In Vitro Response of Polyscias filicifolia (Araliaceae) Shoots to Elicitation with Alarmone–Diadenosine Triphosphate, Methyl Jasmonate, and Salicylic Acid
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Shoot Cultures
2.3. Phytochemical Analysis Using HPLC-UV-DAD
2.3.1. Determination of Phenolic Acids
2.3.2. Determination of Oleanolic Acid
2.4. Determination of Total Flavonoid Content (TFC)
2.5. Determination of Total Phenolic Compound Content (TPC)
2.6. Enzyme Assays
2.6.1. Determination of Enzymes Activity as well as TBARS and Tocopherol Content
2.6.2. Enzymes Assay
2.6.3. Thiobarbituric Acid Reactive Substance (TBARS) Content Assay
2.6.4. Determination of α-Tocopherol
2.6.5. Native-Page Electrophoresis of Peroxidase
2.6.6. Protein Determinations
2.7. Antioxidant Assays
2.8. Statistical Analysis
3. Results and Discussion
3.1. Effect of Culture Conditions on Polyscias filicifolia Shoot Growth
3.2. The Effect of Culture Conditions on the Production of Oleanolic Acid and Phenolic Compounds
3.3. The Effect of Culture Conditions on the Antioxidant Activity of P. filicifolia Shoot Extracts
3.4. The Effect of Selected Elicitors and Their Combinations on Protein Concentration and Lipid Peroxidation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wasternack, C. Jasmonates: An update on biosynthesis, signal transduction and action in plant stress response, growth and development. Ann. Bot. 2007, 100, 681–697. [Google Scholar] [CrossRef] [Green Version]
- Wasternack, C.; Hause, B. Jasmonates: Biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany. Ann. Bot. 2013, 111, 1021–1058. [Google Scholar] [CrossRef]
- Vlot, A.C.; Dempsey, D.A.; Klessig, D.F. Salicylic acid, a multifaceted hormone to combat disease. Annu. Rev. Phytopathol. 2009, 47, 177–206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koornneef, A.; Pieterse, C.M. Cross talk in defense signaling. Plant. Physiol. 2008, 146, 839–844. [Google Scholar] [CrossRef] [Green Version]
- Pieterse, C.M.; Van Der Does, D.; Zamioudis, C.; Leon-Reyes, A.; Van Wees, S.C. Hormonal Modulation of Plant Immunity. Annu. Rev. Cell Dev. Biol. 2012, 28, 489–521. [Google Scholar] [CrossRef] [Green Version]
- Choudhury, F.K.; Rivero, R.M.; Blumwald, E.; Mittler, R. Reactive oxygen species, abiotic stress and stress combination. Plant. J. 2016, 90, 856–867. [Google Scholar] [CrossRef]
- Bhattacharjee, S. Reactive oxygen species and oxidative burst: Roles in stress, senescence and signal transduction in plants. Curr. Sci. 2005, 89, 1113–1121. [Google Scholar]
- Bhattacharjee, S. The language of reactive oxygen species signaling in plants. J. Bot. 2012, 2012, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Sharma, P.; Jha, A.B.; Dubey, R.S.; Pessarakli, M. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J. Bot. 2012, 2012, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Apel, K.; Hirt, H. Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant. Biol. 2004, 55, 373–399. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmad, P.; Jaleel, C.A.; Salem, M.A.; Nabi, G.; Sharma, S. Roles of enzymatic and nonenzymatic antioxidants in plants during abiotic stress. Crit. Rev. Biotechnol. 2010, 30, 161–175. [Google Scholar] [CrossRef]
