Next Article in Journal
Quantifying Renin-Angiotensin-System Alterations in COVID-19
Next Article in Special Issue
Redox Sensitive Cysteine Residues as Crucial Regulators of Wild-Type and Mutant p53 Isoforms
Previous Article in Journal
Basophils and Mast Cells in COVID-19 Pathogenesis
Previous Article in Special Issue
Metabolic Stress Adaptations Underlie Mammary Gland Morphogenesis and Breast Cancer Progression
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

Autophagy and the Lysosomal System in Cancer

by
Suresh Kumar
1,2,3,*,†,
Miguel Sánchez-Álvarez
4,†,
Fidel-Nicolás Lolo
4,
Flavia Trionfetti
5,6,
Raffaele Strippoli
4,5,6,* and
Marco Cordani
7
1
Autophagy Inflammation and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
2
Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
3
Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
4
Mechanoadaptation & Caveolae Biology Laboratory, Cell and Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029 Madrid, Spain
5
Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
6
National Institute for Infectious Diseases L. Spallanzani, IRCCS, Via Portuense, 292, 00149 Rome, Italy
7
IMDEA Nanociencia, Faraday 9, 28046 Madrid, Spain
*
Authors to whom correspondence should be addressed.
These authors contributed equally to this work.
Cells 2021, 10(10), 2752; https://doi.org/10.3390/cells10102752
Submission received: 6 August 2021 / Revised: 1 October 2021 / Accepted: 5 October 2021 / Published: 14 October 2021
(This article belongs to the Special Issue Cancer Therapy Based on Oxidative Stress Modulation)

Abstract

:
Autophagy and the lysosomal system, together referred to as the autophagolysosomal system, is a cellular quality control network which maintains cellular health and homeostasis by removing cellular waste including protein aggregates, damaged organelles, and invading pathogens. As such, the autophagolysosomal system has roles in a variety of pathophysiological disorders, including cancer, neurological disorders, immune- and inflammation-related diseases, and metabolic alterations, among others. The autophagolysosomal system is controlled by TFEB, a master transcriptional regulator driving the expression of multiple genes, including autophagoly sosomal components. Importantly, Reactive Oxygen Species (ROS) production and control are key aspects of the physiopathological roles of the autophagolysosomal system, and may hold a key for synergistic therapeutic interventions. In this study, we reviewed our current knowledge on the biology and physiopathology of the autophagolysosomal system, and its potential for therapeutic intervention in cancer.

Graphical Abstract

1. Introduction

The regulation of autophagy and the dynamics of the lysosomal system are intertwined to ensure cellular health and quality [1,2,3], and their disruption contributes to the physiopathology of several diseases, including cancer, neurodegeneration, metabolic and ageing-related disorders, and inflammatory diseases [1,4,5]. Transcription factor EB (TFEB), one of the four members of the MiTF/TFE3 family [6], is a master transcriptional regulator of both autophagy and lysosomal components [7,8,9,10,11]. In addition, TFEB transcriptionally regulates the expression of genes involved in mitochondrial quality control [12], lipid metabolism [13], and lysosomal exocytosis [14].
Cancer is one of the prime causes of death worldwide [15]. Despite recent advances, this disease still poses a major challenge to public health [15]. Several signaling pathways are frequently altered in cancer [16,17,18], among which autophagy regulatory networks and the lysosomal system represent prominent examples with potential therapeutic implications [19,20,21,22,23,24]. Lysosomotropic drugs such as chloroquine and hydroxychloroquine are currently being tested in the clinic [24,25,26]. Several other drugs, which inhibit lysosomal function, have shown efficacy against different types of cancers [20,24], not only inhibiting lysosomal function, but also disrupting autophagy-dependent processes, as lysosomal damage affects terminal steps of autophagy [23,24]. Several drugs targeting autophagy inhibit proliferation across several cancer-cell types [20,24].
TFEB and related proteins frequently behave as oncoproteins, as they have a key role in the progression of different cancer types [27,28] through the transcriptional control of different processes contributing to tumor-cell survival, metastasis, and chemoresistance [28]. TFEB does not only directly control autophagy and lysosomal dynamics, but also regulates mechanistic Target of Rapamycin (mTOR) [29], a signaling kinase onto which nutrient sensing and anabolic cues converge and which negatively regulates autophagy [30,31,32,33]. In this study, we reviewed the contributions of autophagy and the lysosomal system to cancer progression and chemoresistance, and the roles of TFEB therein.

2. Autophagy: An Essential Homeostatic Process

Autophagy is a homeostatic process that delivers cell components and structures to lysosomes for degradation and recycling. Autophagy gets rid of cytosolic waste, including damaged organelles and protein aggregates, and contributes to the clearance of invading pathogens. The autophagic machinery is conserved from yeast to mammals [34], and its components control distinct steps to achieve a tight control of this process. Autophagy is initiated by the Unc-51-like autophagy-activating kinase (ULK1) complex, which receives input on cell energy balance, nutrient availability, and growth signaling from mTOR and AMP-activated protein kinase (AMPK) signaling networks [30,31,33,35] (Figure 1). Apart from nutrient availability, viral infections can positively regulate the autophagic process, both directly, through the influence of viral elements on autophagic proteins, and indirectly, through the activation of cellular-stress responses, which, in turn, stimulate autophagy [36,37].
Autophagy-related proteins 2 and 9 (ATG2 and ATG9) provide phospholipids for the nucleation of autophagosome membranes [38,39,40], which are further matured by the ATG14/beclin1/VPS34 complex [41,42]. ULK1 and beclin1 complexes are positively regulated by the cofactor AMBRA1, which is required for their regulative ubiquitination [43,44]. In mammals, the autophagy conjugation machinery then regulates the lipidation of ATG8 proteins (mATG8) [34,45]. Each of the core components of the endosomal sorting complexes required for transport (ESCRT) and machinery (ESCRT complex 0-III) are necessary for the full maturation and sealing of the autophagosome [46,47], onto which syntaxin-17 (STX17), an autophagosomal SNARE protein, is recruited [48] with the assistance of mATG8s and autophagy factor IRGM [49]. STX17 regulates, together with other proteins such as Vesicle-Associated Membrane Protein 8 (VAMP8) and synaptosomal-associated protein 29 (SNAP29), the fusion of the autophagosome with the lysosome [48]. Notably, mammalian STX17 also contributes to the first steps of autophagosome formation downstream of TANK-binding kinase 1 (TBK1) activity, which feeds into the activation of cell defense [50].
Autophagy leads to cargo degradation irrespective of its identity. However, while core components of the autophagic machinery (i.e., the ATG conjugation machinery) are common to most routes, the autophagy of specific structures and cargoes exhibits particularities in its regulation and the specific source of phagosome membranes: ERphagy (degradation of ER) [51], mitophagy (selective degradation of damaged mitochondria) [52], pexophagy (autophagy of damaged peroxisomes) [53], ribophagy (degradation of ribosomes) [54], nucleophagy (degradation of nuclear membranes) [55,56], xenophagy (degradation of invading pathogens by autophagy) [57,58], or aggrephagy (autophagic clearance of protein aggregates) [59] (Figure 2). Selective cargo autophagy generally requires specific receptors, e.g., selective degradation of ER requires different receptors such as FAM134B [51], CCPG1 [60], RTN3 [61], and TEX264 [62,63]. In contrast, mitophagy requires NDP52, optineurin, and TAXBP1 as receptors [64] and p62 [65]. Certain receptors are common to more than one autophagic route: for example, NDP52 and optineurin control mitophagy [64] as well as xenophagy [66,67]. Route-specific regulators have also been described, apart from cargo-specific receptors. Microautophagy involves invagination of the lysosomal membrane to capture cargo for degradation [68], and involves both components of the autophagic machinery, including the conjugation machinery [69], and sequestosome-like receptors (SLRs) [70]. LC3-associated phagocytosis (LAP) requires the autophagy conjugation machinery but is controlled by RUBICON [71,72,73], which is an inhibitor of conventional autophagy [42,74]. Similar to LAP, other non-canonical autophagy processes utilize ATG conjugation and do not require autophagy-initiation machinery [75,76,77]. While a major share of therapeutic strategies rely on intervening major core components and regulators (the focus of our section below), these relatively recent mechanisms are regarded as interesting future candidates for personalized therapy of specific disorders.

3. mTOR Signaling: A Key Regulatory Node Curbing Autophagy

mTOR is a serine/threonine kinase which functions at the interface between nutrient sensing and different cellular processes leading to cell growth and proliferation [78]. Since its discovery, there has been a progressive understanding of the different pathways orchestrated by mTOR, unveiling its role as a central hub for cellular and organismal physiology in all eukaryotes [79].
mTOR is composed by two distinct protein complexes in metazoans, named mTORC1 and mTORC2. Although they share some core protein components, different accessory elements account for structural and functional differences in rapamycin sensitivity and substrate specificity. mTORC1 is mainly constituted by mTOR, the mammalian lethal with SEC13 protein 8 (mLST8) [80], and the regulatory-associated protein of mTOR, RAPTOR [81]. Its major substrates are eukaryotic translation initiation factor 4E-binding protein 1 (4E-BP1) and p70S6 kinase (S6K1), through which mTORC1 controls protein synthesis, nutrient uptake, and autophagy, all leading to positive regulation of cellular growth.
mTORC2 bears, instead of RAPTOR, the rapamycin-insensitive companion of mTOR (RICTOR) protein [82,83], which interacts and binds to MAPK-associated protein 1 (mSIN1) [84,85]. Members of the AGC kinase family (including AKT, SGK, and PKCα) are major mTORC2 substrates, through which it regulates cytoskeletal behavior as well as different pro-survival pathways, all impinging on cellular proliferation.
Although it is expressed in all tissues, from the point of view of its function as a nutrient sensor mTOR is probably most important in metabolically intensive locations, such as muscle, liver, or adipose tissue. After feeding, insulin, secreted by the pancreas, activates mTORC1 and mTORC2, promoting glucose uptake and storage in the form of glycogen in skeletal muscle [86] as well as amino-acid incorporation, leading to muscle growth. In contrast, fasting activates a catabolic program that induces autophagy, leading to protein degradation and liver gluconeogenesis. Several lines of evidence indicate that this balance between anabolism and catabolism is fundamentally regulated by mTOR [87,88]. Liver-specific RICTOR-knockout mice, for instance, show alterations in lipid storage and hyperglycemia as a result of systemic insulin resistance [89,90,91], indicating that mTOR signaling alterations contribute to the development of diabetes. Similarly, adipose-specific RAPTOR-knockout mice are resistant to diet-induced obesity and present low body weight [92,93], in accordance with the role of mTOR in lipid anabolism and adipose-tissue function, and whole-body homeostasis therein [94,95].
The dysregulation of mTOR signaling is frequent in tumors [96]. Aberrant activation of mTORC1 signaling, for instance, favors tumor growth by eliciting cancer cells to bypass metabolic checkpoints. Hyperactivation of mTORC2 signaling, on the other hand, boosts metastasis by supporting AKT-dependent cytoskeletal remodeling [97]. Despite its complexity, the role of mTOR in cancer has led to different therapeutic strategies, including ‘rapalogs’—rapamacyin derivatives—which have shown efficacy in certain contexts [98]. Prolonged mTOR inhibition can however lead to reactivation of cancer growth [99,100], stressing the need for further research to better understand the multifaceted impact of mTOR signaling on cancer progression.

4. Transcriptional Control of the Autophagolysosomal Machinery: TFEB and Its Regulation

TFEB is a major transcription factor which regulates the transcription of genes involved in several biological pathways, and participates in important cellular functions, including autophagy [7], lysosomal biogenesis [101], lysosomal exocytosis [14], lipid metabolism [13], mitophagy [102], and mitochondrial biogenesis [12]. A major regulatory layer controlling TFEB nuclear translocation and activity is affected through phosphorylation, mainly controlled by the mTOR kinase [103,104], and by a phosphatase, PPP3CB [105] (Figure 1). mTOR phosphorylates the Ser211 residue of TFEB [104], eliciting its interaction with 14-3-3 proteins which sequester TFEB in the cytosol [104,105] (Figure 3). 14-3-3 proteins also interact with other members of the MiTF family [104,106,107]. Notably, TFEB interacts with mTORC1 but not with mTORC2, and its localization to lysosomes, cytosol, or the nucleus depends on the activation state of Rag GTPases [29,103,108]. Conversely, TFEB modulates the lysosomal localization and function of mTORC1 [29]. Besides the Ser211 residue, mTOR also phosphorylates TFEB at Ser122 [109].
TFEB can be phosphorylated by several kinases either dependent or independent of mTOR. Notably, only the mTORC1 complex can regulate TFEB activity through the phosphorylation of Ser122 and Ser211. Other kinases involved in the mTOR pathway may interact with TFEB. In particular, ERK1 determines Ser142 phosphorylation and subsequent TFEB cytoplasmic sequestration. GSK3β and Akt may regulate TFEB nuclear translocation in an mTOR-independent manner, phosphorylating Ser134–138 and Ser476, respectively.
There are additional kinases which phosphorylate TFEB at other residues, contributing to the regulation of its nuclear translocation [110]. Indeed, TFEB is phosphorylated by ERK at Ser-142 residue, also blocking its nuclear translocation [101]. In contrast, TFEB phosphorylation at Ser138 controls its nuclear export [110,111].
Other kinases independent from mTOR have been implicated in TFEB nuclear translocation and in the regulation of the lysosome system [110]. PKC, for instance, controls nuclear translocation of TFEB in an mTOR-independent manner [112]; GSK3β phosphorylates TFEB at Ser134 and Ser138, which, like mTOR phosphorylation, keeps TFEB in the cytosol [112]; AKT phosphorylates TFEB at its Ser467 residue, thus blocking its translocation to the nucleus [113].
TFEB is dephosphorylated by a calcineurin phosphatase, PPP3CB, during starvation. PPP3CB dephosphorylates phosphor-Ser211 TFEB [104], releasing it from 14-3-3 proteins and eliciting its nuclear translocation [105]. The relevance of TFEB for cell homeostasis is further highlighted by the increasing number of additional posttranslational modifications recently described (acetylation, SUMOylation) [114,115], reflecting the integration of several inputs feeding on this central node regulating autophagy and lysosomal function. Finally, TFEB expression is sensitive to different cues challenging cell homeostasis; examples are ER stress, which can promote TFEB upregulation to engage autophagy and ensure lysosomal function downstream with the Unfolded Protein Response (UPR) effectors XBP1 and PERK/ATF4 [116,117,118], and oxidative stress, which induces TFEB nuclear translocation in an NRF2-dependent manner [117].

