The Restorative Effect of Human Amniotic Fluid Stem Cells on Spinal Cord Injury
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals and Experimental Design
2.2. Isolation and Cultivation of MSCs from the Human Amniotic Fluid
2.3. MSCs Characterization and Identification
2.4. Preparation of MSCs-CM
2.5. ELISA Assay
2.6. Surgical Procedure and Induction of SCI
2.7. Injection of MSCs-CM
2.8. Transplantation of the hAF-MSCs
2.9. Immunofluorescence Staining
2.10. Statistical Analysis
2.11. Meta-Analysis and Network Analysis of DCX Expression
3. Results
3.1. hAF-MSCs Phenotype Identification
3.2. ELISA Analysis
3.3. hAF-MSCs Promote the Neuroblast Expression as an Indicator of Neurogenesis
3.4. hAF-MSCs Suppress the Astrogliosis and Glial Scar
3.5. Common Coexpressed Genes with DCX and Its Gene Interaction Network
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shao, Z.; Lv, G.; Wen, P.; Cao, Y.; Yu, D.; Lu, Y.; Li, G.; Su, Z.; Teng, P.; Gao, K.; et al. Silencing of PHLPP1 promotes neuronal apoptosis and inhibits functional recovery after spinal cord injury in mice. Life Sci. 2018, 209, 291–299. [Google Scholar] [CrossRef]
- Yuan, Y.-M.; He, C. The glial scar in spinal cord injury and repair. Neurosci. Bull. 2013, 29, 421–435. [Google Scholar] [CrossRef] [Green Version]
- Su, Z.; Niu, W.; Liu, M.-L.; Zou, Y.; Zhang, C.-L. In vivo conversion of astrocytes to neurons in the injured adult spinal cord. Nat. Commun. 2014, 5, 3338. [Google Scholar] [CrossRef]
- Bolliger, M.; Blight, A.R.; Field-Fote, E.C.; Musselman, K.; Rossignol, S.; Barthélemy, D.; Bouyer, L.; Popovic, M.R.; Schwab, J.M.; Boninger, M.L.; et al. Lower extremity outcome measures: Considerations for clinical trials in spinal cord injury. Spinal Cord 2018, 56, 628–642. [Google Scholar] [CrossRef]
- Fan, C.; Li, X.; Xiao, Z.; Zhao, Y.; Liang, H.; Wang, B.; Han, S.; Li, X.; Xu, B.; Wang, N.; et al. A modified collagen scaffold facilitates endogenous neurogenesis for acute spinal cord injury repair. Acta Biomater. 2017, 51, 304–316. [Google Scholar] [CrossRef]
- Jure, I.; Pietranera, L.; De Nicola, A.F.; Labombarda, F. Spinal cord injury impairs neurogenesis and induces glial reactivity in the hippocampus. Neurochem. Res. 2017, 42, 2178–2190. [Google Scholar] [CrossRef]
- Sahni, V.; Kessler, J.A. Stem cell therapies for spinal cord injury. Nat. Rev. Neurol. 2010, 6, 363–372. [Google Scholar] [CrossRef] [Green Version]
- Muheremu, A.; Peng, J.; Ao, Q. Stem cell based therapies for spinal cord injury. Tissue Cell 2016, 48, 328–333. [Google Scholar] [CrossRef] [PubMed]
- Assinck, P.; Duncan, G.J.; Hilton, B.J.; Plemel, J.R.; Tetzlaff, W. Cell transplantation therapy for spinal cord injury. Nat. Neurosci. 2017, 20, 637–647. [Google Scholar] [CrossRef] [PubMed]
- Ruppert, K.; Olson, S.; Cox, C. Spinal Cord Injury. In A Roadmap to Non-Hematopoietic Stem Cell-Based Therapeutics; Elsevier: Amsterdam, The Netherlands, 2019; pp. 321–343. [Google Scholar]
- Aziz, S.G.-G.; Fardyazar, Z.; Pashaei-Asl, F.; Rahmati-Yamchi, M.; Khodadadi, K.; Pashaiasl, M. Human amniotic fluid stem cells (hAFSCs) expressing p21 and cyclin D1 genes retain excellent viability after freezing with (dimethyl sulfoxide) DMSO. Bosn. J. Basic Med Sci. 2019, 19, 43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dziadosz, M.; Basch, R.S.; Young, B.K. Human amniotic fluid: A source of stem cells for possible therapeutic use. Am. J. Obstet. Gynecol. 2016, 214, 321–327. [Google Scholar] [CrossRef] [PubMed]