- Dong, J.; Wan, G.; Liang, Z. Accumulation of salicylic acid-induced phenolic compounds and raised activities of secondary metabolic and antioxidative enzymes in Salvia miltiorrhiza cell culture. J. Biotechnol. 2010, 148, 99–104. [Google Scholar] [CrossRef] [PubMed]
- Pietrowska-Borek, M.; Nuc, K.; Zielezińska, M.; Guranowski, A. Diadenosine polyphosphates (Ap3A and Ap4A) behave as alarmones triggering the synthesis of enzymes of the phenylpropanoid pathway in Arabidopsis thaliana. FEBS Open Bio 2011, 1, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pietrowska-Borek, M.; Czekała, Ł.; Belchi-Navarro, S.; Pedreño, M.A.; Guranowski, A. Diadenosine triphosphate is a novel factor which in combination with cyclodextrins synergistically enhances the biosynthesis of trans -resveratrol in Vitis vinifera cv. Monastrell suspension cultured cells. Plant. Physiol. Biochem. 2014, 84, 271–276. [Google Scholar] [CrossRef]
- Ramirez-Estrada, K.; Vidal-Limon, H.; Hidalgo, D.; Moyano, E.; Golenioswki, M.; Cusidó, R.M.; Palazon, J. Elicitation, an effective strategy for the biotechnological production of bioactive high-added value compounds in plant cell factories. Molecules 2016, 21, 182. [Google Scholar] [CrossRef]
- Halder, M.; Sarkar, S.; Jha, S. Elicitation: A biotechnological tool for enhanced production of secondary metabolites in hairy root cultures. Eng. Life Sci. 2019, 19, 880–895. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Furmanowa, M.; Nosov, A.M.; Oreshnikov, A.V.; Klushin, A.G.; Kotin, M.; Starościak, B.; Śliwińska, A.; Guzewska, J.; Bloch, R. Anti-microbial activity of Polyscias filicifolia cell biomass extracts. Pharmazie 2002, 57, 424–426. [Google Scholar] [PubMed]
- Nosov, A.M.; Popova, E.V.; Kochkin, D.V. Isoprenoid production via plant cell cultures: Biosynthesis, accumulation and scaling-up to bioreactors. In Production of Biomass and Bioactive Compounds Using Bioreactor Technology; Springer: Dordrecht, The Netherlands, 2014; pp. 563–623. [Google Scholar]
- Divakar, M.C.; Sheela, S.; Sandhya, S.; Vinod, K.; Pillai, N.; Rao, S. Anti-inflammatory and antioxidant activities of Polyscias filicifolia saponins. Der Pharm. Lett. 2010, 2, 41–47. [Google Scholar]
- Ashmawy, N.S.; Gad, H.A.; Ashour, M.L.; El-Ahmady, S.H.; Singab, A.N.B. The genus Polyscias (Araliaceae): A phytochemical and biological review. J. Herb. Med. 2020, 23, 100377. [Google Scholar] [CrossRef]
- Thakur, M.; Melzig, M.F.; Fuchs, H.; Weng, A. Chemistry and pharmacology of saponins: Special focus on cytotoxic properties. Bot. Targets Ther. 2011, 1, 19. [Google Scholar] [CrossRef] [Green Version]
- Liu, J. Oleanolic acid and ursolic acid: Research perspectives. J. Ethnopharmacol. 2005, 100, 92–94. [Google Scholar] [CrossRef] [PubMed]
- Pollier, J.; Goossens, A. Oleanolic acid. Phytochem 2012, 77, 10–15. [Google Scholar] [CrossRef] [PubMed]
- Szakiel, A.; Ruszkowski, D.; Grudniak, A.; Kurek, A.; Wolska, K.; Doligalska, M.; Janiszowska, W. Antibacterial and antiparasitic activity of oleanolic acid and its glycosides isolated from marigold (Calendula officinalis). Planta Medica 2008, 74, 1709–1715. [Google Scholar] [CrossRef] [PubMed]
- Bandhakavi, S.; Kamarapu, P. Production of oleanolic acid by plant tissue culture. J. Pharm. Phytochem. 2016, 4, 4–7. [Google Scholar]