5. TFEB and Autophagy

Current models propose that TFEB operates upstream of the autophagy pathway [1,7,13,119]. TFEB positively correlates with gene expression changes in autophagy genes and relative lipidation of the autophagy marker LC3 [7]. TFEB controls autophagy during different stresses including starvation [7], lysosomal damage [120], neuronal toxicity [121,122] inflammation [123,124,125,126], and infection with pathogens [127,128,129,130]. Recent evidence suggests that TFEB and TFE3 control ERphagy [131] by regulating the expression of the ERphagy receptor FAM134B [51].
Notably, recent reports indicate that autophagy may in turn operate upstream of TFEB to control its nuclear translocation during bulk and selective autophagy [102,132]. Mammalian ATG8 proteins (mATG8s), which are involved in autophagosome elongation [133,134] and autophagosome–lysosome fusion [133,135], also participate in lysosomal biogenesis [136]. mATG8s form complexes with autophagy factor IRGM and SNARE protein Stx17 [49]. Like mATG8s, Stx17 [48,50] and IRGM [137,138] participate in different steps of autophagy. This complex consisting of IRGM, Stx17, and mATG8s [49] controls TFEB nuclear translocation in response to starvation. IRGM and GABARAP (a member of mATG8s family) directly interact with TFEB. IRGM, Stx17, and mAtg8s proteins influence TFEB nuclear translocation by inhibiting mTOR activity in response to amino-acid starvation [132]. mATG8 proteins also control TFEB action at transcriptional level [132]. While mTOR-dependent TFEB phosphorylation leads to TFEB cytosolic retention [103,104,105], IRGM-dependent dephosphorylation favors its nuclear translocation [132]. Therefore, there is a positive feedback loop between autophagy and the lysosomal system to regulate cellular homeostasis.

6. TFEB in Lysosomal Biogenesis and Function

Lysosomes are crucial components of the cellular degradation and recycling system. Lysosomes contain approximately 60 different soluble hydrolytic enzymes, which are directly involved in the degradation of macromolecules in other cellular wastes [11]. TFEB is a master regulator of lysosomal biogenesis [101,119,139]. TFEB transcriptionally regulates the gene expression of the CLEAR (coordinated lysosomal expression and regulation) network, the expression of target genes bearing the CLEAR motif, thereby modulating autophagy and lysosomal biogenesis [119,139]. TFEB not only controls lysosomal biogenesis but also other processes associated with lysosomal function such as autophagy [7], endocytosis [140], and lysosomal exocytosis [14]. An additional role for the lysosomal system pertains to the link between membrane trafficking, ER architecture, and mTORC1 activation status [141,142,143]; the tight control of such a central node for lysosomal regulation by mTORC1 reflects the functional coupling of these cellular systems.

7. The Autophagolysosomal System and Cellular ROS Homeostasis

The term “Reactive Oxygen Species” (ROS) is used for a heterogeneous group of highly reactive chemical entities containing molecular oxygen—including oxygen radicals (i.e., superoxide (O2•−), and hydroxyl (•OH), peroxyl (RO2•), and alkoxyl (RO•) radicals), and non-radicals (i.e., hypochlorous acid (HCIO), singlet oxygen (1O2), and hydrogen peroxide (H2O2). Most, if not all of them, are typically by-products of cell metabolism, even under physiological conditions [144,145], although different external agents such as xenotoxins or ionizing radiations can provoke extensive oxidative stress and ROS accumulation [146,147]. Cells have evolved intricate antioxidant systems to curb damaging rises in ROS levels, such as glutathione pair (GSSG/GSH), nicotinamide adenine dinucleotide pair (NADH/NAD+), superoxide dismutases (SODs), catalase, glutathione peroxidases (GPXs), peroxiredoxins (PRXs), or thioredoxins (TRXs) [148,149,150]. These are integrated in different stress responses (UPR, electrophilic-stress response, integrated-stress response, AMPK network) [151,152,153,154,155], triggered by stimuli (nutrient deficiency, metabolic imbalance, lipotoxicity, and proteotoxicity) that can potentially boost ROS accumulation.
Of note, autophagy is commonly considered as an additional branch of these stress networks, and is activated by many of these adverse conditions both through direct links, as well as though the general integration of the mTOR signaling network with these stress pathways [156,157]. Autophagy is an important contributor to cell survival from ROS-inducing stress, by curbing the accumulation of damaged structures and removing faulty organelles acting as sources of ROS [158].
The relevance of this link between ROS production and autophagy is exemplified by the fact that elevated ROS species and/or compromised antioxidant responses are frequent hallmarks of the altered metabolism and environment of tumor cells, often actively promoting tumorigenesis [159,160,161]. These features are both considered appealing therapeutic targets per se, and opportunities for synergistic interventions. Two emerging, related therapeutic strategies based on these phenotypic alterations of tumor cells are the use of ascorbate (for which certain tumor cells, such as glioblastomas, exhibit paradoxical differential toxicity through oxidative damage) [162,163] and other strategies leveraging on mechanisms driving ferroptosis, a specific cell-death program triggered by iron-dependent accumulation of peroxidized lipid species [164,165,166]. Autophagy can frequently act as a pro-survival response counteracting these damaging stimuli in different types of tumors [167,168]. However, autophagy itself can be both positively or negatively modulated by these forms of oxidative stress, and may serve as part of the effector mechanism of the ferroptotic cascade [162,169,170,171,172]. Further research is thus warranted to understand the architecture of the underlying networks and the principles of their functioning.

8. Modulating the Autophagolysosomal System in Cancer: Therapeutic Opportunities

Autophagy induction by cancer-associated stimuli (oxidative stress, suboptimal nutrient supply, and hypoxia), and its tight relationship with pro-survival cell pathways, support a direct role of autophagy in cancer transformation. However, the role of autophagy in cancer is highly contextual. Autophagy can act both as a tumor suppressor mechanism, favoring the elimination of damaged proteins or organelles, or as tumorigenic, providing a source of nutrients and energy to tumor cells and further favoring their transformation.
Murine models demonstrate that autophagic gene deficiency favors tumorigenesis, at least at initial stages [173]. Deficiency of autophagic genes such as Beclin1 or Atg5 has been found in various cancers, including hepatocellular carcinoma (HCC), breast, ovarian, and prostate cancer [173,174]. Impaired autophagy can promote a tumorigenic environment through ROS dysregulation and chronic induction of inflammatory states [175]. Autophagy defects in mice cause accumulation of p62 aggregates, oxidative stress, and p62-dependent hepatocyte cell death favoring hepatocarcinoma progression [176,177]. In breast cancer, aberrantly expressed p62 may favor the generation of breast stem cells (CSCs) through the induction of MYC oncogene [178].
On the other hand, at advanced cancer stages, increased autophagy can sustain tumor cell growth in the nutrient-deficient, hypoxic tumor microenvironment, and favor chemoresistance by counteracting the damage of cell structures [179]. Further, autophagy promotes resistance to anoikis (a form of cell death induced by cellular detachment from the extracellular matrix) in gliomas, enabling tumor spreading and metastasis [180,181]. However, autophagy inhibition can also favor tumor cell invasiveness through the induction of dedifferentiated, basal phenotypes in breast cancer [182]. Upregulation of autophagy induction confers chemoresistance [20,179,183] and promotes the maintenance and survival of CSCs in different cancers including breast, pancreas, liver, ovarian cancer, osteosarcoma, and glioblastoma [184].
Cancer cells generally grow faster than non-transformed counterparts and have high metabolic demands, so they may use autophagy and the lysosomal pathway to meet high demands for energy and anabolic flux [28]. In fact, similar cancers bearing different genetic mutations may vary for their dependence on autophagy. For instance, tumors with mutations in the RAS–MAPK pathway, such as central nervous system (CNS) tumors bearing a BRAF V600E mutation, but not their wild-type BRAF-expressing counterparts, were found to be strongly dependent on autophagy [19,185]. This discovery paves the way to the translational employ of autophagy inhibition in combination with other therapeutic strategies.
Due to the relevance of autophagy and the lysosome system in cancer biology, their modulation by drugs is a current target in cancer therapy [186,187].
To this purpose, multiple steps in autophagy are currently being considered. Inhibition of ULK1 sensitizes cancer cell to nutrient stress [188] and mTOR inhibitors [189]; inhibition of VSP34 has shown to improve the effect of mTOR inhibition and tyrosine-kinase inhibitor on suppression of cancer growth [190,191]; inhibition of ATG4B, a protease that controls lipidation and delipidation of mATG8s [192], also suppresses cancer progression [193]. Chloroquine and its derivative hydroxychloroquine are lysosomotropic agents which inhibit fusion of autophagosomes with lysosomes [194], and are at different stages of clinical trials against different types of cancers [20,24].
Lysosomes are nutrient-sensing organelles. Lysosomes and their related biological functions, such as endocytosis, phagocytosis, and micropinocytosis, are involved in maintaining energetics in cancer [22]. Lysosomal volume and subcellular localization are changed during cancerous transformation [195]. Lysosomal hydrolases such as cathepsin are upregulated and display altered localization in cancer. Increased cathepsin expression is correlated with cancer progression [196,197]. Lysosomal membrane protein LAMP1 is associated with cancer development and progression [22,198]. Lysosomal V-ATPase has been shown to affect tumor microenvironment [199].
Due to its prominent role as an upstream regulator of autophagy and lysosomal function, TFEB might constitute a priority target for the efficient therapeutic intervention of these routes. RNA-based therapeutics are expected to soar after the success of RNA-based vaccines; in this sense, numerous studies indicate TFEB is an effective target for the modulation of autophagy and lysosomal activity to successfully counteract different pathological conditions, including cancer [200,201,202,203,204]. Reflecting the highly contextual role of autophagy in cancer, while TFEB and related factors have frequently been regarded as oncogenes, TFEB can behave as a tumor suppressor, as recently reported for acute myeloid leukemia (AML) [205]. It must be noted that effective reversion of certain pathological conditions through TFEB modulation may require the simultaneous intervention of associated gene-expression networks, such as those controlled by YAP [206]. Notably, small compounds amenable for human therapeutics such as genistein, 20-deoxygenol, curcumin, or betulinic acid have been reported to be capable of enhancing TFEB-dependent lysosomal activity [207,208,209,210]; other TFEB-modulating compounds were identified in phenotypic screens in Caenorhabditis elegans [211]. The synergistic potential of these compounds with other treatments sensitizing tumor cells to autophagic modulation deserves further exploration.