- Aziz, S.G.-G.; Fardyazar, Z.; Pashaiasl, M. The human amniotic fluid mesenchymal stem cells therapy on, SKOV3, ovarian cancer cell line. Mol. Genet. Genom. Med. 2019, 7, e00726. [Google Scholar]
- Osugi, M.; Katagiri, W.; Yoshimi, R.; Inukai, T.; Hibi, H.; Ueda, M. Conditioned media from mesenchymal stem cells enhanced bone regeneration in rat calvarial bone defects. Tissue Eng. Part A 2012, 18, 1479–1489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, P.; Kandoi, S.; Misra, R.; Vijayalakshmi, S.; Rajagopal, K.; Verma, R.S. The mesenchymal stem cell secretome: A new paradigm towards cell-free therapeutic mode in regenerative medicine. Cytokine Growth Factor Rev. 2019, 46, 1–9. [Google Scholar]
- Diomede, F.; Gugliandolo, A.; Scionti, D.; Merciaro, I.; Cavalcanti, M.F.; Mazzon, E.; Trubiani, O. Biotherapeutic effect of gingival stem cells conditioned medium in bone tissue restoration. Int. J. Mol. Sci. 2018, 19, 329. [Google Scholar] [CrossRef] [Green Version]
- Kay, A.G.; Long, G.; Tyler, G.; Stefan, A.; Broadfoot, S.J.; Piccinini, A.M.; Middleton, J.; Kehoe, O. Mesenchymal stem cell-conditioned medium reduces disease severity and immune responses in inflammatory arthritis. Sci. Rep. 2017, 7, 1–11. [Google Scholar]
- Simard, J.M.; Tsymbalyuk, O.; Ivanov, A.; Ivanova, S.; Bhatta, S.; Geng, Z.; Woo, S.K.; Gerzanich, V. Endothelial sulfonylurea receptor 1–regulated NC Ca-ATP channels mediate progressive hemorrhagic necrosis following spinal cord injury. J. Clin. Investig. 2007, 117, 2105–2113. [Google Scholar] [CrossRef] [Green Version]
- Cantinieaux, D.; Quertainmont, R.; Blacher, S.; Rossi, L.; Wanet, T.; Noël, A.; Brook, G.; Schoenen, J.; Franzen, R. Conditioned medium from bone marrow-derived mesenchymal stem cells improves recovery after spinal cord injury in rats: An original strategy to avoid cell transplantation. PLoS ONE 2013, 8, e69515. [Google Scholar] [CrossRef]
- Liu, Z.; Qiu, Y.-H.; Li, B.; Ma, S.-H.; Peng, Y.-P. Neuroprotection of interleukin-6 against NMDA-induced apoptosis and its signal-transduction mechanisms. Neurotox. Res. 2011, 19, 484–495. [Google Scholar] [CrossRef]
- Chen, C.; Zhong, X.; Smith, D.K.; Tai, W.; Yang, J.; Zou, Y.; Wang, L.-L.; Sun, J.; Qin, S.; Zhang, C.-L. Astrocyte-specific deletion of Sox2 promotes functional recovery after traumatic brain injury. Cereb. Cortex 2019, 29, 54–69. [Google Scholar] [CrossRef]
- Zhang, S.; Rasai, A.; Wang, Y.; Xu, J.; Bannerman, P.; Erol, D.; Tsegaye, D.; Wang, A.; Soulika, A.; Zhan, X.; et al. The stem cell factor sox2 is a positive timer of oligodendrocyte development in the postnatal murine spinal cord. Mol. Neurobiol. 2018, 55, 9001–9015. [Google Scholar] [CrossRef]
- Zhao, C.; Ma, D.; Zawadzka, M.; Fancy, S.P.; Elis-Williams, L.; Bouvier, G.; Stockley, J.H.; De Castro, G.M.; Wang, B.; Jacobs, S.; et al. Sox2 sustains recruitment of oligodendrocyte progenitor cells following CNS demyelination and primes them for differentiation during remyelination. J. Neurosci. 2015, 35, 11482–11499. [Google Scholar] [CrossRef] [Green Version]
- Obayashi, T.; Kagaya, Y.; Aoki, Y.; Tadaka, S.; Kinoshita, K. COXPRESdb v7: A gene coexpression database for 11 animal species supported by 23 coexpression platforms for technical evaluation and evolutionary inference. Nucleic Acids Res. 2019, 47, D55–D62. [Google Scholar] [CrossRef]
- Ebrahimie, M.; Esmaeili, F.; Cheraghi, S.; Houshmand, F.; Shabani, L.; Ebrahimie, E. Efficient and simple production of insulin-producing cells from embryonal carcinoma stem cells using mouse neonate pancreas extract, as a natural inducer. PLoS ONE 2014, 9, e90885. [Google Scholar] [CrossRef] [Green Version]