- Śliwińska, A.A.; Sykłowska-Baranek, K.; Kośmider, A.; Granica, S.; Miszczak, K.; Nowicka, G.; Kasztelan, A.; Podsadni, P.; Turło, J.; Pietrosiuk, A. Stimulation of phenolic compounds production in the in vitro cultivated Polyscias filicifolia Bailey shoots and evaluation of the antioxidant and cytotoxic potential of plant extracts. Acta Soc. Bot. Pol. 2018, 87, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Figat, R.; Śliwińska, A.; Stochmal, A.; Soluch, A.; Sobczak, M.; Zgadzaj, A.; Sykłowska-Baranek, K.; Pietrosiuk, A. Antigenotoxic, anti-photogenotoxic, and antioxidant properties of Polyscias filicifolia shoots cultivated in vitro. Molecules 2020, 25, 1090. [Google Scholar] [CrossRef] [Green Version]
- Śliwińska, A.; Olszowska, O.; Furmanowa, M.; Nosov, A.V. Rapid multiplication of Polyscias filicifolia by secondary somatic embryogenesis. Vitr. Cell. Dev. Biol. Anim. 2008, 44, 69–77. [Google Scholar] [CrossRef]
- Murashige, T.; Skoog, F. A Revised Medium for Rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant. 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Linsmaier, E.M.; Skoog, F. Organic growth factor requirements of tobacco tissue cultures. Physiol. Plant. 1965, 18, 100–127. [Google Scholar] [CrossRef]
- Liang, Z.; Jiang, Z.; Fong, D.; Zhao, Z. Determination of oleanolic acid and ursolic acid in Oldenlandia diffusa and its substitute using high performance liquid chromatography. J. Food Drug Anal. 2010, 17, 3. [Google Scholar] [CrossRef]
- Pękal, A.; Pyrzynska, K. Evaluation of Aluminium complexation reaction for flavonoid content assay. Food Anal. Methods 2014, 7, 1776–1782. [Google Scholar] [CrossRef] [Green Version]
- Maehly, A.C. The Assay of catalases and peroxidases. In Methods of Biochemical Analysis; Wiley: Hoboken, NJ, USA, 2006; Volume 1, pp. 357–424. [Google Scholar]
- Dhindsa, R.S.; Plumb-Dhindsa, P.; Thorpe, T.A. Leaf senescence: Correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. J. Exp. Bot. 1981, 32, 93–101. [Google Scholar] [CrossRef]
- Habig, W.H.; Pabst, M.J.; Jakoby, W.B. Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J. Biol. Chem. 1974, 249, 7130–7139. [Google Scholar] [CrossRef]
- Yagi, K. Lipid peroxides and human diseases. Chem. Phys. Lipids 1987, 45, 337–351. [Google Scholar] [CrossRef]
- Taylor, S.L.; Lamden, M.P.; Tappel, A.L. Sensitive fluorometric method for tissue tocopherol analysis. Lipids 1976, 11, 530–538. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Mareček, V.; Mikyška, A.; Hampel, D.; Čejka, P.; Neuwirthová, J.; Malachová, A.; Cerkal, R. ABTS and DPPH methods as a tool for studying antioxidant capacity of spring barley and malt. J. Cereal Sci. 2017, 73, 40–45. [Google Scholar] [CrossRef]
- Wasternack, C. Action of jasmonates in plant stress responses and development — Applied aspects. Biotechnol. Adv. 2014, 32, 31–39. [Google Scholar] [CrossRef]
- Hari, G.; Vadlapudi, K.; Vijendra, P.D.J.R.; Sannabommaji, T.; Basappa, G. A combination of elicitor and precursor enhances psoralen production in Psoralea corylifolia Linn. suspension cultures. Ind. Crop. Prod. 2018, 124, 685–691. [Google Scholar] [CrossRef]
- Mendoza, D.; Cuaspud, O.; Arias, J.P.; Ruiz, O.; Arias, M. Effect of salicylic acid and methyl jasmonate in the production of phenolic compounds in plant cell suspension cultures of Thevetia peruviana. Biotechnol. Rep. 2018, 19, e00273. [Google Scholar] [CrossRef]