9. Nanomedicine May Increase the Potential of Drugs Modulating Autophagy

As described in the previous section, autophagy may play a dual role in cancer depending on cell type and stage, potentially acting both as tumor suppressor and as a promoter of tumor progression [212]. For this reason, both the inhibition of autophagy and its overstimulation are strategies under assessment to counteract cancer, and several drugs, such as hydroxychloroquine (HCQ), 3-methyl-adenine (3-MA), and everolimus, have been approved by the Food and Drug Administration (FDA) and are currently employed in clinics in combination with other chemotherapeutic regimens [179,213].
However, these treatments present a variety of adverse effects such as low specificity, irregular distribution in the body, and rapid drug clearance [214]. For this reason, novel approaches aimed at modulating autophagy are warranted.
Recent advances in nanotechnology offer many tools to counteract cancer with innovative and smart therapeutic agents by overcoming obstacles frequently encountered with standard chemotherapeutics. Novel smart nanomaterials have been engineered that, depending on their chemical–physical proprieties, can be divided into various categories, such as liposomes, polymers, metals, and metal-oxide nanoparticles (NPs) [215]. Most of these nanomaterials are used as nanocarriers to deliver therapeutic molecules such as drugs, proteins, or nucleic acids into specific target sites without affecting healthy tissues [216,217]. In this regard, it must be noted that a major advantage of such an approach consists in the fact that nanocarriers can accumulate in the leaky tumor vasculature, a process known as enhanced permeability and retention effect (EPR). This capability is essential in guaranteeing specificity of the therapeutic system and for its applications in vivo [218]. Moreover, nanocarriers can release their therapeutic cargo in a stable and controlled manner. A plethora of stimuli, such as changes in pH, redox, temperature, or magnetic forces, can trigger the release of drugs by evoking a change in the structures of the nanocomplex, to ensure toxicity exclusively into target tissue, without affecting healthy tissues [219].
Combination therapy with cisplatin and chloroquine in micelles formed by self-assembling hybrid dendritic-linear-dendritic block copolymers (HDLDBCs) increased cytotoxicity in tumor cells while maintaining a low degree of cytotoxicity against non-tumor cells [220]. Lys-05, an autophagy inhibitor which accumulates within and deacidifies the lysosome [221], was hybridized with a lysosomotropic detergent (MSDH) to produce nanoassemblies. The resulting nanoparticles were demonstrated to have excellent pharmacokinetic and toxicological profiles and a dramatic efficacy against tumors in vivo [222].
The surface of gold nanoparticles (Au-NPs) can be easily functionalized with chemotherapeutics or nucleic acids, such as snake-venom-protein toxin NKCT1, monoclonal antibodies, or quercetin, making them excellent autophagy inductors for cancer therapy [223,224,225].
Besides acting as nano-carriers, nanoparticles of specific materials may have the intrinsic ability of altering the complex network of signaling pathways and molecules involved in autophagy regulation, and thus represent an exciting therapeutic approach against different human tumors [226]. Bare iron-oxide NPs are significantly cytotoxic to human lung carcinoma cells (A549 cells), causing ROS-induced autophagy and subsequent cell death, but not to normal human-lung fibroblast cells [227]. Chiral nanomaterials are being developed to modulate autophagy activity in tumors [228], and chiral polymer-modified nanoparticles may induce autophagy-mediated tumor suppression in vivo [229]. Moreover, D- and L-cysteine-modified Cu2−xS nanocrystals (NCs) were reported to produce large amounts of ROS in tumor cells, promoting cellular autophagy [230].
The use of modified NPs to intervene in autophagy is not limited to cancer, and many other diseases can be treated by this approach. Indeed, defective clearance of misfolded proteins and/or damaged organelles occurs in a plethora of human diseases, such as muscular or neurodegenerative diseases, and the pharmacological modulation of this process may represent a valid therapeutic approach. For example, cerium oxide nanoparticles (CeO2-NPs) were reported to activate autophagy and promote clearance of autophagic cargo, thus exerting neuroprotection. [231]. Furthermore, europium hydroxide nanoparticles [(EuIII(OH)3)-NPs] have been shown to stimulate autophagy flux, reducing mutant-huntingtin-protein aggregation [232].
However, despite such promising potential, the autophagy induction activity of these nanomaterials can also lead to cardiovascular, respiratory, and immune-system toxicity [233]. Hence, the use of nanomedicines in autophagy modulation is at its infancy and the clinical translation of the results thus far obtained is still a challenge [234].
In conclusion, further effort is needed to understand the molecular mechanisms and principles governing the autophagolysosomal system, for its efficient, safe, and personalized intervention across multiple diseases, including cancer.

Author Contributions

Conceptualization: M.C., S.K., M.S.-Á. and R.S.; writing—original draft preparation: S.K., F.T., F.-N.L. and M.S.-Á.; writing—review and editing: F.-N.L., M.S.-Á., M.C. and R.S.; supervision and funding acquisition: M.C. and R.S. All authors have read and agreed to the published version of the manuscript.

Funding

S.K. was supported by funding from IIT Kanpur and Center grant from Autophagy Inflammation and Metabolism center, University of New Mexico. M.C. was supported by the Comunidad de Madrid (IND2017/IND-7809) and IMDEA Nanociencia. R.S. was supported by research grants from italian Ministries for Health (Ricerca Corrente) and Education, University and Research (MIUR; 000003_17_MAP_STRIP and FISR 2020-Covid FISR2020IP_03366). M.S-A is recipient of a Ramón y Cajal tenure track contract from the spanish Ministry of Science and Innovation (RYC2020-029690-I). IMDEA Nanociencia acknowledges support from the ‘Severo Ochoa’ Programme for Centres of Excellence in R&D (MINECO), Grant SEV-2016-0686. The CNIC is supported by the Instituto de Salud Carlos III (ISCIII), the Ministerio de Ciencia e Innovación (MCIN) and the Pro CNIC Foundation).

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.

