ↑PI3K, ↑AKT | =Glycemia ↓Insulinemia ↓HOMA-IR, ↑ GIR ↓FFA, ↓TG | [88] |
HFD fed rats (59% fat) | Lepidium sativum ethanol extracts (200 and 400 mg/kg bw) and Lepidium sativum aqueous extract (200 mg/kg bw), 8 weeks | ↑p-IR, ↑p-AKT, ↑p-mTOR, ↓p-70S6K1 | ↓Glycemia ↓Insulinemia ↓HOMA-IR, ↑ HOMA-B ↓total lipids, ↓Cho, ↓TG, ↓HDL, ↓LDL | [89] |
HFD fed mice (60% fat) | Purple sweet potato color (700 mg/kg bw), 20 weeks | ↓p-(Ser)-IRS-1, ↑p110β-PI3K, ↑p85α-PI3K, ↑p-AKT, ↑p-GSK3β | ↓Glycemia ↑Glucose tolerance ↓Insulin resistance ↓Lipid accumulation ↓FFA, ↓Cho, ↓TG ↓BW | [90] |
HFD-fed mice (45% fat) | Hydroxytyrosol (20 mg/kg bw), 10 weeks | ↓p-(Ser)-IRS-1, ↑p-AKT, =GLUT-2 | ↓Glycemia ↓Insulinemia ↓HOMA-IR ↓Insulin resistance ↑Glucose tolerance | [78] |
Human HepG2 cells | Hydroxytyrosol (50 and 100 µM)+palmitic acid (100 µM), 1 h | ↑p-(Tyr)-IRS-1, ↑p-AKT | ↓Insulin resistance | |
HFD fed mice (60% fat) | Vitis vinifera skin extract (200 mg/kg bw), 12 weeks | ↑p-IRS-1, ↑p-AKT, ↑PI3K, ↑GLUT-2, ↑p-AMPK | ↓Glycemia ↓Insulinemia ↓HOMA-IR ↓Glycogen content ↓Lipid accumulation ↓Cho, ↓TG, ↓HDL, ↓LDL | [91] |
HFD-fed rats (45% fat) | 10% Freeze dried blueberry-rich diet, 8 weeks | ↓p-(Ser)-IRS-1 | =Glycemia =Insulinemia ↓HOMA-IR =Glucose tolerance =BW | [92] |
HFD-fed mice (60% fat) | Oligonol (20 and 200 mg/kg bw), 12 weeks | =p-AKT, ↓p-GSK3α, ↓p-(Ser)-PTEN, ↓p-mTOR, ↑p-AMPK | ↓Glycemia ↓Insulinemia ↑Glucose tolerance ↓BW, ↓TG ↓Lipid accumulation | [84] |
HFD-fed mice (45% fat) | 1.2% quercetin-rich diet, 8 weeks | =p-AKT, =PI3K | =Glycemia ↓Insulinemia =GIR =peripheral glucose uptake =BW =TG, =NEFA ↑short-fatty acylcarnitines ↓long-fatty acylcarnitines | [85] |
Type of Study | Number of Participants | Treatment | Effect on Metabolism | Reference |
---|---|---|---|---|
RC, crossover | 27 ♂ (BMI > 25 kg/m2, 53–63 years) | 600 g blackberries (1500 mg flavonoids), acute (12 h) | =Glycemia, =Insulinemia, HOMA-IR, ↓HOMA-B, ↓AUC in GTT for insulin ↓respiratory quotient, ↓AUC for NEFA, ↓TG | [96] |
Prospective | 6 (4♂ + 2♀), (BMI = 25–35 kg/m2, ≥45 years) | Kosen-cha (1 L/day, 14,300 mg polyphenols), 12 weeks | =Glycemia, ↓HOMA-IR ↓BW, ↓BMI, ↓WC, ↓TG | [97] |
RCB, crossover | 26 (21♂ + 5♀), (BMI > 25 kg/m2, 38–58 years) | Pecan-rich diet (15% of total calories), 12 weeks | ↓Glycemia, ↓Insulinemia, ↓HOMA-IR, ↓HOMA-B ↓VLDL, ↓LDL, ↓HDL, ↓TG | [98] |
RC, crossover | 28 (12♂ + 16♀), (BMI = 25–35 kg/m2, 40–65 years) | Pomegranate juice (500 mL, 1685 mg polyphenols/L), 4 weeks | ↓Insulinemia, ↓HOMA-IR =BW, =BMI | [99] |
RCSB, crossover | 42 adult women (25 overweight [BMI ≥ 25 kg/m2] + 21 controls, [BMI = 18–24.9 kg/m2]) | Dark chocolate (20 g, 500 mg polyphenols), 4 weeks | =Insulinemia, =HOMA-IR, ↓QUICKI ↓BW, =WC | [100] |
RCDB, parallel | 46 adult women (13 overweight + 8 obese, [BMI ≥ 25 kg/m2] + 21 controls, [BMI = 25 kg/m2]) | Orange juice (750 mL/day, 135 mg flavonoids/L), 8 weeks | =Glycemia, =Insulinemia, =HOMA-IR. ↓Total Cho, ↓LDL, =HDL. =BMI, =body fat mass, =body mass, =WC | [101] |
RCDB, parallel | 54 breast cancer survivors (BMI = 25–40 kg/m2, 18–80 years) | Green decaffeinated tea (960 mL/day, 235.64 mg catechin and 128.84 mg EGCG), 6 months | =Glycemia, =Insulinemia, =HOMA-IR. ↓LDL, ↑HDL, =TG ↓BW, ↓BMI, ↓fat mass, ↓lean mass, ↓WC, ↓hip circumference | [102] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martín, M.Á.; Ramos, S. Dietary Flavonoids and Insulin Signaling in Diabetes and Obesity. Cells 2021, 10, 1474. https://doi.org/10.3390/cells10061474
Martín MÁ, Ramos S. Dietary Flavonoids and Insulin Signaling in Diabetes and Obesity. Cells. 2021; 10(6):1474. https://doi.org/10.3390/cells10061474
Chicago/Turabian StyleMartín, María Ángeles, and Sonia Ramos. 2021. "Dietary Flavonoids and Insulin Signaling in Diabetes and Obesity" Cells 10, no. 6: 1474. https://doi.org/10.3390/cells10061474
APA StyleMartín, M. Á., & Ramos, S. (2021). Dietary Flavonoids and Insulin Signaling in Diabetes and Obesity. Cells, 10(6), 1474. https://doi.org/10.3390/cells10061474