- Obayashi, T.; Kinoshita, K. Rank of correlation coefficient as a comparable measure for biological significance of gene coexpression. DNA Res. 2009, 16, 249–260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nikitin, A.; Egorov, S.; Daraselia, N.; Mazo, I. Pathway studio—The analysis and navigation of molecular networks. Bioinformatics 2003, 19, 2155–2157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karimipour, M.; Rahbarghazi, R.; Tayefi, H.; Shimia, M.; Ghanadian, M.; Mahmoudi, J.; Bagheri, H.S. Quercetin promotes learning and memory performance concomitantly with neural stem/progenitor cell proliferation and neurogenesis in the adult rat dentate gyrus. Int. J. Dev. Neurosci. 2019, 74, 18–26. [Google Scholar] [CrossRef] [PubMed]
- Nasrolahi, A.; Mahmoudi, J.; Karimipour, M.; Akbarzadeh, A.; Sadigh-Eteghad, S.; Salehi, R.; Farajdokht, F.; Farhoudi, M. Effect of cerebral dopamine neurotrophic factor on endogenous neural progenitor cell migration in a rat model of Parkinson’s disease. EXCLI J. 2019, 18, 139. [Google Scholar]
- Kanekiyo, K.; Wakabayashi, T.; Nakano, N.; Yamada, Y.; Tamachi, M.; Suzuki, Y.; Fukushima, M.; Saito, F.; Abe, S.; Tsukagoshi, C.; et al. Effects of intrathecal injection of the conditioned medium from bone marrow stromal cells on spinal cord injury in rats. J. Neurotrauma 2018, 35, 521–532. [Google Scholar] [CrossRef] [PubMed]
- Rusanescu, G. Adult spinal cord neurogenesis: A regulator of nociception. Neurogenesis 2016, 3, e1256853. [Google Scholar] [CrossRef] [Green Version]
- Führmann, T.; Anandakumaran, P.N.; Payne, S.L.; Pakulska, M.M.; Varga, B.V.; Nagy, A.; Tator, C.; Shoichet, M.S. Combined delivery of chondroitinase ABC and human induced pluripotent stem cell-derived neuroepithelial cells promote tissue repair in an animal model of spinal cord injury. Biomed. Mater. 2018, 13, 024103. [Google Scholar] [CrossRef] [PubMed]
- Kanekiyo, K.; Nakano, N.; Homma, T.; Yamada, Y.; Tamachi, M.; Suzuki, Y.; Fukushima, M.; Saito, F.; Ide, C. Effects of multiple injection of bone marrow mononuclear cells on spinal cord injury of rats. J. Neurotrauma 2017, 34, 3003–3011. [Google Scholar] [CrossRef] [PubMed]
- Nakano, N.; Nakai, Y.; Seo, T.-B.; Homma, T.; Yamada, Y.; Ohta, M.; Suzuki, Y.; Nakatani, T.; Fukushima, M.; Hayashibe, M.; et al. Effects of bone marrow stromal cell transplantation through CSF on the subacute and chronic spinal cord injury in rats. PLoS ONE 2013, 8, e73494. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gazdic, M.; Volarevic, V.; Harrell, C.R.; Fellabaum, C.; Jovicic, N.; Arsenijevic, N.; Stojkovic, M. Stem cells therapy for spinal cord injury. Int. J. Mol. Sci. 2018, 19, 1039. [Google Scholar] [CrossRef] [Green Version]
- Nakajima, H.; Uchida, K.; Guerrero, A.R.; Watanabe, S.; Sugita, D.; Takeura, N.; Yoshida, A.; Long, G.; Wright, K.T.; Johnson, W.E.B.; et al. Transplantation of mesenchymal stem cells promotes an alternative pathway of macrophage activation and functional recovery after spinal cord injury. J. Neurotrauma 2012, 29, 1614–1625. [Google Scholar] [CrossRef] [Green Version]
- Lu, P.; Kadoya, K.; Tuszynski, M.H. Axonal growth and connectivity from neural stem cell grafts in models of spinal cord injury. Curr. Opin. Neurobiol. 2014, 27, 103–109. [Google Scholar] [CrossRef]