Acknowledgments

Figures were created with BioRender.com, accessed on 6 August 2021.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Ballabio, A.; Bonifacino, J.S. Lysosomes as dynamic regulators of cell and organismal homeostasis. Nat. Rev. Mol. Cell Biol. 2020, 21, 101–118. [Google Scholar] [CrossRef]
  2. Perera, R.M.; Zoncu, R. The Lysosome as a Regulatory Hub. Annu. Rev. Cell Dev. Biol. 2016, 32, 223–253. [Google Scholar] [CrossRef] [Green Version]
  3. Xu, H.; Ren, D. Lysosomal physiology. Annu. Rev. Physiol 2015, 77, 57–80. [Google Scholar] [CrossRef] [Green Version]
  4. Levine, B.; Kroemer, G. Biological Functions of Autophagy Genes: A Disease Perspective. Cell 2019, 176, 11–42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  5. Dikic, I.; Elazar, Z. Mechanism and medical implications of mammalian autophagy. Nat. Rev. Mol. Cell Biol. 2018, 19, 349–364. [Google Scholar] [CrossRef] [PubMed]
  6. Steingrimsson, E.; Copeland, N.G.; Jenkins, N.A. Melanocytes and the microphthalmia transcription factor network. Annu. Rev. Genet. 2004, 38, 365–411. [Google Scholar] [CrossRef] [PubMed]
  7. Settembre, C.; Di Malta, C.; Polito, V.A.; Garcia Arencibia, M.; Vetrini, F.; Erdin, S.; Erdin, S.U.; Huynh, T.; Medina, D.; Colella, P.; et al. TFEB links autophagy to lysosomal biogenesis. Science 2011, 332, 1429–1433. [Google Scholar] [CrossRef] [Green Version]
  8. Cunningham, K.M.; Maulding, K.; Ruan, K.; Senturk, M.; Grima, J.C.; Sung, H.; Zuo, Z.; Song, H.; Gao, J.; Dubey, S.; et al. TFEB/Mitf links impaired nuclear import to autophagolysosomal dysfunction in C9-ALS. eLife 2020, 9, e59419. [Google Scholar] [CrossRef]
  9. Yang, M.; Liu, E.; Tang, L.; Lei, Y.; Sun, X.; Hu, J.; Dong, H.; Yang, S.M.; Gao, M.; Tang, B. Emerging roles and regulation of MiT/TFE transcriptional factors. Cell Commun. Signal. 2018, 16, 31. [Google Scholar] [CrossRef]
  10. Moller, K.; Sigurbjornsdottir, S.; Arnthorsson, A.O.; Pogenberg, V.; Dilshat, R.; Fock, V.; Brynjolfsdottir, S.H.; Bindesboll, C.; Bessadottir, M.; Ogmundsdottir, H.M.; et al. MITF has a central role in regulating starvation-induced autophagy in melanoma. Sci. Rep. 2019, 9, 1055. [Google Scholar] [CrossRef] [Green Version]
  11. Napolitano, G.; Ballabio, A. TFEB at a glance. J. Cell Sci. 2016, 129, 2475–2481. [Google Scholar] [CrossRef] [Green Version]
  12. Mansueto, G.; Armani, A.; Viscomi, C.; D’Orsi, L.; De Cegli, R.; Polishchuk, E.V.; Lamperti, C.; Di Meo, I.; Romanello, V.; Marchet, S.; et al. Transcription Factor EB Controls Metabolic Flexibility during Exercise. Cell Metab. 2017, 25, 182–196. [Google Scholar] [CrossRef] [Green Version]
  13. Settembre, C.; De Cegli, R.; Mansueto, G.; Saha, P.K.; Vetrini, F.; Visvikis, O.; Huynh, T.; Carissimo, A.; Palmer, D.; Klisch, T.J.; et al. TFEB controls cellular lipid metabolism through a starvation-induced autoregulatory loop. Nat. Cell Biol. 2013, 15, 647–658. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  14. Medina, D.L.; Fraldi, A.; Bouche, V.; Annunziata, F.; Mansueto, G.; Spampanato, C.; Puri, C.; Pignata, A.; Martina, J.A.; Sardiello, M.; et al. Transcriptional activation of lysosomal exocytosis promotes cellular clearance. Dev. Cell 2011, 21, 421–430. [Google Scholar] [CrossRef] [PubMed]
  15. Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2020. CA Cancer J. Clin. 2020, 70, 7–30. [Google Scholar] [CrossRef] [PubMed]
  16. Clara, J.A.; Monge, C.; Yang, Y.; Takebe, N. Targeting signalling pathways and the immune microenvironment of cancer stem cells—A clinical update. Nat. Rev. Clin. Oncol. 2020, 17, 204–232. [Google Scholar] [CrossRef]
  17. Sanchez-Vega, F.; Mina, M.; Armenia, J.; Chatila, W.K.; Luna, A.; La, K.C.; Dimitriadoy, S.; Liu, D.L.; Kantheti, H.S.; Saghafinia, S.; et al. Oncogenic Signaling Pathways in The Cancer Genome Atlas. Cell 2018, 173, 321–337.e310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  18. Sever, R.; Brugge, J.S. Signal transduction in cancer. Cold Spring Harb. Perspect. Med. 2015, 5, a006098. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  19. Mulcahy Levy, J.M.; Thorburn, A. Autophagy in cancer: Moving from understanding mechanism to improving therapy responses in patients. Cell Death Differ. 2020, 27, 843–857. [Google Scholar] [CrossRef]
  20. Levy, J.M.M.; Towers, C.G.; Thorburn, A. Targeting autophagy in cancer. Nat. Rev. Cancer 2017, 17, 528–542. [Google Scholar] [CrossRef]
  21. Amaravadi, R.K.; Lippincott-Schwartz, J.; Yin, X.M.; Weiss, W.A.; Takebe, N.; Timmer, W.; DiPaola, R.S.; Lotze, M.T.; White, E. Principles and current strategies for targeting autophagy for cancer treatment. Clin. Cancer Res. 2011, 17, 654–666. [Google Scholar] [CrossRef] [Green Version]
  22. Fennelly, C.; Amaravadi, R.K. Lysosomal Biology in Cancer. Methods Mol. Biol. 2017, 1594, 293–308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  23. Amaravadi, R.; Kimmelman, A.C.; White, E. Recent insights into the function of autophagy in cancer. Genes Dev. 2016, 30, 1913–1930. [Google Scholar] [CrossRef] [PubMed]
  24. Amaravadi, R.K.; Kimmelman, A.C.; Debnath, J. Targeting Autophagy in Cancer: Recent Advances and Future Directions. Cancer Discov. 2019, 9, 1167–1181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  25. Manic, G.; Obrist, F.; Kroemer, G.; Vitale, I.; Galluzzi, L. Chloroquine and hydroxychloroquine for cancer therapy. Mol. Cell Oncol. 2014, 1, e29911. [Google Scholar] [CrossRef]
  26. Xu, R.; Ji, Z.; Xu, C.; Zhu, J. The clinical value of using chloroquine or hydroxychloroquine as autophagy inhibitors in the treatment of cancers: A systematic review and meta-analysis. Medicine 2018, 97, e12912. [Google Scholar] [CrossRef] [PubMed]
  27. Davis, I.J.; Kim, J.J.; Ozsolak, F.; Widlund, H.R.; Rozenblatt-Rosen, O.; Granter, S.R.; Du, J.; Fletcher, J.A.; Denny, C.T.; Lessnick, S.L.; et al. Oncogenic MITF dysregulation in clear cell sarcoma: Defining the MiT family of human cancers. Cancer Cell 2006, 9, 473–484. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  28. Perera, R.M.; Di Malta, C.; Ballabio, A. MiT/TFE Family of Transcription Factors, Lysosomes, and Cancer. Annu. Rev. Cancer Biol. 2019, 3, 203–222. [Google Scholar] [CrossRef]
  29. Di Malta, C.; Siciliano, D.; Calcagni, A.; Monfregola, J.; Punzi, S.; Pastore, N.; Eastes, A.N.; Davis, O.; De Cegli, R.; Zampelli, A.; et al. Transcriptional activation of RagD GTPase controls mTORC1 and promotes cancer growth. Science 2017, 356, 1188–1192. [Google Scholar] [CrossRef] [Green Version]
  30. Kim, J.; Kundu, M.; Viollet, B.; Guan, K.L. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat. Cell Biol. 2011, 13, 132–141. [Google Scholar] [CrossRef] [Green Version]
  31. Inoki, K.; Kim, J.; Guan, K.L. AMPK and mTOR in cellular energy homeostasis and drug targets. Annu. Rev. Pharm. Toxicol. 2012, 52, 381–400. [Google Scholar] [CrossRef]
  32. Hara, T.; Takamura, A.; Kishi, C.; Iemura, S.; Natsume, T.; Guan, J.L.; Mizushima, N. FIP200, a ULK-interacting protein, is required for autophagosome formation in mammalian cells. J. Cell Biol. 2008, 181, 497–510. [Google Scholar] [CrossRef] [Green Version]
  33. Hosokawa, N.; Hara, T.; Kaizuka, T.; Kishi, C.; Takamura, A.; Miura, Y.; Iemura, S.; Natsume, T.; Takehana, K.; Yamada, N.; et al. Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy. Mol. Biol. Cell 2009, 20, 1981–1991. [Google Scholar] [CrossRef] [Green Version]
  34. Mizushima, N.; Yoshimori, T.; Ohsumi, Y. The role of Atg proteins in autophagosome formation. Annu. Rev. Cell Dev. Biol. 2011, 27, 107–132. [Google Scholar] [CrossRef]
  35. Kim, J.; Kim, Y.C.; Fang, C.; Russell, R.C.; Kim, J.H.; Fan, W.; Liu, R.; Zhong, Q.; Guan, K.L. Differential regulation of distinct Vps34 complexes by AMPK in nutrient stress and autophagy. Cell 2013, 152, 290–303. [Google Scholar] [CrossRef] [Green Version]
  36. Vescovo, T.; Pagni, B.; Piacentini, M.; Fimia, G.M.; Antonioli, M. Regulation of Autophagy in Cells Infected With Oncogenic Human Viruses and Its Impact on Cancer Development. Front. Cell Dev. Biol. 2020, 8, 47. [Google Scholar] [CrossRef] [Green Version]
  37. Deretic, V.; Saitoh, T.; Akira, S. Autophagy in infection, inflammation and immunity. Nat. Rev. Immunol 2013, 13, 722–737. [Google Scholar] [CrossRef]
  38. Osawa, T.; Kotani, T.; Kawaoka, T.; Hirata, E.; Suzuki, K.; Nakatogawa, H.; Ohsumi, Y.; Noda, N.N. Atg2 mediates direct lipid transfer between membranes for autophagosome formation. Nat. Struct. Mol. Biol. 2019, 26, 281–288. [Google Scholar] [CrossRef] [PubMed]
  39. Gomez-Sanchez, R.; Rose, J.; Guimaraes, R.; Mari, M.; Papinski, D.; Rieter, E.; Geerts, W.J.; Hardenberg, R.; Kraft, C.; Ungermann, C.; et al. Atg9 establishes Atg2-dependent contact sites between the endoplasmic reticulum and phagophores. J. Cell Biol. 2018, 217, 2743–2763. [Google Scholar] [CrossRef] [PubMed]
  40. Matoba, K.; Kotani, T.; Tsutsumi, A.; Tsuji, T.; Mori, T.; Noshiro, D.; Sugita, Y.; Nomura, N.; Iwata, S.; Ohsumi, Y.; et al. Atg9 is a lipid scramblase that mediates autophagosomal membrane expansion. Nat. Struct. Mol. Biol. 2020, 27, 1185–1193. [Google Scholar] [CrossRef] [PubMed]
  41. Itakura, E.; Kishi, C.; Inoue, K.; Mizushima, N. Beclin 1 forms two distinct phosphatidylinositol 3-kinase complexes with mammalian Atg14 and UVRAG. Mol. Biol. Cell 2008, 19, 5360–5372. [Google Scholar] [CrossRef] [Green Version]
  42. Matsunaga, K.; Saitoh, T.; Tabata, K.; Omori, H.; Satoh, T.; Kurotori, N.; Maejima, I.; Shirahama-Noda, K.; Ichimura, T.; Isobe, T.; et al. Two Beclin 1-binding proteins, Atg14L and Rubicon, reciprocally regulate autophagy at different stages. Nat. Cell Biol. 2009, 11, 385–396. [Google Scholar] [CrossRef]
  43. Nazio, F.; Strappazzon, F.; Antonioli, M.; Bielli, P.; Cianfanelli, V.; Bordi, M.; Gretzmeier, C.; Dengjel, J.; Piacentini, M.; Fimia, G.M.; et al. mTOR inhibits autophagy by controlling ULK1 ubiquitylation, self-association and function through AMBRA1 and TRAF6. Nat. Cell Biol. 2013, 15, 406–416. [Google Scholar] [CrossRef] [PubMed]
  44. Antonioli, M.; Albiero, F.; Fimia, G.M.; Piacentini, M. AMBRA1-regulated autophagy in vertebrate development. Int. J. Dev. Biol. 2015, 59, 109–117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  45. Mizushima, N. The ATG conjugation systems in autophagy. Curr. Opin. Cell Biol. 2020, 63, 1–10. [Google Scholar] [CrossRef]
  46. Takahashi, Y.; He, H.; Tang, Z.; Hattori, T.; Liu, Y.; Young, M.M.; Serfass, J.M.; Chen, L.; Gebru, M.; Chen, C.; et al. An autophagy assay reveals the ESCRT-III component CHMP2A as a regulator of phagophore closure. Nat. Commun. 2018, 9, 2855. [Google Scholar] [CrossRef] [Green Version]
  47. Zhou, F.; Wu, Z.; Zhao, M.; Murtazina, R.; Cai, J.; Zhang, A.; Li, R.; Sun, D.; Li, W.; Zhao, L.; et al. Rab5-dependent autophagosome closure by ESCRT. J. Cell Biol. 2019, 218, 1908–1927. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  48. Itakura, E.; Kishi-Itakura, C.; Mizushima, N. The hairpin-type tail-anchored SNARE syntaxin 17 targets to autophagosomes for fusion with endosomes/lysosomes. Cell 2012, 151, 1256–1269. [Google Scholar] [CrossRef] [Green Version]
  49. Kumar, S.; Jain, A.; Farzam, F.; Jia, J.; Gu, Y.; Choi, S.W.; Mudd, M.H.; Claude-Taupin, A.; Wester, M.J.; Lidke, K.A.; et al. Mechanism of Stx17 recruitment to autophagosomes via IRGM and mammalian Atg8 proteins. J. Cell Biol. 2018, 217, 997–1013. [Google Scholar] [CrossRef]
  50. Kumar, S.; Gu, Y.; Abudu, Y.P.; Bruun, J.A.; Jain, A.; Farzam, F.; Mudd, M.; Anonsen, J.H.; Rusten, T.E.; Kasof, G.; et al. Phosphorylation of Syntaxin 17 by TBK1 Controls Autophagy Initiation. Dev. Cell 2019, 49, 130–144. [Google Scholar] [CrossRef] [Green Version]
  51. Khaminets, A.; Heinrich, T.; Mari, M.; Grumati, P.; Huebner, A.K.; Akutsu, M.; Liebmann, L.; Stolz, A.; Nietzsche, S.; Koch, N.; et al. Regulation of endoplasmic reticulum turnover by selective autophagy. Nature 2015, 522, 354–358. [Google Scholar] [CrossRef] [PubMed]
  52. Narendra, D.; Tanaka, A.; Suen, D.F.; Youle, R.J. Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J. Cell Biol. 2008, 183, 795–803. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  53. Till, A.; Lakhani, R.; Burnett, S.F.; Subramani, S. Pexophagy: The selective degradation of peroxisomes. Int. J. Cell Biol. 2012, 2012, 512721. [Google Scholar] [CrossRef] [Green Version]