- Mendoza, D.; Arias, J.P.; Cuaspud, O.; Esturau-Escofet, N.; Hernández-Espino, C.C.; Miguel, E.R.D.S.; Arias, M. 1H-NMR-based metabolomic of plant cell suspension cultures of Thevetia peruviana treated with salicylic acid and methyl jasmonate. Ind. Crop. Prod. 2019, 135, 217–229. [Google Scholar] [CrossRef]
- Hayat, Q.; Hayat, S.; Irfan, M.; Ahmad, A. Effect of exogenous salicylic acid under changing environment: A review. Environ. Exp. Bot. 2010, 68, 14–25. [Google Scholar] [CrossRef]
- Abbasi, B.H.; Asad, U.M.; Muhammad, N.; Tungmunnithum, D.; Hano, C. Exogenous application of salicylic acid and gibberellic acid on biomass accumulation, antioxidant and anti-inflammatory secondary metabolites production in multiple shoot culture of Ajuga integrifolia Buch. Ham. ex D. Don. Industrial Crops and Products 2020, 145, 112098. [Google Scholar] [CrossRef]
- Zaheer, M.; Giri, C.C. Multiple shoot induction and jasmonic versus salicylic acid driven elicitation for enhanced andrographolide production in Andrographis paniculata. Plant. Cell, Tissue Organ. Cult. (PCTOC) 2015, 122, 553–563. [Google Scholar] [CrossRef]
- Gadzovska, S.; Maury, S.; Delaunay, A.; Spasenoski, M.; Hagège, D.; Courtois, D.; Joseph, C. The influence of salicylic acid elicitation of shoots, callus, and cell suspension cultures on production of naphtodianthrones and phenylpropanoids in Hypericum perforatum L. Plant. Cell, Tissue Organ. Cult. (PCTOC) 2013, 113, 25–39. [Google Scholar] [CrossRef]
- Szakiel, A.; Grzelak, A.; Dudek, P.; Janiszowska, W. Biosynthesis of oleanolic acid and its glycosides in Calendula officinalis suspension culture. Plant. Physiol. Biochem. 2003, 41, 271–275. [Google Scholar] [CrossRef]
- Kümmritz, S.; Louis, M.; Haas, C.; Oehmichen, F.; Gantz, S.; Delenk, H.; Steudler, S.; Bley, T.; Steingroewer, J. Fungal elicitors combined with a sucrose feed significantly enhance triterpene production of a Salvia fruticosa cell suspension. Appl. Microbiol. Biotechnol. 2016, 100, 7071–7082. [Google Scholar] [CrossRef]
- Kumar, P.; Chaturvedi, R.; Sundar, D.; Bisaria, V.S. Piriformospora indica enhances the production of pentacyclic triterpenoids in Lantana camara L. suspension cultures. Plant. Cell Tissue Organ. Cult. (PCTOC) 2015, 125, 23–29. [Google Scholar] [CrossRef]
- Alsoufi, A.S.M.; Pączkowski, C.; Szakiel, A.; Długosz, M. Effect of jasmonic acid and chitosan on triterpenoid production in Calendula officinalis hairy root cultures. Phytochem. Lett. 2019, 31, 5–11. [Google Scholar] [CrossRef]
- Markowski, M.; Długosz, M.; Szakiel, A.; Durli, M.; Poinsignon, S.; Bouguet-Bonnet, S.; Vernex-Loset, L.; Krier, G.; Henry, M. Increased synthesis of a new oleanane-type saponin in hairy roots of marigold (Calendula officinalis) after treatment with jasmonic acid. Nat. Prod. Res. 2018, 33, 1218–1222. [Google Scholar] [CrossRef] [PubMed]
- Wiktorowska, E.; Długosz, M.; Janiszowska, W. Significant enhancement of oleanolic acid accumulation by biotic elicitors in cell suspension cultures of Calendula officinalis L. Enzym. Microb. Technol. 2010, 46, 14–20. [Google Scholar] [CrossRef]