- Hayakawa, K.; Uchida, S.; Ogata, T.; Tanaka, S.; Kataoka, K.; Itaka, K. Intrathecal injection of a therapeutic gene-containing polyplex to treat spinal cord injury. J. Control. Release 2015, 197, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Dahbour, S.; Jamali, F.; Alhattab, D.; Al-Radaideh, A.; Ababneh, O.; Al-Ryalat, N.; Al-Bdour, M.; Hourani, B.; Msallam, M.; Rasheed, M.; et al. Mesenchymal stem cells and conditioned media in the treatment of multiple sclerosis patients: Clinical, ophthalmological and radiological assessments of safety and efficacy. CNS Neurosci. Ther. 2017, 23, 866–874. [Google Scholar] [CrossRef]
- Feng, L.; Gan, H.; Zhao, W.; Liu, Y. Effect of transplantation of olfactory ensheathing cell conditioned medium induced bone marrow stromal cells on rats with spinal cord injury. Mol. Med. Rep. 2017, 16, 1661–1668. [Google Scholar] [CrossRef]
- Gu, M.; Gao, Z.; Li, X.; Guo, L.; Lu, T.; Li, Y.; He, X. Conditioned medium of olfactory ensheathing cells promotes the functional recovery and axonal regeneration after contusive spinal cord injury. Brain Res. 2017, 1654, 43–54. [Google Scholar] [CrossRef]
- Zhang, J.; Li, Y.; Chen, J.; Cui, Y.; Lu, M.; Elias, S.B.; Mitchell, J.B.; Hammill, L.; Vanguri, P.; Chopp, M. Human bone marrow stromal cell treatment improves neurological functional recovery in EAE mice. Exp. Neurol. 2005, 195, 16–26. [Google Scholar] [CrossRef]
- Ribeiro, T.B.; Duarte, A.S.; Longhini, A.L.F.; Pradella, F.; Farias, A.S.; Luzo, A.C.; Oliveira, A.L.; Saad, S.T.O. Neuroprotection and immunomodulation by xenografted human mesenchymal stem cells following spinal cord ventral root avulsion. Sci. Rep. 2015, 5, 16167. [Google Scholar] [CrossRef]
BDNF | IL-1β | IL-6 |
---|---|---|
24 ± 0/375 pg/mL | 12 ± 0/73 pg/mL | 10 ± 0/562 pg/mL |
Genes | Name | Meta-Analysis Based Correlation (%) | Number of Experiments Used for Identifying Correlation |
---|---|---|---|
PAK5 | p21 (RAC1) activated kinase 5° | 28.7% | 20 |
ELAVL4 | ELAV like RNA binding protein 4 | 43.7% | 20 |
CAPN6 | calpain 6 | 19.3% | 22 |
NRXN1 | neurexin 1° | 34.0% | 28 |
ST8SIA3 | °ST8 alpha-N-acetyl-neuraminide alpha-2,8-sialyltransferase 3 | 33.0% | 35 |
NOL4 | nucleolar protein 4 | 30.7% | 22 |
GRIA2 | glutamate ionotropic receptor AMPA type subunit 2 | 28.9% | 16 |
UNC80 | unc-80 homolog, NALCN channel complex subunit | 33.3% | 21 |
SRRM4 | serine/arginine repetitive matrix 4 | 32.6% | 31 |
SLC17A6 | solute carrier family 17 member 6° | 30.2% | 20 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lale Ataei, M.; Karimipour, M.; Shahabi, P.; Pashaei-Asl, R.; Ebrahimie, E.; Pashaiasl, M. The Restorative Effect of Human Amniotic Fluid Stem Cells on Spinal Cord Injury. Cells 2021, 10, 2565. https://doi.org/10.3390/cells10102565
Lale Ataei M, Karimipour M, Shahabi P, Pashaei-Asl R, Ebrahimie E, Pashaiasl M. The Restorative Effect of Human Amniotic Fluid Stem Cells on Spinal Cord Injury. Cells. 2021; 10(10):2565. https://doi.org/10.3390/cells10102565
Chicago/Turabian StyleLale Ataei, Maryam, Mohammad Karimipour, Parviz Shahabi, Roghiyeh Pashaei-Asl, Esmaeil Ebrahimie, and Maryam Pashaiasl. 2021. "The Restorative Effect of Human Amniotic Fluid Stem Cells on Spinal Cord Injury" Cells 10, no. 10: 2565. https://doi.org/10.3390/cells10102565
APA StyleLale Ataei, M., Karimipour, M., Shahabi, P., Pashaei-Asl, R., Ebrahimie, E., & Pashaiasl, M. (2021). The Restorative Effect of Human Amniotic Fluid Stem Cells on Spinal Cord Injury. Cells, 10(10), 2565. https://doi.org/10.3390/cells10102565