  54. Wyant, G.A.; Abu-Remaileh, M.; Frenkel, E.M.; Laqtom, N.N.; Dharamdasani, V.; Lewis, C.A.; Chan, S.H.; Heinze, I.; Ori, A.; Sabatini, D.M. NUFIP1 is a ribosome receptor for starvation-induced ribophagy. Science 2018, 360, 751–758. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  55. Mijaljica, D.; Devenish, R.J. Nucleophagy at a glance. J. Cell Sci. 2013, 126, 4325–4330. [Google Scholar] [CrossRef] [Green Version]
  56. Dou, Z.; Xu, C.; Donahue, G.; Shimi, T.; Pan, J.A.; Zhu, J.; Ivanov, A.; Capell, B.C.; Drake, A.M.; Shah, P.P.; et al. Autophagy mediates degradation of nuclear lamina. Nature 2015, 527, 105–109. [Google Scholar] [CrossRef] [PubMed]
  57. Levine, B. Eating oneself and uninvited guests: Autophagy-related pathways in cellular defense. Cell 2005, 120, 159–162. [Google Scholar] [CrossRef] [Green Version]
  58. Bauckman, K.A.; Owusu-Boaitey, N.; Mysorekar, I.U. Selective autophagy: Xenophagy. Methods 2015, 75, 120–127. [Google Scholar] [CrossRef] [Green Version]
  59. Lamark, T.; Johansen, T. Aggrephagy: Selective disposal of protein aggregates by macroautophagy. Int. J. Cell Biol. 2012, 2012, 736905. [Google Scholar] [CrossRef] [Green Version]
  60. Smith, M.D.; Harley, M.E.; Kemp, A.J.; Wills, J.; Lee, M.; Arends, M.; von Kriegsheim, A.; Behrends, C.; Wilkinson, S. CCPG1 Is a Non-canonical Autophagy Cargo Receptor Essential for ER-Phagy and Pancreatic ER Proteostasis. Dev. Cell 2018, 44, 217–232.e211. [Google Scholar] [CrossRef]
  61. Grumati, P.; Morozzi, G.; Holper, S.; Mari, M.; Harwardt, M.I.; Yan, R.; Muller, S.; Reggiori, F.; Heilemann, M.; Dikic, I. Full length RTN3 regulates turnover of tubular endoplasmic reticulum via selective autophagy. eLife 2017, 6, e25555. [Google Scholar] [CrossRef]
  62. Chino, H.; Hatta, T.; Natsume, T.; Mizushima, N. Intrinsically Disordered Protein TEX264 Mediates ER-phagy. Mol. Cell 2019, 74, 909–921.e906. [Google Scholar] [CrossRef]
  63. An, H.; Ordureau, A.; Paulo, J.A.; Shoemaker, C.J.; Denic, V.; Harper, J.W. TEX264 Is an Endoplasmic Reticulum-Resident ATG8-Interacting Protein Critical for ER Remodeling during Nutrient Stress. Mol. Cell 2019, 74, 891–908.e810. [Google Scholar] [CrossRef]
  64. Lazarou, M.; Sliter, D.A.; Kane, L.A.; Sarraf, S.A.; Wang, C.; Burman, J.L.; Sideris, D.P.; Fogel, A.I.; Youle, R.J. The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. Nature 2015, 524, 309–314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  65. Geisler, S.; Holmstrom, K.M.; Skujat, D.; Fiesel, F.C.; Rothfuss, O.C.; Kahle, P.J.; Springer, W. PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat. Cell Biol. 2010, 12, 119–131. [Google Scholar] [CrossRef] [PubMed]
  66. Thurston, T.L.; Ryzhakov, G.; Bloor, S.; von Muhlinen, N.; Randow, F. The TBK1 adaptor and autophagy receptor NDP52 restricts the proliferation of ubiquitin-coated bacteria. Nat. Immunol. 2009, 10, 1215–1221. [Google Scholar] [CrossRef] [PubMed]
  67. Wild, P.; Farhan, H.; McEwan, D.G.; Wagner, S.; Rogov, V.V.; Brady, N.R.; Richter, B.; Korac, J.; Waidmann, O.; Choudhary, C.; et al. Phosphorylation of the autophagy receptor optineurin restricts Salmonella growth. Science 2011, 333, 228–233. [Google Scholar] [CrossRef] [Green Version]
  68. Schuck, S. Microautophagy—Distinct molecular mechanisms handle cargoes of many sizes. J. Cell Sci. 2020, 133. [Google Scholar] [CrossRef]
  69. Lee, C.; Lamech, L.; Johns, E.; Overholtzer, M. Selective Lysosome Membrane Turnover Is Induced by Nutrient Starvation. Dev. Cell 2020, 55, 289–297.e284. [Google Scholar] [CrossRef]
  70. Mejlvang, J.; Olsvik, H.; Svenning, S.; Bruun, J.A.; Abudu, Y.P.; Larsen, K.B.; Brech, A.; Hansen, T.E.; Brenne, H.; Hansen, T.; et al. Starvation induces rapid degradation of selective autophagy receptors by endosomal microautophagy. J. Cell Biol. 2018, 217, 3640–3655. [Google Scholar] [CrossRef] [Green Version]
  71. Martinez, J.; Almendinger, J.; Oberst, A.; Ness, R.; Dillon, C.P.; Fitzgerald, P.; Hengartner, M.O.; Green, D.R. Microtubule-associated protein 1 light chain 3 alpha (LC3)-associated phagocytosis is required for the efficient clearance of dead cells. Proc. Natl. Acad. Sci. USA 2011, 108, 17396–17401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  72. Martinez, J.; Malireddi, R.K.; Lu, Q.; Cunha, L.D.; Pelletier, S.; Gingras, S.; Orchard, R.; Guan, J.L.; Tan, H.; Peng, J.; et al. Molecular characterization of LC3-associated phagocytosis reveals distinct roles for Rubicon, NOX2 and autophagy proteins. Nat. Cell Biol. 2015, 17, 893–906. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  73. Sanjuan, M.A.; Dillon, C.P.; Tait, S.W.; Moshiach, S.; Dorsey, F.; Connell, S.; Komatsu, M.; Tanaka, K.; Cleveland, J.L.; Withoff, S.; et al. Toll-like receptor signalling in macrophages links the autophagy pathway to phagocytosis. Nature 2007, 450, 1253–1257. [Google Scholar] [CrossRef]
  74. Zhong, Y.; Wang, Q.J.; Li, X.; Yan, Y.; Backer, J.M.; Chait, B.T.; Heintz, N.; Yue, Z. Distinct regulation of autophagic activity by Atg14L and Rubicon associated with Beclin 1-phosphatidylinositol-3-kinase complex. Nat. Cell Biol. 2009, 11, 468–476. [Google Scholar] [CrossRef] [PubMed]
  75. Florey, O.; Gammoh, N.; Kim, S.E.; Jiang, X.; Overholtzer, M. V-ATPase and osmotic imbalances activate endolysosomal LC3 lipidation. Autophagy 2015, 11, 88–99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  76. Jacquin, E.; Leclerc-Mercier, S.; Judon, C.; Blanchard, E.; Fraitag, S.; Florey, O. Pharmacological modulators of autophagy activate a parallel noncanonical pathway driving unconventional LC3 lipidation. Autophagy 2017, 13, 854–867. [Google Scholar] [CrossRef]
  77. Fletcher, K.; Ulferts, R.; Jacquin, E.; Veith, T.; Gammoh, N.; Arasteh, J.M.; Mayer, U.; Carding, S.R.; Wileman, T.; Beale, R.; et al. The WD40 domain of ATG16L1 is required for its non-canonical role in lipidation of LC3 at single membranes. EMBO J. 2018, 37, e97840. [Google Scholar] [CrossRef]
  78. Laplante, M.; Sabatini, D.M. mTOR signaling in growth control and disease. Cell 2012, 149, 274–293. [Google Scholar] [CrossRef] [Green Version]
  79. Vezina, C.; Kudelski, A.; Sehgal, S.N. Rapamycin (AY-22,989), a new antifungal antibiotic. I. Taxonomy of the producing streptomycete and isolation of the active principle. J. Antibiot. 1975, 28, 721–726. [Google Scholar] [CrossRef]
  80. Kim, D.H.; Sarbassov, D.D.; Ali, S.M.; Latek, R.R.; Guntur, K.V.; Erdjument-Bromage, H.; Tempst, P.; Sabatini, D.M. GbetaL, a positive regulator of the rapamycin-sensitive pathway required for the nutrient-sensitive interaction between raptor and mTOR. Mol. Cell 2003, 11, 895–904. [Google Scholar] [CrossRef]
  81. Kim, D.H.; Sarbassov, D.D.; Ali, S.M.; King, J.E.; Latek, R.R.; Erdjument-Bromage, H.; Tempst, P.; Sabatini, D.M. mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 2002, 110, 163–175. [Google Scholar] [CrossRef] [Green Version]
  82. Sarbassov, D.D.; Ali, S.M.; Kim, D.H.; Guertin, D.A.; Latek, R.R.; Erdjument-Bromage, H.; Tempst, P.; Sabatini, D.M. Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr. Biol. 2004, 14, 1296–1302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  83. Jacinto, E.; Loewith, R.; Schmidt, A.; Lin, S.; Ruegg, M.A.; Hall, A.; Hall, M.N. Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat. Cell Biol. 2004, 6, 1122–1128. [Google Scholar] [CrossRef]
  84. Frias, M.A.; Thoreen, C.C.; Jaffe, J.D.; Schroder, W.; Sculley, T.; Carr, S.A.; Sabatini, D.M. mSin1 is necessary for Akt/PKB phosphorylation, and its isoforms define three distinct mTORC2s. Curr. Biol. 2006, 16, 1865–1870. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  85. Jacinto, E.; Facchinetti, V.; Liu, D.; Soto, N.; Wei, S.; Jung, S.Y.; Huang, Q.; Qin, J.; Su, B. SIN1/MIP1 maintains rictor-mTOR complex integrity and regulates Akt phosphorylation and substrate specificity. Cell 2006, 127, 125–137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  86. Cross, D.A.; Alessi, D.R.; Cohen, P.; Andjelkovich, M.; Hemmings, B.A. Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 1995, 378, 785–789. [Google Scholar] [CrossRef] [PubMed]
  87. Sengupta, S.; Peterson, T.R.; Laplante, M.; Oh, S.; Sabatini, D.M. mTORC1 controls fasting-induced ketogenesis and its modulation by ageing. Nature 2010, 468, 1100–1104. [Google Scholar] [CrossRef]
  88. Komatsu, M.; Waguri, S.; Ueno, T.; Iwata, J.; Murata, S.; Tanida, I.; Ezaki, J.; Mizushima, N.; Ohsumi, Y.; Uchiyama, Y.; et al. Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice. J. Cell Biol. 2005, 169, 425–434. [Google Scholar] [CrossRef]
  89. Lamming, D.W.; Ye, L.; Katajisto, P.; Goncalves, M.D.; Saitoh, M.; Stevens, D.M.; Davis, J.G.; Salmon, A.B.; Richardson, A.; Ahima, R.S.; et al. Rapamycin-induced insulin resistance is mediated by mTORC2 loss and uncoupled from longevity. Science 2012, 335, 1638–1643. [Google Scholar] [CrossRef] [Green Version]
  90. Hagiwara, A.; Cornu, M.; Cybulski, N.; Polak, P.; Betz, C.; Trapani, F.; Terracciano, L.; Heim, M.H.; Ruegg, M.A.; Hall, M.N. Hepatic mTORC2 activates glycolysis and lipogenesis through Akt, glucokinase, and SREBP1c. Cell Metab. 2012, 15, 725–738. [Google Scholar] [CrossRef] [Green Version]
  91. Yuan, M.; Pino, E.; Wu, L.; Kacergis, M.; Soukas, A.A. Identification of Akt-independent regulation of hepatic lipogenesis by mammalian target of rapamycin (mTOR) complex 2. J. Biol. Chem. 2012, 287, 29579–29588. [Google Scholar] [CrossRef] [Green Version]
  92. Polak, P.; Cybulski, N.; Feige, J.N.; Auwerx, J.; Ruegg, M.A.; Hall, M.N. Adipose-specific knockout of raptor results in lean mice with enhanced mitochondrial respiration. Cell Metab. 2008, 8, 399–410. [Google Scholar] [CrossRef]
  93. Lee, S.J.; Diener, K.; Kaufman, S.; Krieger, J.P.; Pettersen, K.G.; Jejelava, N.; Arnold, M.; Watts, A.G.; Langhans, W. Limiting glucocorticoid secretion increases the anorexigenic property of Exendin-4. Mol. Metab. 2016, 5, 552–565. [Google Scholar] [CrossRef] [PubMed]
  94. Laplante, M.; Sabatini, D.M. mTORC1 activates SREBP-1c and uncouples lipogenesis from gluconeogenesis. Proc. Natl. Acad. Sci. USA 2010, 107, 3281–3282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  95. Porstmann, T.; Santos, C.R.; Griffiths, B.; Cully, M.; Wu, M.; Leevers, S.; Griffiths, J.R.; Chung, Y.L.; Schulze, A. SREBP activity is regulated by mTORC1 and contributes to Akt-dependent cell growth. Cell Metab. 2008, 8, 224–236. [Google Scholar] [CrossRef] [Green Version]
  96. Menon, S.; Manning, B.D. Common corruption of the mTOR signaling network in human tumors. Oncogene 2008, 27 (Suppl. 2), S43–S51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  97. Schmidt, K.M.; Dietrich, P.; Hackl, C.; Guenzle, J.; Bronsert, P.; Wagner, C.; Fichtner-Feigl, S.; Schlitt, H.J.; Geissler, E.K.; Hellerbrand, C.; et al. Inhibition of mTORC2/RICTOR Impairs Melanoma Hepatic Metastasis. Neoplasia 2018, 20, 1198–1208. [Google Scholar] [CrossRef] [PubMed]
  98. Wagle, N.; Van Allen, E.M.; Treacy, D.J.; Frederick, D.T.; Cooper, Z.A.; Taylor-Weiner, A.; Rosenberg, M.; Goetz, E.M.; Sullivan, R.J.; Farlow, D.N.; et al. MAP kinase pathway alterations in BRAF-mutant melanoma patients with acquired resistance to combined RAF/MEK inhibition. Cancer Discov. 2014, 4, 61–68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  99. Rodrik-Outmezguine, V.S.; Chandarlapaty, S.; Pagano, N.C.; Poulikakos, P.I.; Scaltriti, M.; Moskatel, E.; Baselga, J.; Guichard, S.; Rosen, N. mTOR kinase inhibition causes feedback-dependent biphasic regulation of AKT signaling. Cancer Discov. 2011, 1, 248–259. [Google Scholar] [CrossRef] [Green Version]
  100. Rodrik-Outmezguine, V.S.; Okaniwa, M.; Yao, Z.; Novotny, C.J.; McWhirter, C.; Banaji, A.; Won, H.; Wong, W.; Berger, M.; de Stanchina, E.; et al. Overcoming mTOR resistance mutations with a new-generation mTOR inhibitor. Nature 2016, 534, 272–276. [Google Scholar] [CrossRef] [Green Version]
  101. Sardiello, M.; Palmieri, M.; di Ronza, A.; Medina, D.L.; Valenza, M.; Gennarino, V.A.; Di Malta, C.; Donaudy, F.; Embrione, V.; Polishchuk, R.S.; et al. A gene network regulating lysosomal biogenesis and function. Science 2009, 325, 473–477. [Google Scholar] [CrossRef] [Green Version]