- Zhao, Z.-J.; Song, Y.-G.; Liu, Y.-L.; Qiao, M.; Zhai, X.-L.; Xiang, F.-N. The effect of elicitors on oleanolic acid accumulation and expression of triterpenoid synthesis genes in Gentiana straminea. Biol. Plant. 2013, 57, 139–143. [Google Scholar] [CrossRef]
- Misra, R.C.; Maiti, P.; Chanotiya, C.S.; Shanker, K.; Ghosh, S.; Petit, J.; Bres, C.; Just, D.; Garcia, V.; Mauxion, J.-P.; et al. Methyl jasmonate-elicited transcriptional responses and pentacyclic triterpene biosynthesis in sweet basil. Plant. Physiol. 2013, 164, 1028–1044. [Google Scholar] [CrossRef] [Green Version]
- Kumari, S.; Priya, P.; Misra, G.; Yadav, G. Structural and biochemical perspectives in plant isoprenoid biosynthesis. Phytochem. Rev. 2013, 12, 255–291. [Google Scholar] [CrossRef]
- Moses, T.; Pollier, J.; Thevelein, J.M.; Goossens, A. Bioengineering of plant (tri)terpenoids: From metabolic engineering of plants to synthetic biology in vivo and in vitro. New Phytol. 2013, 200, 27–43. [Google Scholar] [CrossRef] [PubMed]
- Jozwiak, A.; Lipko, A.; Kania, M.; Danikiewicz, W.; Surmacz, L.; Witek, A.; Wojcik, J.; Zdanowski, K.; Pączkowski, C.; Chojnacki, T.; et al. Modeling of dolichol mass spectra isotopic envelopes as a tool to monitor isoprenoid biosynthesis. Plant. Physiol. 2017, 174, 857–874. [Google Scholar] [CrossRef]
- Dias, M.I.; Sousa, M.J.; Alves, R.C.; Ferreira, I.C. Exploring plant tissue culture to improve the production of phenolic compounds: A review. Ind. Crop. Prod. 2016, 82, 9–22. [Google Scholar] [CrossRef] [Green Version]
- Sroka, Z. Antioxidative and antiradical properties of plant phenolics. Zeitschrift für Naturforschung C 2005, 60, 833–843. [Google Scholar] [CrossRef] [PubMed]
- Kikuzaki, H.; Hisamoto, M.; Hirose, K.; Akiyama, K.; Taniguchi, H. Antioxidant properties of ferulic acid and its related compounds. J. Agric. Food Chem. 2002, 50, 2161–2168. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharyya, D.; Sinha, R.; Ghanta, S.; Chakraborty, A.; Hazra, S.; Chattopadhyay, S. Proteins differentially expressed in elicited cell suspension culture of Podophyllum hexandrum with enhanced podophyllotoxin content. Proteome Sci. 2012, 10, 34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmad, P.; Jaleel, C.A.; Azooz, M.M.; Nabi, G. Generation of ROS and non-enzymatic antioxidants during abiotic stress in plants. Bot. Res. Int. 2009, 2, 11–20. [Google Scholar]
- Munné-Bosch, S.; Weiler, E.W.; Alegre, L.; Müller, M.; Düchting, P.; Falk, J. α-Tocopherol may influence cellular signaling by modulating jasmonic acid levels in plants. Planta 2006, 225, 681–691. [Google Scholar] [CrossRef] [PubMed]
- Falk, J.; Andersen, G.; Kernebeck, B.; Krupinska, K. Constitutive overexpression of barley 4-hydroxyphenylpyruvate dioxygenase in tobacco results in elevation of the vitamin E content in seeds but not in leaves. FEBS Lett. 2003, 540, 35–40. [Google Scholar] [CrossRef] [Green Version]
- Schaller, F. Enzymes of the biosynthesis of octadecanoid-derived signalling molecules. J. Exp. Bot. 2001, 52, 11–23. [Google Scholar] [CrossRef] [PubMed]
- Jacobo-Velázquez, D.A.; González-Agüero, M.; Cisneros-Zevallos, L. Cross-talk between signaling pathways: The link between plant secondary metabolite production and wounding stress response. Sci. Rep. 2015, 5, 8608. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Type of Culture | Shoot Fresh Biomass Increase | Shoot Dry Biomass Increase | Shoot Multiplication Rate | Length of Shoots [cm] |
