Symmetry Breaking as an Interdisciplinary Concept Unifying Cell and Developmental Biology
Funding
Conflicts of Interest
References
- Prigogine, I.; Nicolis, G. On symmetry-breaking instabilites in dissipative systems. J. Chem. Phys. 1967, 46, 3542. [Google Scholar] [CrossRef]
- Turing, A.M. The chemical basis of morphogenesis. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 1952, 237, 37–72. [Google Scholar] [CrossRef]
- Goryachev, A.B.; Mallo, M. Patterning and Morphogenesis From Cells to Organisms: Progress, Common Principles and New Challenges. Front. Cell Dev. Biol. 2020, 8, 602483. [Google Scholar] [CrossRef] [PubMed]
- Chiou, J.G.; Balasubramanian, M.K.; Lew, D.J. Cell Polarity in Yeast. Annu. Rev. Cell Dev. Biol. 2017, 33, 77–101. [Google Scholar] [CrossRef]
- Goryachev, A.B.; Leda, M. Autoactivation of small GTPases by the GEF-effector positive feedback modules. F1000Res 2019, 8. [Google Scholar] [CrossRef]
- Goryachev, A.B.; Leda, M. Many roads to symmetry breaking: Molecular mechanisms and theoretical models of yeast cell polarity. Mol. Biol. Cell 2017, 28, 370–380. [Google Scholar] [CrossRef]
- Moran, K.D.; Lew, D.J. How Diffusion Impacts Cortical Protein Distribution in Yeasts. Cells 2020, 9, 1113. [Google Scholar] [CrossRef]
- Lamas, I.; Weber, N.; Martin, S.G. Activation of Cdc42 GTPase upon CRY2-Induced Cortical Recruitment Is Antagonized by GAPs in Fission Yeast. Cells 2020, 9, 2089. [Google Scholar] [CrossRef]
- Khalili, B.; Lovelace, H.D.; Rutkowski, D.M.; Holz, D.; Vavylonis, D. Fission Yeast Polarization: Modeling Cdc42 Oscillations, Symmetry Breaking, and Zones of Activation and Inhibition. Cells 2020, 9, 1769. [Google Scholar] [CrossRef]
- Daalman, W.K.; Sweep, E.; Laan, L. The Path towards Predicting Evolution as Illustrated in Yeast Cell Polarity. Cells 2020, 9, 2534. [Google Scholar] [CrossRef]
- Loyer, N.; Januschke, J. Where does asymmetry come from? Illustrating principles of polarity and asymmetry establishment in Drosophila neuroblasts. Curr. Opin. Cell Biol. 2020, 62, 70–77. [Google Scholar] [CrossRef] [PubMed]
- Lang, C.F.; Munro, E. The PAR proteins: From molecular circuits to dynamic self-stabilizing cell polarity. Development 2017, 144, 3405–3416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goehring, N.W. PAR polarity: From complexity to design principles. Exp. Cell Res. 2014, 328, 258–266. [Google Scholar] [CrossRef] [PubMed]
- Hoege, C.; Hyman, A.A. Principles of PAR polarity in Caenorhabditis elegans embryos. Nat. Rev. Mol. Cell Biol. 2013, 14, 315–322. [Google Scholar] [CrossRef]
- Seirin-Lee, S.; Gaffney, E.A.; Dawes, A.T. CDC-42 Interactions with Par Proteins Are Critical for Proper Patterning in Polarization. Cells 2020, 9, 2036. [Google Scholar] [CrossRef]
- Van Haastert, P.J.M. Symmetry Breaking during Cell Movement in the Context of Excitability, Kinetic Fine-Tuning and Memory of Pseudopod Formation. Cells 2020, 9, 1809. [Google Scholar] [CrossRef]
- Cheng, Y.; Felix, B.; Othmer, H.G. The Roles of Signaling in Cytoskeletal Changes, Random Movement, Direction-Sensing and Polarization of Eukaryotic Cells. Cells 2020, 9, 1437. [Google Scholar] [CrossRef]
- Goehring, N.W.; Grill, S.W. Cell polarity: Mechanochemical patterning. Trends. Cell Biol. 2013, 23, 72–80. [Google Scholar] [CrossRef]
- Julicher, F.; Kruse, K.; Prost, J.; Joanny, J.F. Active behavior of the cytoskeleton. Phys. Rep. Rev. Sec. Phys. Lett. 2007, 449, 3–28. [Google Scholar] [CrossRef]
- Hyman, A.A.; Weber, C.A.; Jülicher, F. Liquid-liquid phase separation in biology. Annu. Rev. Cell Dev. Biol. 2014, 30, 39–58. [Google Scholar] [CrossRef] [Green Version]
- Shin, Y.; Brangwynne, C.P. Liquid phase condensation in cell physiology and disease. Science 2017, 357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vogel, S.K.; Wölfer, C.; Ramirez-Diaz, D.A.; Flassig, R.J.; Sundmacher, K.; Schwille, P. Symmetry Breaking and Emergence of Directional Flows in Minimal Actomyosin Cortices. Cells 2020, 9, 1432. [Google Scholar] [CrossRef] [PubMed]
- Bindl, J.; Molnar, E.S.; Ecke, M.; Prassler, J.; Müller-Taubenberger, A.; Gerisch, G. Unilateral Cleavage Furrows in Multinucleate Cells. Cells 2020, 9, 1493. [Google Scholar] [CrossRef] [PubMed]
- Lau, Y.; Oamen, H.P.; Caudron, F. Protein Phase Separation during Stress Adaptation and Cellular Memory. Cells 2020, 9, 1302. [Google Scholar] [CrossRef] [PubMed]
- Čapek, D.; Müller, P. Positional information and tissue scaling during development and regeneration. Development 2019, 146. [Google Scholar] [CrossRef] [PubMed]
- Green, J.B.; Sharpe, J. Positional information and reaction-diffusion: Two big ideas in developmental biology combine. Development 2015, 142, 1203–1211. [Google Scholar] [CrossRef] [Green Version]
- Müller, P.; Schier, A.F. Extracellular movement of signaling molecules. Dev. Cell 2011, 21, 145–158. [Google Scholar] [CrossRef] [Green Version]
- Marcon, L.; Sharpe, J. Turing patterns in development: What about the horse part? Curr. Opin. Genet. Dev. 2012, 22, 578–584. [Google Scholar] [CrossRef]
- Nanavati, B.N.; Yap, A.S.; Teo, J.L. Symmetry Breaking and Epithelial Cell Extrusion. Cells 2020, 9, 1416. [Google Scholar] [CrossRef]
- Bailleul, R.; Manceau, M.; Touboul, J. A “Numerical Evo-Devo” Synthesis for the Identification of Pattern-Forming Factors. Cells 2020, 9, 1840. [Google Scholar] [CrossRef]
- Naoz, M.; Gov, N.S. Cell-Substrate Patterns Driven by Curvature-Sensitive Actin Polymerization: Waves and Podosomes. Cells 2020, 9, 782. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wigbers, M.C.; Brauns, F.; Leung, C.Y.; Frey, E. Flow Induced Symmetry Breaking in a Conceptual Polarity Model. Cells 2020, 9, 1524. [Google Scholar] [CrossRef] [PubMed]
- Goryachev, A.B.; Leda, M. Compete or Coexist? Why the Same Mechanisms of Symmetry Breaking Can Yield Distinct Outcomes. Cells 2020, 9, 2011. [Google Scholar] [CrossRef] [PubMed]
- Cornwall Scoones, J.; Banerjee, D.S.; Banerjee, S. Size-Regulated Symmetry Breaking in Reaction-Diffusion Models of Developmental Transitions. Cells 2020, 9, 1646. [Google Scholar] [CrossRef] [PubMed]
- Beta, C.; Gov, N.S.; Yochelis, A. Why a Large-Scale Mode Can Be Essential for Understanding Intracellular Actin Waves. Cells 2020, 9, 1533. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Goryachev, A.B. Symmetry Breaking as an Interdisciplinary Concept Unifying Cell and Developmental Biology. Cells 2021, 10, 86. https://doi.org/10.3390/cells10010086
Goryachev AB. Symmetry Breaking as an Interdisciplinary Concept Unifying Cell and Developmental Biology. Cells. 2021; 10(1):86. https://doi.org/10.3390/cells10010086
Chicago/Turabian StyleGoryachev, Andrew B. 2021. "Symmetry Breaking as an Interdisciplinary Concept Unifying Cell and Developmental Biology" Cells 10, no. 1: 86. https://doi.org/10.3390/cells10010086
APA StyleGoryachev, A. B. (2021). Symmetry Breaking as an Interdisciplinary Concept Unifying Cell and Developmental Biology. Cells, 10(1), 86. https://doi.org/10.3390/cells10010086