  102. Nezich, C.L.; Wang, C.; Fogel, A.I.; Youle, R.J. MiT/TFE transcription factors are activated during mitophagy downstream of Parkin and Atg5. J. Cell Biol. 2015, 210, 435–450. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  103. Settembre, C.; Zoncu, R.; Medina, D.L.; Vetrini, F.; Erdin, S.; Huynh, T.; Ferron, M.; Karsenty, G.; Vellard, M.C.; Facchinetti, V.; et al. A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB. EMBO J. 2012, 31, 1095–1108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  104. Roczniak-Ferguson, A.; Petit, C.S.; Froehlich, F.; Qian, S.; Ky, J.; Angarola, B.; Walther, T.C.; Ferguson, S.M. The transcription factor TFEB links mTORC1 signaling to transcriptional control of lysosome homeostasis. Sci. Signal. 2012, 5, ra42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  105. Medina, D.L.; Di Paola, S.; Peluso, I.; Armani, A.; De Stefani, D.; Venditti, R.; Montefusco, S.; Scotto-Rosato, A.; Prezioso, C.; Forrester, A.; et al. Lysosomal calcium signalling regulates autophagy through calcineurin and TFEB. Nat. Cell Biol. 2015, 17, 288–299. [Google Scholar] [CrossRef] [Green Version]
  106. Bronisz, A.; Sharma, S.M.; Hu, R.; Godlewski, J.; Tzivion, G.; Mansky, K.C.; Ostrowski, M.C. Microphthalmia-associated transcription factor interactions with 14-3-3 modulate differentiation of committed myeloid precursors. Mol. Biol. Cell 2006, 17, 3897–3906. [Google Scholar] [CrossRef] [Green Version]
  107. Yaffe, M.B.; Rittinger, K.; Volinia, S.; Caron, P.R.; Aitken, A.; Leffers, H.; Gamblin, S.J.; Smerdon, S.J.; Cantley, L.C. The structural basis for 14-3-3:phosphopeptide binding specificity. Cell 1997, 91, 961–971. [Google Scholar] [CrossRef] [Green Version]
  108. Napolitano, G.; Di Malta, C.; Esposito, A.; de Araujo, M.E.G.; Pece, S.; Bertalot, G.; Matarese, M.; Benedetti, V.; Zampelli, A.; Stasyk, T.; et al. A substrate-specific mTORC1 pathway underlies Birt-Hogg-Dube syndrome. Nature 2020, 585, 597–602. [Google Scholar] [CrossRef]
  109. Vega-Rubin-de-Celis, S.; Pena-Llopis, S.; Konda, M.; Brugarolas, J. Multistep regulation of TFEB by MTORC1. Autophagy 2017, 13, 464–472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  110. Puertollano, R.; Ferguson, S.M.; Brugarolas, J.; Ballabio, A. The complex relationship between TFEB transcription factor phosphorylation and subcellular localization. EMBO J. 2018, 37, e98804. [Google Scholar] [CrossRef]
  111. Napolitano, G.; Esposito, A.; Choi, H.; Matarese, M.; Benedetti, V.; Di Malta, C.; Monfregola, J.; Medina, D.L.; Lippincott-Schwartz, J.; Ballabio, A. mTOR-dependent phosphorylation controls TFEB nuclear export. Nat. Commun. 2018, 9, 3312. [Google Scholar] [CrossRef]
  112. Li, Y.; Xu, M.; Ding, X.; Yan, C.; Song, Z.; Chen, L.; Huang, X.; Wang, X.; Jian, Y.; Tang, G.; et al. Protein kinase C controls lysosome biogenesis independently of mTORC1. Nat. Cell Biol. 2016, 18, 1065–1077. [Google Scholar] [CrossRef]
  113. Palmieri, M.; Pal, R.; Nelvagal, H.R.; Lotfi, P.; Stinnett, G.R.; Seymour, M.L.; Chaudhury, A.; Bajaj, L.; Bondar, V.V.; Bremner, L.; et al. mTORC1-independent TFEB activation via Akt inhibition promotes cellular clearance in neurodegenerative storage diseases. Nat. Commun. 2017, 8, 14338. [Google Scholar] [CrossRef]
  114. Wang, Y.; Huang, Y.; Liu, J.; Zhang, J.; Xu, M.; You, Z.; Peng, C.; Gong, Z.; Liu, W. Acetyltransferase GCN5 regulates autophagy and lysosome biogenesis by targeting TFEB. EMBO Rep. 2020, 21, e48335. [Google Scholar] [CrossRef]
  115. Miller, A.J.; Levy, C.; Davis, I.J.; Razin, E.; Fisher, D.E. Sumoylation of MITF and its related family members TFE3 and TFEB. J. Biol. Chem. 2005, 280, 146–155. [Google Scholar] [CrossRef] [Green Version]
  116. Martina, J.A.; Puertollano, R. Rag GTPases mediate amino acid-dependent recruitment of TFEB and MITF to lysosomes. J. Cell Biol. 2013, 200, 475–491. [Google Scholar] [CrossRef] [Green Version]
  117. Li, D.; Shao, R.; Wang, N.; Zhou, N.; Du, K.; Shi, J.; Wang, Y.; Zhao, Z.; Ye, X.; Zhang, X.; et al. Sulforaphane Activates a lysosome-dependent transcriptional program to mitigate oxidative stress. Autophagy 2021, 17, 872–887. [Google Scholar] [CrossRef] [PubMed]
  118. Zhang, Z.; Qian, Q.; Li, M.; Shao, F.; Ding, W.X.; Lira, V.A.; Chen, S.X.; Sebag, S.C.; Hotamisligil, G.S.; Cao, H.; et al. The unfolded protein response regulates hepatic autophagy by sXBP1-mediated activation of TFEB. Autophagy 2020, 17, 1841–1855. [Google Scholar] [CrossRef] [PubMed]
  119. Palmieri, M.; Impey, S.; Kang, H.J.; di Ronza, A.; Pelz, C.; Sardiello, M.; Ballabio, A. Characterization of the CLEAR network reveals an integrated control of cellular clearance pathways. Hum. Mol. Genet. 2011, 20, 3852–3866. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  120. Chauhan, S.; Kumar, S.; Jain, A.; Ponpuak, M.; Mudd, M.H.; Kimura, T.; Choi, S.W.; Peters, R.; Mandell, M.; Bruun, J.A.; et al. TRIMs and Galectins Globally Cooperate and TRIM16 and Galectin-3 Co-direct Autophagy in Endomembrane Damage Homeostasis. Dev. Cell 2016, 39, 13–27. [Google Scholar] [CrossRef] [Green Version]
  121. Moruno-Manchon, J.F.; Uzor, N.E.; Kesler, S.R.; Wefel, J.S.; Townley, D.M.; Nagaraja, A.S.; Pradeep, S.; Mangala, L.S.; Sood, A.K.; Tsvetkov, A.S. TFEB ameliorates the impairment of the autophagy-lysosome pathway in neurons induced by doxorubicin. Aging 2016, 8, 3507–3519. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  122. Decressac, M.; Mattsson, B.; Weikop, P.; Lundblad, M.; Jakobsson, J.; Bjorklund, A. TFEB-mediated autophagy rescues midbrain dopamine neurons from alpha-synuclein toxicity. Proc. Natl. Acad. Sci. USA 2013, 110, E18171826. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  123. Brady, O.A.; Martina, J.A.; Puertollano, R. Emerging roles for TFEB in the immune response and inflammation. Autophagy 2018, 14, 181–189. [Google Scholar] [CrossRef] [PubMed]
  124. El-Houjeiri, L.; Possik, E.; Vijayaraghavan, T.; Paquette, M.; Martina, J.A.; Kazan, J.M.; Ma, E.H.; Jones, R.; Blanchette, P.; Puertollano, R.; et al. The Transcription Factors TFEB and TFE3 Link the FLCN-AMPK Signaling Axis to Innate Immune Response and Pathogen Resistance. Cell Rep. 2019, 26, 3613–3628.e3616. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  125. Pastore, N.; Brady, O.A.; Diab, H.I.; Martina, J.A.; Sun, L.; Huynh, T.; Lim, J.A.; Zare, H.; Raben, N.; Ballabio, A.; et al. TFEB and TFE3 cooperate in the regulation of the innate immune response in activated macrophages. Autophagy 2016, 12, 1240–1258. [Google Scholar] [CrossRef]
  126. Martina, J.A.; Chen, Y.; Gucek, M.; Puertollano, R. MTORC1 functions as a transcriptional regulator of autophagy by preventing nuclear transport of TFEB. Autophagy 2012, 8, 903–914. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  127. Campbell, G.R.; Rawat, P.; Bruckman, R.S.; Spector, S.A. Human Immunodeficiency Virus Type 1 Nef Inhibits Autophagy through Transcription Factor EB Sequestration. PLoS Pathog. 2015, 11, e1005018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  128. Singh, N.; Kansal, P.; Ahmad, Z.; Baid, N.; Kushwaha, H.; Khatri, N.; Kumar, A. Antimycobacterial effect of IFNG (interferon gamma)-induced autophagy depends on HMOX1 (heme oxygenase 1)-mediated increase in intracellular calcium levels and modulation of PPP3/calcineurin-TFEB (transcription factor EB) axis. Autophagy 2018, 14, 972–991. [Google Scholar] [CrossRef] [Green Version]
  129. Visvikis, O.; Ihuegbu, N.; Labed, S.A.; Luhachack, L.G.; Alves, A.F.; Wollenberg, A.C.; Stuart, L.M.; Stormo, G.D.; Irazoqui, J.E. Innate host defense requires TFEB-mediated transcription of cytoprotective and antimicrobial genes. Immunity 2014, 40, 896–909. [Google Scholar] [CrossRef] [Green Version]
  130. Gray, M.A.; Choy, C.H.; Dayam, R.M.; Ospina-Escobar, E.; Somerville, A.; Xiao, X.; Ferguson, S.M.; Botelho, R.J. Phagocytosis Enhances Lysosomal and Bactericidal Properties by Activating the Transcription Factor TFEB. Curr. Biol. 2016, 26, 1955–1964. [Google Scholar] [CrossRef] [Green Version]
  131. Cinque, L.; De Leonibus, C.; Iavazzo, M.; Krahmer, N.; Intartaglia, D.; Salierno, F.G.; De Cegli, R.; Di Malta, C.; Svelto, M.; Lanzara, C.; et al. MiT/TFE factors control ER-phagy via transcriptional regulation of FAM134B. EMBO J. 2020, e105696. [Google Scholar] [CrossRef]
  132. Kumar, S.; Jain, A.; Choi, S.W.; da Silva, G.P.D.; Allers, L.; Mudd, M.H.; Peters, R.S.; Anonsen, J.H.; Rusten, T.E.; Lazarou, M.; et al. Mammalian Atg8 proteins and the autophagy factor IRGM control mTOR and TFEB at a regulatory node critical for responses to pathogens. Nat. Cell Biol. 2020, 22, 973–985. [Google Scholar] [CrossRef]
  133. Weidberg, H.; Shvets, E.; Shpilka, T.; Shimron, F.; Shinder, V.; Elazar, Z. LC3 and GATE-16/GABARAP subfamilies are both essential yet act differently in autophagosome biogenesis. EMBO J. 2010, 29, 1792–1802. [Google Scholar] [CrossRef]
  134. Weidberg, H.; Shpilka, T.; Shvets, E.; Abada, A.; Shimron, F.; Elazar, Z. LC3 and GATE-16 N termini mediate membrane fusion processes required for autophagosome biogenesis. Dev. Cell 2011, 20, 444–454. [Google Scholar] [CrossRef] [Green Version]
  135. Nguyen, T.N.; Padman, B.S.; Usher, J.; Oorschot, V.; Ramm, G.; Lazarou, M. Atg8 family LC3/GABARAP proteins are crucial for autophagosome-lysosome fusion but not autophagosome formation during PINK1/Parkin mitophagy and starvation. J. Cell Biol. 2016, 215, 857–874. [Google Scholar] [CrossRef] [PubMed]
  136. Gu, Y.; Princely Abudu, Y.; Kumar, S.; Bissa, B.; Choi, S.W.; Jia, J.; Lazarou, M.; Eskelinen, E.L.; Johansen, T.; Deretic, V. Mammalian Atg8 proteins regulate lysosome and autolysosome biogenesis through SNAREs. EMBO J. 2019, 38, e101994. [Google Scholar] [CrossRef] [PubMed]
  137. Chauhan, S.; Mandell, M.A.; Deretic, V. IRGM Governs the Core Autophagy Machinery to Conduct Antimicrobial Defense. Mol. Cell 2015, 58, 507–521. [Google Scholar] [CrossRef] [Green Version]
  138. Singh, S.B.; Ornatowski, W.; Vergne, I.; Naylor, J.; Delgado, M.; Roberts, E.; Ponpuak, M.; Master, S.; Pilli, M.; White, E.; et al. Human IRGM regulates autophagy and cell-autonomous immunity functions through mitochondria. Nat. Cell Biol. 2010, 12, 1154–1165. [Google Scholar] [CrossRef] [Green Version]
  139. Settembre, C.; Fraldi, A.; Medina, D.L.; Ballabio, A. Signals from the lysosome: A control centre for cellular clearance and energy metabolism. Nat. Rev. Mol. Cell Biol. 2013, 14, 283–296. [Google Scholar] [CrossRef] [Green Version]
  140. Nnah, I.C.; Wang, B.; Saqcena, C.; Weber, G.F.; Bonder, E.M.; Bagley, D.; De Cegli, R.; Napolitano, G.; Medina, D.L.; Ballabio, A.; et al. TFEB-driven endocytosis coordinates MTORC1 signaling and autophagy. Autophagy 2019, 15, 151–164. [Google Scholar] [CrossRef] [Green Version]
  141. Pedersen, N.M.; Wenzel, E.M.; Wang, L.; Antoine, S.; Chavrier, P.; Stenmark, H.; Raiborg, C. Protrudin-mediated ER-endosome contact sites promote MT1-MMP exocytosis and cell invasion. J. Cell Biol. 2020, 219, e202003063. [Google Scholar] [CrossRef]
  142. Raiborg, C.; Wenzel, E.M.; Stenmark, H. ER-endosome contact sites: Molecular compositions and functions. EMBO J. 2015, 34, 1848–1858. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  143. Lu, M.; van Tartwijk, F.W.; Lin, J.Q.; Nijenhuis, W.; Parutto, P.; Fantham, M.; Christensen, C.N.; Avezov, E.; Holt, C.E.; Tunnacliffe, A.; et al. The structure and global distribution of the endoplasmic reticulum network are actively regulated by lysosomes. Sci. Adv. 2020, 6, eabc7209. [Google Scholar] [CrossRef]
  144. Muller, F. The nature and mechanism of superoxide production by the electron transport chain: Its relevance to aging. J. Am. Aging Assoc. 2000, 23, 227–253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  145. Han, D.; Williams, E.; Cadenas, E. Mitochondrial respiratory chain-dependent generation of superoxide anion and its release into the intermembrane space. Biochem. J. 2001, 353, 411–416. [Google Scholar] [CrossRef] [PubMed]
  146. Vermeulen, R.; Schymanski, E.L.; Barabasi, A.L.; Miller, G.W. The exposome and health: Where chemistry meets biology. Science 2020, 367, 392–396. [Google Scholar] [CrossRef]