---|---|---|---|---|
LS0 | 2.37 ± 0.09 | 0.27 ± 0.05 | 2.02 ± 0.12 | 4.07 ± 0.16 |
LSSA | 2.56 ± 0.11 | 0.37 ± 0.05 | 2.11 ± 0.07 | 4.30 ± 0.18 |
LSMeJA | 1.72 ± 0.13 | 0.27 ± 0.04 | 2.05 ± 0.05 a | 3.40 ± 0.05 a |
LSSA + MeJA | 3.10 ± 0.11 | 0.33 ± 0.04 | 2.25 ± 0.11 | 4.18 ± 0.03 |
LSAp3A | 3.06 ± 0.28 | 0.43 ± 0.03 | 3.17 ± 0.08 a | 4.62 ± 0.03 a |
LSAp3A + SA | 2.39 ± 0.15 | 0.25 ± 0.04 | 2.67 ± 0.08 | 4.51 ± 0.03 |
LSAp3A + MeJA | 2.02 ± 0.17 | 0.30 ± 0.05 | 2.60 ± 0.23 | 4.32 ± 0.04 |
LSAp3A +SA + MeJA | 3.10 ± 0.12 | 0.23 ± 0.07 | 2.27 ± 0.12 | 4.04 ± 0.04 |
Culture Modification | CGA [mg/g DW] | CA [mg/g DW] | FA [mg/g DW] | OA [mg/g DW] | Total Phenolics Content (TPC) [mg GAE/g DW] | Total Flavonoid Content (TFC) [mg QE/g DW] | ABTS [mg TE/g DW] | DPPH [mg TE/g DW] |
---|---|---|---|---|---|---|---|---|
LS0 | 1.09 ± 0.04 | 0.58 ± 0.13 | 0.02 ± 0.04 a | 0.11 ± 0.31 | 1.63 ± 0.06 | 1.21 ± 0.33 | 10.78 ± 0.09 | 8.28 ± 0.32 |
LSSA | 3.23 ± 0.02 a | 0.79 ± 0.22 a | 0.07 ± 0.08 b | 0.25 ± 0.08 | 4.13 ± 0.22 a | 2.94 ± 0.02 | 16.63 ± 0.11 | 28.68 ± 0.49 a |
LSMeJA | 2.31 ± 0.32 b | 0.77 ± 0.29 b | 0.09 ± 0.01 b | 0.17 ± 0.42 | 5.22 ± 0.05 | 3.79 ± 0.03 a | 15.36 ± 0.11 a | 26.88 ± 0.47 b |
LSSA + MeJA | 4.18 ± 0.16 | 0.89 ± 0.23 c | 0.11 ± 0.11 c,e | 0.39 ± 0.41 | 7.62 ± 0.09 | 4.90 ± 0.02 | 14.46 ± 0.01 | 30.85 ± 0.52 |
LSAp3A | 2.18 ± 0.12 b | 0.92 ± 0.01 c | 0.04 ± 0.15 a,d | 0.18 ± 0.03 | 3.50 ± 0.12 | 4.13 ± 0.15 a,b | 14.86 ± 0.01 b | 24.64 ± 1.06 a,b |
LSAp3A + SA | 2.68 ± 0.18 | 0.86 ± 0.01 | 0.04 ± 0.18 a,d | 0.27 ± 0.15 | 4.11 ± 0.11 a | 3.65 ± 0.10 a | 16.30 ± 0.02 | 24.41 ± 0.79 c |
LSAp3A + MeJA | 2.38 ± 0.16 b | 0.91 ± 0.17 c | 0.09 ± 0.08 b,e,f | 0.19 ± 0.23 | 7.78 ± 0.09 | 3.57 ± 0.03 a | 15.38 ± 0.07 a | 24.76 ± 0.32 c |
LSAp3A +SA + MeJA | 3.33 ± 0.30 a | 0.79 ± 0.16 a,b,c | 0.10 ± 0.02 b,c,f | 0.34 ± 0.56 | 5.75 ± 0.02 | 4.46 ± 0.07 b | 14.88 ± 0.03 b | 26.98 ± 0.11 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Śliwińska, A.; Naliwajski, M.R.; Pietrosiuk, A.; Sykłowska-Baranek, K. In Vitro Response of Polyscias filicifolia (Araliaceae) Shoots to Elicitation with Alarmone–Diadenosine Triphosphate, Methyl Jasmonate, and Salicylic Acid. Cells 2021, 10, 419. https://doi.org/10.3390/cells10020419
Śliwińska A, Naliwajski MR, Pietrosiuk A, Sykłowska-Baranek K. In Vitro Response of Polyscias filicifolia (Araliaceae) Shoots to Elicitation with Alarmone–Diadenosine Triphosphate, Methyl Jasmonate, and Salicylic Acid. Cells. 2021; 10(2):419. https://doi.org/10.3390/cells10020419
Chicago/Turabian StyleŚliwińska, Anita, Marcin R. Naliwajski, Agnieszka Pietrosiuk, and Katarzyna Sykłowska-Baranek. 2021. "In Vitro Response of Polyscias filicifolia (Araliaceae) Shoots to Elicitation with Alarmone–Diadenosine Triphosphate, Methyl Jasmonate, and Salicylic Acid" Cells 10, no. 2: 419. https://doi.org/10.3390/cells10020419
APA StyleŚliwińska, A., Naliwajski, M. R., Pietrosiuk, A., & Sykłowska-Baranek, K. (2021). In Vitro Response of Polyscias filicifolia (Araliaceae) Shoots to Elicitation with Alarmone–Diadenosine Triphosphate, Methyl Jasmonate, and Salicylic Acid. Cells, 10(2), 419. https://doi.org/10.3390/cells10020419