  147. Gracia-Cazana, T.; Gonzalez, S.; Parrado, C.; Juarranz, A.; Gilaberte, Y. Influence of the Exposome on Skin Cancer. Actas Dermosifiliogr (Engl. Ed.) 2020, 111, 460–470. [Google Scholar] [CrossRef]
  148. Bjorklund, G.; Zou, L.; Wang, J.; Chasapis, C.T.; Peana, M. Thioredoxin Reductase as a Pharmacological Target. Pharm. Res. 2021, 174, 105854. [Google Scholar] [CrossRef]
  149. Karpenko, I.L.; Valuev-Elliston, V.T.; Ivanova, O.N.; Smirnova, O.A.; Ivanov, A.V. Peroxiredoxins-The Underrated Actors during Virus-Induced Oxidative Stress. Antioxidants 2021, 10, 977. [Google Scholar] [CrossRef]
  150. Vermot, A.; Petit-Hartlein, I.; Smith, S.M.E.; Fieschi, F. NADPH Oxidases (NOX): An Overview from Discovery, Molecular Mechanisms to Physiology and Pathology. Antioxidants 2021, 10, 890. [Google Scholar] [CrossRef]
  151. Zhang, Z.; Zhang, L.; Zhou, L.; Lei, Y.; Zhang, Y.; Huang, C. Redox signaling and unfolded protein response coordinate cell fate decisions under ER stress. Redox Biol. 2019, 25, 101047. [Google Scholar] [CrossRef] [PubMed]
  152. Haynes, C.M.; Titus, E.A.; Cooper, A.A. Degradation of misfolded proteins prevents ER-derived oxidative stress and cell death. Mol. Cell 2004, 15, 767–776. [Google Scholar] [CrossRef] [PubMed]
  153. Liu, L.; Wise, D.R.; Diehl, J.A.; Simon, M.C. Hypoxic reactive oxygen species regulate the integrated stress response and cell survival. J. Biol. Chem. 2008, 283, 31153–31162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  154. McConkey, D.J. The integrated stress response and proteotoxicity in cancer therapy. Biochem. Biophys. Res. Commun. 2017, 482, 450–453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  155. Tao, J.; Wu, Q.Y.; Ma, Y.C.; Chen, Y.L.; Zou, C.G. Antioxidant response is a protective mechanism against nutrient deprivation in C. elegans. Sci. Rep. 2017, 7, 43547. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  156. Pajares, M.; Jimenez-Moreno, N.; Garcia-Yague, A.J.; Escoll, M.; de Ceballos, M.L.; Van Leuven, F.; Rabano, A.; Yamamoto, M.; Rojo, A.I.; Cuadrado, A. Transcription factor NFE2L2/NRF2 is a regulator of macroautophagy genes. Autophagy 2016, 12, 1902–1916. [Google Scholar] [CrossRef] [Green Version]
  157. Qin, L.; Wang, Z.; Tao, L.; Wang, Y. ER stress negatively regulates AKT/TSC/mTOR pathway to enhance autophagy. Autophagy 2010, 6, 239–247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  158. Scherz-Shouval, R.; Elazar, Z. ROS, mitochondria and the regulation of autophagy. Trends Cell Biol. 2007, 17, 422–427. [Google Scholar] [CrossRef]
  159. Remacle, J.; Raes, M.; Toussaint, O.; Renard, P.; Rao, G. Low levels of reactive oxygen species as modulators of cell function. Mutat. Res. 1995, 316, 103–122. [Google Scholar] [CrossRef]
  160. Cordani, M.; Donadelli, M.; Strippoli, R.; Bazhin, A.V.; Sanchez-Alvarez, M. Interplay between ROS and Autophagy in Cancer and Aging: From Molecular Mechanisms to Novel Therapeutic Approaches. Oxid. Med. Cell Longev. 2019, 2019, 8794612. [Google Scholar] [CrossRef] [Green Version]
  161. Sanchez-Alvarez, M.; Strippoli, R.; Donadelli, M.; Bazhin, A.V.; Cordani, M. Sestrins as a Therapeutic Bridge between ROS and Autophagy in Cancer. Cancers 2019, 11, 1415. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  162. Wang, X.; Xu, S.; Zhang, L.; Cheng, X.; Yu, H.; Bao, J.; Lu, R. Vitamin C induces ferroptosis in anaplastic thyroid cancer cells by ferritinophagy activation. Biochem. Biophys. Res. Commun. 2021, 551, 46–53. [Google Scholar] [CrossRef] [PubMed]
  163. Szarka, A.; Kapuy, O.; Lorincz, T.; Banhegyi, G. Vitamin C and Cell Death. Antioxid. Redox Signal. 2021, 34, 831–844. [Google Scholar] [CrossRef] [PubMed]
  164. Dixon, S.J.; Lemberg, K.M.; Lamprecht, M.R.; Skouta, R.; Zaitsev, E.M.; Gleason, C.E.; Patel, D.N.; Bauer, A.J.; Cantley, A.M.; Yang, W.S.; et al. Ferroptosis: An iron-dependent form of nonapoptotic cell death. Cell 2012, 149, 1060–1072. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  165. Lu, B.; Chen, X.B.; Ying, M.D.; He, Q.J.; Cao, J.; Yang, B. The Role of Ferroptosis in Cancer Development and Treatment Response. Front. Pharm. 2017, 8, 992. [Google Scholar] [CrossRef]
  166. Lorincz, T.; Holczer, M.; Kapuy, O.; Szarka, A. The Interrelationship of Pharmacologic Ascorbate Induced Cell Death and Ferroptosis. Pathol. Oncol. Res. 2019, 25, 669–679. [Google Scholar] [CrossRef]
  167. Kapuy, O.; Makk-Merczel, K.; Szarka, A. Therapeutic Approach of KRAS Mutant Tumours by the Combination of Pharmacologic Ascorbate and Chloroquine. Biomolecules 2021, 11, 652. [Google Scholar] [CrossRef] [PubMed]
  168. Giordano, S.; Darley-Usmar, V.; Zhang, J. Autophagy as an essential cellular antioxidant pathway in neurodegenerative disease. Redox Biol. 2014, 2, 82–90. [Google Scholar] [CrossRef] [Green Version]
  169. Chen, X.; Yu, C.; Kang, R.; Kroemer, G.; Tang, D. Cellular degradation systems in ferroptosis. Cell Death Differ. 2021, 28, 1135–1148. [Google Scholar] [CrossRef]
  170. Pierzynowska, K.; Rintz, E.; Gaffke, L.; Wegrzyn, G. Ferroptosis and Its Modulation by Autophagy in Light of the Pathogenesis of Lysosomal Storage Diseases. Cells 2021, 10, 365. [Google Scholar] [CrossRef]
  171. Huang, Y.N.; Yang, L.Y.; Wang, J.Y.; Lai, C.C.; Chiu, C.T.; Wang, J.Y. L-Ascorbate Protects Against Methamphetamine-Induced Neurotoxicity of Cortical Cells via Inhibiting Oxidative Stress, Autophagy, and Apoptosis. Mol. Neurobiol. 2017, 54, 125–136. [Google Scholar] [CrossRef] [PubMed]
  172. Choi, Y.K.; Kang, J.I.; Han, S.; Kim, Y.R.; Jo, J.; Kang, Y.W.; Choo, D.R.; Hyun, J.W.; Koh, Y.S.; Yoo, E.S.; et al. L-Ascorbic Acid Inhibits Breast Cancer Growth by Inducing IRE/JNK/CHOP-Related Endoplasmic Reticulum Stress-Mediated p62/SQSTM1 Accumulation in the Nucleus. Nutrients 2020, 12, 1351. [Google Scholar] [CrossRef]
  173. Takamura, A.; Komatsu, M.; Hara, T.; Sakamoto, A.; Kishi, C.; Waguri, S.; Eishi, Y.; Hino, O.; Tanaka, K.; Mizushima, N. Autophagy-deficient mice develop multiple liver tumors. Genes Dev. 2011, 25, 795–800. [Google Scholar] [CrossRef] [Green Version]
  174. Liang, X.H.; Jackson, S.; Seaman, M.; Brown, K.; Kempkes, B.; Hibshoosh, H.; Levine, B. Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature 1999, 402, 672–676. [Google Scholar] [CrossRef]
  175. Degenhardt, K.; Mathew, R.; Beaudoin, B.; Bray, K.; Anderson, D.; Chen, G.; Mukherjee, C.; Shi, Y.; Gelinas, C.; Fan, Y.; et al. Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Cancer Cell 2006, 10, 51–64. [Google Scholar] [CrossRef] [Green Version]
  176. Komatsu, M.; Waguri, S.; Koike, M.; Sou, Y.S.; Ueno, T.; Hara, T.; Mizushima, N.; Iwata, J.; Ezaki, J.; Murata, S.; et al. Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice. Cell 2007, 131, 1149–1163. [Google Scholar] [CrossRef] [Green Version]
  177. Umemura, A.; He, F.; Taniguchi, K.; Nakagawa, H.; Yamachika, S.; Font-Burgada, J.; Zhong, Z.; Subramaniam, S.; Raghunandan, S.; Duran, A.; et al. p62, Upregulated during Preneoplasia, Induces Hepatocellular Carcinogenesis by Maintaining Survival of Stressed HCC-Initiating Cells. Cancer Cell 2016, 29, 935–948. [Google Scholar] [CrossRef] [Green Version]
  178. Xu, L.Z.; Li, S.S.; Zhou, W.; Kang, Z.J.; Zhang, Q.X.; Kamran, M.; Xu, J.; Liang, D.P.; Wang, C.L.; Hou, Z.J.; et al. p62/SQSTM1 enhances breast cancer stem-like properties by stabilizing MYC mRNA. Oncogene 2017, 36, 304–317. [Google Scholar] [CrossRef] [Green Version]
  179. Sui, X.; Chen, R.; Wang, Z.; Huang, Z.; Kong, N.; Zhang, M.; Han, W.; Lou, F.; Yang, J.; Zhang, Q.; et al. Autophagy and chemotherapy resistance: A promising therapeutic target for cancer treatment. Cell Death Dis. 2013, 4, e838. [Google Scholar] [CrossRef] [PubMed]
  180. Kenific, C.M.; Thorburn, A.; Debnath, J. Autophagy and metastasis: Another double-edged sword. Curr. Opin. Cell Biol. 2010, 22, 241–245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  181. Talukdar, S.; Pradhan, A.K.; Bhoopathi, P.; Shen, X.N.; August, L.A.; Windle, J.J.; Sarkar, D.; Furnari, F.B.; Cavenee, W.K.; Das, S.K.; et al. MDA-9/Syntenin regulates protective autophagy in anoikis-resistant glioma stem cells. Proc. Natl. Acad. Sci. USA 2018, 115, 5768–5773. [Google Scholar] [CrossRef] [Green Version]
  182. Marsh, T.; Kenific, C.M.; Suresh, D.; Gonzalez, H.; Shamir, E.R.; Mei, W.; Tankka, A.; Leidal, A.M.; Kalavacherla, S.; Woo, K.; et al. Autophagic Degradation of NBR1 Restricts Metastatic Outgrowth during Mammary Tumor Progression. Dev. Cell 2020, 52, 591–604.e596. [Google Scholar] [CrossRef]
  183. White, E. The role for autophagy in cancer. J. Clin. Investig. 2015, 125, 42–46. [Google Scholar] [CrossRef] [Green Version]
  184. Nazio, F.; Bordi, M.; Cianfanelli, V.; Locatelli, F.; Cecconi, F. Autophagy and cancer stem cells: Molecular mechanisms and therapeutic applications. Cell Death Differ. 2019, 26, 690–702. [Google Scholar] [CrossRef] [Green Version]
  185. Levy, J.M.; Thompson, J.C.; Griesinger, A.M.; Amani, V.; Donson, A.M.; Birks, D.K.; Morgan, M.J.; Mirsky, D.M.; Handler, M.H.; Foreman, N.K.; et al. Autophagy inhibition improves chemosensitivity in BRAF(V600E) brain tumors. Cancer Discov. 2014, 4, 773–780. [Google Scholar] [CrossRef] [Green Version]
  186. DeBerardinis, R.J.; Chandel, N.S. Fundamentals of cancer metabolism. Sci. Adv. 2016, 2, e1600200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  187. Pavlova, N.N.; Thompson, C.B. The Emerging Hallmarks of Cancer Metabolism. Cell Metab. 2016, 23, 27–47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  188. Martin, K.R.; Celano, S.L.; Solitro, A.R.; Gunaydin, H.; Scott, M.; O’Hagan, R.C.; Shumway, S.D.; Fuller, P.; MacKeigan, J.P. A Potent and Selective ULK1 Inhibitor Suppresses Autophagy and Sensitizes Cancer Cells to Nutrient Stress. iScience 2018, 8, 74–84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  189. Egan, D.F.; Chun, M.G.; Vamos, M.; Zou, H.; Rong, J.; Miller, C.J.; Lou, H.J.; Raveendra-Panickar, D.; Yang, C.C.; Sheffler, D.J.; et al. Small Molecule Inhibition of the Autophagy Kinase ULK1 and Identification of ULK1 Substrates. Mol. Cell 2015, 59, 285–297. [Google Scholar] [CrossRef] [Green Version]
  190. Ronan, B.; Flamand, O.; Vescovi, L.; Dureuil, C.; Durand, L.; Fassy, F.; Bachelot, M.F.; Lamberton, A.; Mathieu, M.; Bertrand, T.; et al. A highly potent and selective Vps34 inhibitor alters vesicle trafficking and autophagy. Nat. Chem. Biol. 2014, 10, 1013–1019. [Google Scholar] [CrossRef]
  191. Dyczynski, M.; Yu, Y.; Otrocka, M.; Parpal, S.; Braga, T.; Henley, A.B.; Zazzi, H.; Lerner, M.; Wennerberg, K.; Viklund, J.; et al. Targeting autophagy by small molecule inhibitors of vacuolar protein sorting 34 (Vps34) improves the sensitivity of breast cancer cells to Sunitinib. Cancer Lett. 2018, 435, 32–43. [Google Scholar] [CrossRef]
  192. Fujita, N.; Hayashi-Nishino, M.; Fukumoto, H.; Omori, H.; Yamamoto, A.; Noda, T.; Yoshimori, T. An Atg4B mutant hampers the lipidation of LC3 paralogues and causes defects in autophagosome closure. Mol. Biol. Cell 2008, 19, 4651–4659. [Google Scholar] [CrossRef] [Green Version]
  193. Akin, D.; Wang, S.K.; Habibzadegah-Tari, P.; Law, B.; Ostrov, D.; Li, M.; Yin, X.M.; Kim, J.S.; Horenstein, N.; Dunn, W.A., Jr. A novel ATG4B antagonist inhibits autophagy and has a negative impact on osteosarcoma tumors. Autophagy 2014, 10, 2021–2035. [Google Scholar] [CrossRef]
  194. Mauthe, M.; Orhon, I.; Rocchi, C.; Zhou, X.; Luhr, M.; Hijlkema, K.J.; Coppes, R.P.; Engedal, N.; Mari, M.; Reggiori, F. Chloroquine inhibits autophagic flux by decreasing autophagosome-lysosome fusion. Autophagy 2018, 14, 1435–1455. [Google Scholar] [CrossRef] [PubMed]
  195. Kallunki, T.; Olsen, O.D.; Jaattela, M. Cancer-associated lysosomal changes: Friends or foes? Oncogene 2013, 32, 1995–2004. [Google Scholar] [CrossRef] [Green Version]
  196. Olson, O.C.; Joyce, J.A. Cysteine cathepsin proteases: Regulators of cancer progression and therapeutic response. Nat. Rev. Cancer 2015, 15, 712–729. [Google Scholar] [CrossRef] [PubMed]
  197. Fehrenbacher, N.; Jaattela, M. Lysosomes as targets for cancer therapy. Cancer Res. 2005, 65, 2993–2995. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  198. Wang, Q.; Yao, J.; Jin, Q.; Wang, X.; Zhu, H.; Huang, F.; Wang, W.; Qiang, J.; Ni, Q. LAMP1 expression is associated with poor prognosis in breast cancer. Oncol. Lett. 2017, 14, 4729–4735. [Google Scholar] [CrossRef] [Green Version]
  199. Stransky, L.; Cotter, K.; Forgac, M. The Function of V-ATPases in Cancer. Physiol Rev. 2016, 96, 1071–1091. [Google Scholar] [CrossRef]
  200. Kim, J.; Kim, S.H.; Kang, H.; Lee, S.; Park, S.Y.; Cho, Y.; Lim, Y.M.; Ahn, J.W.; Kim, Y.H.; Chung, S.; et al. TFEB-GDF15 axis protects against obesity and insulin resistance as a lysosomal stress response. Nat. Metab. 2021, 3, 410–427. [Google Scholar] [CrossRef]
  201. Xu, L.; Pan, J. Transcription factor EB promotes rheumatoid arthritis of Sprague-Dawley rats via regulating autophagy. 3 Biotech 2021, 11, 162. [Google Scholar] [CrossRef] [PubMed]
  202. Hamura, R.; Shirai, Y.; Shimada, Y.; Saito, N.; Taniai, T.; Horiuchi, T.; Takada, N.; Kanegae, Y.; Ikegami, T.; Ohashi, T.; et al. Suppression of lysosomal acid alpha-glucosidase impacts the modulation of transcription factor EB translocation in pancreatic cancer. Cancer Sci. 2021, 112, 2335–2348. [Google Scholar] [CrossRef] [PubMed]
  203. Li, Z.; Ding, G.; Wang, Y.; Zheng, Z.; Lv, J. Safety profile of the transcription factor EB (TFEB)-based gene therapy through intracranial injection in mice. Transl. Neurosci. 2020, 11, 241–250. [Google Scholar] [CrossRef]
  204. Kim, J.H.; Lee, J.; Cho, Y.R.; Lee, S.Y.; Sung, G.J.; Shin, D.M.; Choi, K.C.; Son, J. TFEB Supports Pancreatic Cancer Growth through the Transcriptional Regulation of Glutaminase. Cancers 2021, 13, 483. [Google Scholar] [CrossRef]
  205. Yun, S.; Vincelette, N.D.; Yu, X.; Watson, G.W.; Fernandez, M.R.; Yang, C.; Hitosugi, T.; Cheng, C.H.; Freischel, A.R.; Zhang, L.; et al. TFEB links MYC signaling to epigenetic control of myeloid differentiation and acute myeloid leukemia. Blood Cancer Discov. 2021, 2, 162–185. [Google Scholar] [CrossRef] [PubMed]
  206. Rabinovich-Nikitin, I.; Kirshenbaum, L.A. YAP/TFEB pathway promotes autophagic cell death and hypertrophic cardiomyopathy in lysosomal storage diseases. J. Clin. Investig. 2021, 131, e146821. [Google Scholar] [CrossRef]
  207. Arguello, G.; Balboa, E.; Tapia, P.J.; Castro, J.; Yanez, M.J.; Mattar, P.; Pulgar, R.; Zanlungo, S. Genistein Activates Transcription Factor EB and Corrects Niemann-Pick C Phenotype. Int. J. Mol. Sci. 2021, 22, 4220. [Google Scholar] [CrossRef]
  208. Gu, M.; Jin, J.; Ren, C.; Chen, X.; Pan, Z.; Wu, Y.; Tian, N.; Sun, L.; Wu, A.; Gao, W.; et al. 20-Deoxyingenol alleviates osteoarthritis by activating TFEB in chondrocytes. Pharm. Res. 2021, 165, 105361. [Google Scholar] [CrossRef]
  209. Wu, C.; Chen, H.; Zhuang, R.; Zhang, H.; Wang, Y.; Hu, X.; Xu, Y.; Li, J.; Li, Y.; Wang, X.; et al. Betulinic acid inhibits pyroptosis in spinal cord injury by augmenting autophagy via the AMPK-mTOR-TFEB signaling pathway. Int. J. Biol. Sci. 2021, 17, 1138–1152. [Google Scholar] [CrossRef]
  210. Wang, Z.; Yang, C.; Liu, J.; Chun-Kit Tong, B.; Zhu, Z.; Malampati, S.; Gopalkrishnashetty Sreenivasmurthy, S.; Cheung, K.H.; Iyaswamy, A.; Su, C.; et al. A Curcumin Derivative Activates TFEB and Protects Against Parkinsonian Neurotoxicity in Vitro. Int. J. Mol. Sci. 2020, 21, 1515. [Google Scholar] [CrossRef] [Green Version]
  211. Fardghassemi, Y.; Maios, C.; Parker, J.A. Small Molecule Rescue of ATXN3 Toxicity in C. elegans via TFEB/HLH-30. Neurotherapeutics 2021, 18, 1151–1165. [Google Scholar] [CrossRef]
  212. Yang, Z.J.; Chee, C.E.; Huang, S.; Sinicrope, F.A. The role of autophagy in cancer: Therapeutic implications. Mol. Cancer 2011, 10, 1533–1541. [Google Scholar] [CrossRef] [Green Version]
  213. Motzer, R.J.; Escudier, B.; Oudard, S.; Hutson, T.E.; Porta, C.; Bracarda, S.; Grunwald, V.; Thompson, J.A.; Figlin, R.A.; Hollaender, N.; et al. Efficacy of everolimus in advanced renal cell carcinoma: A double-blind, randomised, placebo-controlled phase III trial. Lancet 2008, 372, 449–456. [Google Scholar] [CrossRef]
  214. Ganipineni, L.P.; Danhier, F.; Preat, V. Drug delivery challenges and future of chemotherapeutic nanomedicine for glioblastoma treatment. J. Control. Release 2018, 281, 42–57. [Google Scholar] [CrossRef] [PubMed]
  215. Guerrini, L.; Alvarez-Puebla, R.A.; Pazos-Perez, N. Surface Modifications of Nanoparticles for Stability in Biological Fluids. Materials 2018, 11, 1154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  216. Pagliari, F.; Mandoli, C.; Forte, G.; Magnani, E.; Pagliari, S.; Nardone, G.; Licoccia, S.; Minieri, M.; Di Nardo, P.; Traversa, E. Cerium oxide nanoparticles protect cardiac progenitor cells from oxidative stress. ACS Nano 2012, 6, 3767–3775. [Google Scholar] [CrossRef] [Green Version]
  217. Williams, K.A.; Veenhuizen, P.T.; de la Torre, B.G.; Eritja, R.; Dekker, C. Nanotechnology: Carbon nanotubes with DNA recognition. Nature 2002, 420, 761. [Google Scholar] [CrossRef] [PubMed]
  218. Shi, Y.; van der Meel, R.; Chen, X.; Lammers, T. The EPR effect and beyond: Strategies to improve tumor targeting and cancer nanomedicine treatment efficacy. Theranostics 2020, 10, 7921–7924. [Google Scholar] [CrossRef]
  219. Lafuente-Gomez, N.; Milan-Rois, P.; Garcia-Soriano, D.; Luengo, Y.; Cordani, M.; Alarcon-Iniesta, H.; Salas, G.; Somoza, A. Smart Modification on Magnetic Nanoparticles Dramatically Enhances Their Therapeutic Properties. Cancers 2021, 13, 4095. [Google Scholar] [CrossRef]
  220. Gonzalez-Pastor, R.; Lancelot, A.; Morcuende-Ventura, V.; San Anselmo, M.; Sierra, T.; Serrano, J.L.; Martin-Duque, P. Combination Chemotherapy with Cisplatin and Chloroquine: Effect of Encapsulation in Micelles Formed by Self-Assembling Hybrid Dendritic-Linear-Dendritic Block Copolymers. Int. J. Mol. Sci. 2021, 22, 5223. [Google Scholar] [CrossRef] [PubMed]
  221. McAfee, Q.; Zhang, Z.; Samanta, A.; Levi, S.M.; Ma, X.H.; Piao, S.; Lynch, J.P.; Uehara, T.; Sepulveda, A.R.; Davis, L.E.; et al. Autophagy inhibitor Lys05 has single-agent antitumor activity and reproduces the phenotype of a genetic autophagy deficiency. Proc. Natl. Acad. Sci. USA 2012, 109, 8253–8258. [Google Scholar] [CrossRef] [Green Version]
  222. Ma, Z.; Li, J.; Lin, K.; Ramachandran, M.; Zhang, D.; Showalter, M.; De Souza, C.; Lindstrom, A.; Solano, L.N.; Jia, B.; et al. Pharmacophore hybridisation and nanoscale assembly to discover self-delivering lysosomotropic new-chemical entities for cancer therapy. Nat. Commun. 2020, 11, 4615. [Google Scholar] [CrossRef]
  223. Kubota, T.; Kuroda, S.; Kanaya, N.; Morihiro, T.; Aoyama, K.; Kakiuchi, Y.; Kikuchi, S.; Nishizaki, M.; Kagawa, S.; Tazawa, H.; et al. HER2-targeted gold nanoparticles potentially overcome resistance to trastuzumab in gastric cancer. Nanomedicine 2018, 14, 1919–1929. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  224. Bhowmik, T.; Gomes, A. NKCT1 (purified Naja kaouthia protein toxin) conjugated gold nanoparticles induced Akt/mTOR inactivation mediated autophagic and caspase 3 activated apoptotic cell death in leukemic cell. Toxicon 2016, 121, 86–97. [Google Scholar] [CrossRef]
  225. Rauf, A.; Imran, M.; Khan, I.A.; Ur-Rehman, M.; Gilani, S.A.; Mehmood, Z.; Mubarak, M.S. Anticancer potential of quercetin: A comprehensive review. Phytother. Res. 2018, 32, 2109–2130. [Google Scholar] [CrossRef] [PubMed]
  226. Cordani, M.; Somoza, A. Targeting autophagy using metallic nanoparticles: A promising strategy for cancer treatment. Cell Mol. Life Sci. 2019, 76, 1215–1242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  227. Khan, M.I.; Mohammad, A.; Patil, G.; Naqvi, S.A.; Chauhan, L.K.; Ahmad, I. Induction of ROS, mitochondrial damage and autophagy in lung epithelial cancer cells by iron oxide nanoparticles. Biomaterials 2012, 33, 1477–1488. [Google Scholar] [CrossRef]
  228. Peng, Z.; Yuan, L.; XuHong, J.; Tian, H.; Zhang, Y.; Deng, J.; Qi, X. Chiral nanomaterials for tumor therapy: Autophagy, apoptosis, and photothermal ablation. J. Nanobiotechnol. 2021, 19, 220. [Google Scholar] [CrossRef]
  229. Yuan, L.; Zhang, F.; Qi, X.; Yang, Y.; Yan, C.; Jiang, J.; Deng, J. Chiral polymer modified nanoparticles selectively induce autophagy of cancer cells for tumor ablation. J. Nanobiotechnol. 2018, 16, 55. [Google Scholar] [CrossRef] [Green Version]
  230. Wang, Y.; Xia, Y. Near-infrared optically active Cu2−xS nanocrystals: Sacrificial template-ligand exchange integration fabrication and chirality dependent autophagy effects. J. Mater. Chem. B 2020, 8, 7921–7930. [Google Scholar] [CrossRef]
  231. Song, W.; Soo Lee, S.; Savini, M.; Popp, L.; Colvin, V.L.; Segatori, L. Ceria nanoparticles stabilized by organic surface coatings activate the lysosome-autophagy system and enhance autophagic clearance. ACS Nano 2014, 8, 10328–10342. [Google Scholar] [CrossRef]
  232. Wei, P.F.; Zhang, L.; Nethi, S.K.; Barui, A.K.; Lin, J.; Zhou, W.; Shen, Y.; Man, N.; Zhang, Y.J.; Xu, J.; et al. Accelerating the clearance of mutant huntingtin protein aggregates through autophagy induction by europium hydroxide nanorods. Biomaterials 2014, 35, 899–907. [Google Scholar] [CrossRef] [PubMed]
  233. Peynshaert, K.; Manshian, B.B.; Joris, F.; Braeckmans, K.; De Smedt, S.C.; Demeester, J.; Soenen, S.J. Exploiting intrinsic nanoparticle toxicity: The pros and cons of nanoparticle-induced autophagy in biomedical research. Chem. Rev. 2014, 114, 7581–7609. [Google Scholar] [CrossRef] [PubMed]
  234. Romero, E.L.; Morilla, M.J. Preclinical autophagy modulatory nanomedicines: Big challenges, slow advances. Expert Opin. Drug Deliv. 2021, 18, 1–19. [Google Scholar] [CrossRef] [PubMed]
Figure 1. Main extracellular stimuli and intracellular pathways controlling TFEB activation. TFEB is the master transcriptional regulator of both autophagy and lysosomal components, responding to important biological pathways and cellular functions. TFEB translocation to the nucleus depends on its phosphorylation status. Various extracellular and intracellular stimuli including growth factor/nutrient abundance or deprivation and oxidative stress activate, among others, LBK1/AMPK and/or mTOR signaling which control TFEB phosphorylation status. Once phosphorylated, TFEB is sequestered in the cytosol by 14-3-3 proteins. Conversely, during starvation TFEB is dephosphorylated by PPP3CB enabling its nuclear translocation.
Figure 1. Main extracellular stimuli and intracellular pathways controlling TFEB activation. TFEB is the master transcriptional regulator of both autophagy and lysosomal components, responding to important biological pathways and cellular functions. TFEB translocation to the nucleus depends on its phosphorylation status. Various extracellular and intracellular stimuli including growth factor/nutrient abundance or deprivation and oxidative stress activate, among others, LBK1/AMPK and/or mTOR signaling which control TFEB phosphorylation status. Once phosphorylated, TFEB is sequestered in the cytosol by 14-3-3 proteins. Conversely, during starvation TFEB is dephosphorylated by PPP3CB enabling its nuclear translocation.
Cells 10 02752 g001
Figure 2. Distinct autophagic routes. Depending on the specific structures and cargoes initiating autophagy, different autophagic routes have been elucidated.
Figure 2. Distinct autophagic routes. Depending on the specific structures and cargoes initiating autophagy, different autophagic routes have been elucidated.
Cells 10 02752 g002
Figure 3. Regulation of TFEB activation by specific phosphorylations.
Figure 3. Regulation of TFEB activation by specific phosphorylations.
Cells 10 02752 g003
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Kumar, S.; Sánchez-Álvarez, M.; Lolo, F.-N.; Trionfetti, F.; Strippoli, R.; Cordani, M. Autophagy and the Lysosomal System in Cancer. Cells 2021, 10, 2752. https://doi.org/10.3390/cells10102752

AMA Style

Kumar S, Sánchez-Álvarez M, Lolo F-N, Trionfetti F, Strippoli R, Cordani M. Autophagy and the Lysosomal System in Cancer. Cells. 2021; 10(10):2752. https://doi.org/10.3390/cells10102752

Chicago/Turabian Style

Kumar, Suresh, Miguel Sánchez-Álvarez, Fidel-Nicolás Lolo, Flavia Trionfetti, Raffaele Strippoli, and Marco Cordani. 2021. "Autophagy and the Lysosomal System in Cancer" Cells 10, no. 10: 2752. https://doi.org/10.3390/cells10102752

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop