Review: NIR Spectroscopy as a Suitable Tool for the Investigation of the Horticultural Field
Abstract
:1. Introduction
2. Collection of Literature Data
2.1. Direct and Indirect Properties
2.2. Process Control, Authenticity, and Classification Studies
2.3. Advantages and Limitations of Different NIR Technologies
2.4. Aquaphotomic Approach
3. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Slaughter, D.C.; Abbott, J.A. Analysis of fruits and vegetables. In Near-Infrared Spectroscopy in Agriculture, 1st ed.; Al-Amoodi, L., Roberts, C.A., Workman, J., Jr., Reeves, J.B., III, Eds.; ASA, CSSA, SSSA Publishers: Madison, WI, USA, 2004; pp. 378–398. [Google Scholar]
- Saranwong, S.; Kawano, S. Fruits and vegetables. In Near Infrared Spectroscopy in Food Science and Technology; Osaki, Y., McClure, W.F., Christy, A., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2007; pp. 219–245. [Google Scholar]
- Nicolai, B.M.; Beullens, K.; Bobelyn, E.; Saeys, W.; Theoron, K.I.; Lammertyn, J. Nondestructive measurement of fruit and vegetable quality by means of NIR spectroscopy: A review. Postharvest Biol. Technol. 2007, 46, 99–118. [Google Scholar] [CrossRef]
- Kawano, S. Past, present and future near infrared spectroscopy applications for fruit and vegetables. NIRNews 2016, 27, 7–9. [Google Scholar] [CrossRef]
- Malegori, C.; Gowen, A.; Marquez, E.; Pimentel, M.F.; Tonetto de Freitas, S.; Pasquini, C.; Casiraghi, E. Selection of NIR wavelengths from hyperspectral imaging data for quality evaluation of Acerola fruit. In Proceedings of the 17th International Conference on Near Infrared Spectroscopy, Foz do Iguassu, Brazil, 18–23 October 2015; pp. 65–69. [Google Scholar]
- Tamburini, E.; Mamolini, E.; De Bastiani, M.; Marchetti, M.G. Quantificazione di fusarium proliferatum in bulbilli di aglio interi. In Proceedings of the Atti del 7th Simposio Italiano di Spettroscopia NIR, Lodi, Italy, 12–14 October 2016; pp. 105–109. [Google Scholar]
- Wedding, B.B.; Wright, C.; Grauf, S.; White, R.D.; Tilseaand, B.; Gadek, P. Prediction of hass avocado maturity via FT-NIRS. In Proceedings of the 14th ICNIRS Conference, Bangkok, Thailand, 7–12 November 2009; pp. 261–264. [Google Scholar]
- Pu, Y.Y.; Sun, D.-W.; Riccioli, C.; Buccheri, M.; Grassi, M.; Cattaneo, T.M.P.; Gowen, A. Calibration Transfer from Micro NIR Spectrometer to Hyperspectral Imaging: A Case Study on Predicting Soluble Solids Content of Bananito Fruit (Musa acuminata). Food Anal. Methods 2018, 11, 1021–1033. [Google Scholar] [CrossRef]
- Chen, H.; Liu, Z.; Cai, K.; Xu, L.; Chen, A. Grid search parametric optimization for FT-NIR quantitative analysis of solid soluble content in strawberry samples. Vib. Spectrosc. 2018, 94, 7–15. [Google Scholar] [CrossRef]
- Kaur, H.; Künnemeyer, R.; McGlone, A. Comparison of hand-held near infrared spectrophotometers for fruit dry matter assessment. J. Near Infrared Spectrosc. 2017, 25, 267–277. [Google Scholar] [CrossRef]
- Gabioud, S.R.; Kamm, B.; Baumgartner, D.; Bozzi, A.N. Comparison of two Vis-NIR instruments based on reflectance or interactance mode for fruit quality measurements. In Proceedings of the 15th International Conference on Near Infrared Spectroscopy, Cape Town, South Africa, 13–20 May 2011; pp. 474–477. [Google Scholar]
- Tian, X.; Wang, Q.; Li, J.; Peng, F.; Huang, W. Non-destructive prediction of soluble solids content of pear based on fruit surface feature classification and multivariate regression analysis. Infrared Phys. Technol. 2018, 92, 336–344. [Google Scholar] [CrossRef]
- Kurata, Y.; Tshuchikawa, S. Time-of-flight near infrared spectroscopy for detecting sugar and acid contents in thick-peel fruit. In Proceedings of the 14th ICNIRS Conference, Bangkok, Thailand, 7–12 November 2009; pp. 209–212. [Google Scholar]
- Sirisomboon, P. NIR Spectroscopy for quality evaluation of fruits and vegetables. Spectrochimca Acta Part A Mol. Biomol. Spectrosc. 2018, 214, 366–371. [Google Scholar] [CrossRef]
- De Oliveira, G.A.; de Castilhos, F.; Renard, C.M.G.; Bureau, S. Comparison of NIR and MIR spectroscopic methods for determination of individual sugars, organic acids and carotenoids in passion fruit. Food Res. Int. 2014, 60, 154–162. [Google Scholar] [CrossRef]
- Torres Mariani, N.C.; de Almeida Teixeira, G.H.; de Lima, K.M.G.; Morgenstern, T.B.; Nardini, V.; Cunha Júnior, L.C. NIRS and iSPA-PLS for predicting total anthocyanin content in jaboticaba fruit. Food Chem. 2015, 174, 643–648. [Google Scholar] [CrossRef]
- Masithoh, R.E.; Saranwong, S.; Kawano, S. Nondestructive measurement of brix value and total acidity in satsuma mandarin by a hand-held near infrared instrument. In Proceedings of the 14th ICNIRS Conference, Bangkok, Thailand, 7–12 November 2009; pp. 241–244. [Google Scholar]
- Rungpichayapichet, P.; Mahayothee, B.; Naglea, M.; Müller, J. Application of near-infrared spectroscopy to determine the β-carotene content of mango. In Proceedings of the NIR 2013—Picking up Good Vibrations, 16th International Conference on Near Infrared Spectroscopy, La Grande-Motte, France, 2–7 June 2013; pp. 161–166. [Google Scholar]
- Theanjumpol, P.; Sardsud, V.; Self, G. Determination of characteristic absorption bands for carbohydrates and organic acids in mango purée. In Proceedings of the 14th ICNIRS Conference, Bangkok, Thailand, 7–12 November 2009; pp. 291–294. [Google Scholar]
- Felde, T.; Alamu, O.E.; Porras, E.; Maroya, N.; Maziya-Dixon, B. Screening for pro-vitamin A components in Cassava (Manihot esculenta) using NIR to support bio-fortification. In Proceedings of the NIR 2013—Picking up Good Vibrations, 16th International Conference on Near Infrared Spectroscopy, La Grande-Motte, France, 2–7 June 2013; pp. 182–186. [Google Scholar]
- Yan, H.; Lu, D.L.; Chen, B.; Hansen, W.G. Development of a hand-held near infrared system based on an android OS and MicroNIR, and its application in measuring soluble solids content in fuji apples. Nir News 2014, 25, 16–19. [Google Scholar] [CrossRef]
- Guan, X.; Liu, J.; Huang, K.; Kuang, J.; Liu, D. Evaluation of moisture content in processed apple chips using NIRS and wavelength selection techniques. Infrared Phys. Technol. 2019, 98, 305–310. [Google Scholar] [CrossRef]
- Qi, S.; Oshita, S.; Makino, Y.; Han, D. Influence of sampling component on determination of soluble solids content of fuji apple using near-infrared spectroscopy. Appl. Spectrosc. 2017, 71, 856–865. [Google Scholar] [CrossRef] [PubMed]
- Fan, S.; Li, J.; Xia, Y.; Tian, X.; Guo, Z.; Huang, W. Long-term evaluation of soluble solids content of apples with biological variability by using near-infrared spectroscopy and calibration transfer method. Postharvest Biol. Technol. 2019, 151, 79–87. [Google Scholar] [CrossRef]
- Zhang, Y.; Nock, Y.F.; Al Shoffe, Y.; Watkins, C.B. Non-destructive prediction of soluble solids and dry matter contents in eight apple cultivars using near-infrared spectroscopy. Postharvest Biol. Technol. 2019, 151, 111–118. [Google Scholar] [CrossRef]
- Luo, X.; Ye, Z.; Xu, H.; Zhang, D.; Bai, S.; Ying, Y. Robustness improvement of NIR-based determination of soluble solids in apple fruit by local calibration. Postharvest Biol. Technol. 2018, 139, 82–90. [Google Scholar] [CrossRef]
- Schmutzler, M.; Huck, C.W. Simultaneous detection of total antioxidant capacity and total soluble solids content by Fourier transform near-infrared (FT-NIR) spectroscopy: A quick and sensitive method for on-site analyses of apples. Food Control 2016, 66, 27–37. [Google Scholar] [CrossRef]
- Bai, W.; Yoshimura, N.; Takayanagi, M. Quantitative analysis of ingredients of blueberry fruits by near infrared spectroscopy. J. Near Infrared Spectrosc. 2014, 22, 357–365. [Google Scholar] [CrossRef]
- Kasemsumran, S.; Thanapase, W.; Punsuvon, V.; Ozaki, Y. A feasibility study on non-destructive determination of oil content in palm fruits by visible–Near infrared spectroscopy. J. Near Infrared Spectrosc. 2012, 20, 687–694. [Google Scholar] [CrossRef]
- Rongtong, B.; Suwonsichon, T.; Ritthiruangdej, P.; Kasemsumran, S. Determination of sulfur dioxide content in osmotically dehydrated papaya and its classification by near infrared spectroscopy. J. Near Infrared Spectrosc. 2018, 26, 359–368. [Google Scholar] [CrossRef]
- Zou, X.B.; Li, Y.X.; Zhao, J.W.; Mao, H.P.; Huang, X.Y.; Shi, J.Y.; Yin, X.P. Determination of soluble proteins and photosynthetic pigments of cherry tomato leaves using near-infrared spectroscopy. In Proceedings of the 14th ICNIRS Conference, Bangkok, Thailand, 7–12 November 2009; pp. 47–51. [Google Scholar]
- Liu, J.; Han, J.; Chen, X.; Shi, L.; Zhang, L. Nondestructive detection of rape leaf chlorophyll level based on Vis-NIR spectroscopy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2019, 35, 433–438. [Google Scholar] [CrossRef]
- Yoshida, M.; Soga, A.; Asada, S. Quality evaluation of ‘Shonan Gold’ by near infrared spectroscopy. In Proceedings of the 14th ICNIRS Conference, Bangkok, Thailand, 7–12 November 2009; pp. 281–284. [Google Scholar]
- Cagnasso, E.; Torchio, F.; Rolle, L.; Ferrari, G.; Campolongo, G.; Gerbi, V. Applicazione Della Spettrometria FT-NIR All’Analisi Della Maturità Fenolica e Tecnologica dell’uva. In Proceedings of the Atti IV Simposio Italiano di Spettroscopia NIR, Sestri Levante, Italy, 13–14 May 2010. [Google Scholar]
- Cozzolino, D.; Cynkar, W.U.; Dambergs, R.G.; Shah, N.; Mercurio, M.; Smith, P. Grape tannin measurement by near infrared spectroscopy. In Proceedings of the 14th ICNIRS Conference, Bangkok, Thailand, 7–12 November 2009; pp. 297–298. [Google Scholar]
- Cynkar, W.U.; Grayston, G.; Cozzolino, D.; Dambergs, R.G.; Shah, N.; Smith, P. Prediction of grape compositional parameters using a Fourier transform near infrared instrument. In Proceedings of the 14th ICNIRS Conference, Bangkok, Thailand, 7–12 November 2009; pp. 295–296. [Google Scholar]
- Piazzolla, F.; Amodio, M.L.; Colelli, G. Applicazione di tecniche non-distruttive sulla qualità di uva da tavola. In Proceedings of the Atti 5 Simposio Italiano di Spettroscopia NIR, Legnaro, Italy, 26–28 September 2012; p. 137. [Google Scholar]
- Martínez-Valdivieso, D.; Blanco-Díaz, M.T.; Gómeza, P.; Moreno-Rojasb, J.M.; Font, R.; Del Río-Celestino, M. Prediction by infrared reflectance spectroscopy of the lutein content in summer squash fruits. In Proceedings of the NIR 2013—Picking up Good Vibrations, 16th International Conference on Near Infrared Spectroscopy, La Grande-Motte, France, 2–7 June 2013; pp. 156–160. [Google Scholar]
- Blanco-Díaz, M.T.; Del Río-Celestino, M.; Martínez-Valdivieso, D.; Moreno, J.M.; Peña-Rodriguez, F.; Font, R. Use of near-infrared reflectance spectroscopy for predicting total phenolic content in zucchini fruits. In Proceedings of the NIR 2013—Picking up Good Vibrations, 16th International Conference on Near Infrared Spectroscopy, La Grande-Motte, France, 2–7 June 2013; pp. 142–144. [Google Scholar]
- Ngowsuwan, K.; Thanapatay, D.; Kasemsumran, S. Performance improvement of temperature compensation in near infrared analysis of orange sweetness by applying direct standardization. J. Near Infrared Spectrosc. 2018, 26, 369–378. [Google Scholar] [CrossRef]
- Malegori, C.; Nascimento, E.J.M.; de Freitas, S.T.; Pimentel, M.F.; Pasquini, C.; Casiraghi, E. Comparing the analytical performances of Micro-NIR and FT-NIR spectrometers in the evaluation of acerola fruit quality, using PLS and SVM regression algorithms. Talanta 2017, 165, 112–116. [Google Scholar] [CrossRef] [PubMed]
- Firtha, F.; Gillay, Z.; Vozáry, E.; Kasza, T.; Lambert-Meretei, A.; Felföldi, J. Multi-spectral assessment of ingredients and physical properties of apricot. In Proceedings of the 14th ICNIRS Conference, Bangkok, Thailand, 7–12 November 2009; pp. 245–250. [Google Scholar]
- Wang, T.; Chen, J.; Fan, Y.; Qiu, Z. SeeFruits: Design and evaluation of a cloud-based ultra-portable NIRS system for sweet cherry quality detection. Comput. Electron. Agric. 2018, 152, 302–313. [Google Scholar] [CrossRef]
- Tomer, N.; McGlone, A.; Künnemeyer, R. Validated multi-wavelength simulations of light transport in healthy onion. Comput. Electron. Agric. 2018, 146, 22–30. [Google Scholar] [CrossRef]
- Bertone, E.; Calderara, M.; Giraudo, A.; Venturello, A.; Geobaldo, F. Applicazione in campo di strumentazione portatile FT-NIR e UV-VIS per la determinazione del grado di maturazione di frutti climaterici. In Proceedings of the Atti del 6th Simposio Italiano di Spettroscopia NIR, Lodi, Italy, 28–30 May 2014; p. 63. [Google Scholar]
- Subedi, P.P.; Walsh, K.B.; Hopkins, D.W. Assessment of titratable acidity in fruit using short wave near infrared spectroscopy part B: Intact fruit studies. J. Near Infrared Spectrosc. 2012, 20, 449–457. [Google Scholar] [CrossRef]
- De Oliveira, A.G.; Bureau, S.; Geneviève, C.M.; Renard, C.; Pereira-Netto, A.B.; de Castilhos, F. Comparison of NIRS approach for prediction of internal quality traits in three fruit species. Food Chem. 2014, 143, 223–230. [Google Scholar] [CrossRef] [PubMed]
- Arendse, E.; Fawole, O.A.; Magwaza, L.S.; Nieuwoudt, H.; Opara, U.L. Fourier transform near infrared diffuse reflectance spectroscopy and two spectral acquisition modes for evaluation of external and internal quality of intact pomegranate fruit. Postharvest Biol. Technol. 2018, 138, 91–98. [Google Scholar] [CrossRef]
- Acharya, U.K.; Walsh, K.B.; Subedi, P.P. Robustness of partial least-squares models to change in sample temperature: II. Application to fruit attributes. J. Near Infrared Spectrosc. 2014, 22, 287–295. [Google Scholar] [CrossRef]
- Oliveira-Foladora, G.; Oliveira, B.M.; Andrade, E.F.; ClaireRenard, C.M.G.; Bureau, S.; de Castilhos, F. Quality traits prediction of the passion fruit pulp using NIR and MIR spectroscopy. LWT 2018, 95, 172–178. [Google Scholar] [CrossRef]
- Alamar, P.D.; Caramês, E.T.S.; Poppi, R.J.; Pallone, J.A.L. Quality evaluation of frozen guava and yellow passion fruit pulps by NIR spectroscopy and chemometrics. Food Res. Int. 2016, 85, 209–214. [Google Scholar] [CrossRef]
- McGlone, V.A.; Seelye, R.; Popowski, E.; Lowe, R.; Gea, L. Kiwifruit maturity screening by NIR; dealing with genotype variation. In Proceedings of the 14th ICNIRS Conference, Bangkok, Thailand, 7–12 November 2009; pp. 251–254. [Google Scholar]
- Terdwongworakul, A.; Laosubchareon, P.; Kasemsumranban, S.; Thanapase, W. Use of peel spectral information to improve titratable acidity prediction in intact tangerine by near infrared spectroscopy in long wavelength region. In Proceedings of the 14th ICNIRS Conference, Bangkok, Thailand, 7–12 November 2009; pp. 229–235. [Google Scholar]
- Neto, J.S.; Cunha Júnior, L.; Teixeira, G. Determination of ‘Palmer’ mango maturity indexes by NIR spectroscopy. Postharvest Biol. Technol. 2017, 130, 75–80. [Google Scholar] [CrossRef]
- Dos Santos Neto, J.P.; de Assis, M.W.D.; Parkutz Casagrande, I.; Cunha Júnior, L.C.; de Almeida Teixeira, G.H. Determination of ‘Palmer’ mango maturity indices using portable near infrared (VIS-NIR) spectrometer. Postharvest Biol. Technol. 2017, 130, 75–80. [Google Scholar] [CrossRef]
- Nordey, T.; Joas, J.; Davrieux, F.; Chillet, M.; Léchaudel, M. Robust NIRS models for non-destructive prediction of mango internal quality. Sci. Hortic. 2017, 216, 51–57. [Google Scholar] [CrossRef]
- Rungpichayapichet, P.; Mahayothee, B.; Nagle, M.; Khuwijitjaru, P.; Müller, J. Robust NIRS models for non-destructive prediction of postharvest fruit ripeness and quality in mango. Postharvest Biol. Technol. 2016, 111, 31–40. [Google Scholar] [CrossRef]
- Kumar, S.; McGlone, A.; Whitworth, C.; Volz, R. Postharvest performance of apple phenotypes predicted by near-infrared (NIR) spectral analysis. Postharvest Biol. Technol. 2015, 100, 16–22. [Google Scholar] [CrossRef]
- Abasi, S.; Minaei, S.; Jamshidi, B.; Fathi, D.; Khoshtaghaza, M.H. Rapid measurement of apple quality parameters using wavelet de-noising transform with Vis/NIR analysis. Sci. Hortic. 2019, 252, 7–13. [Google Scholar] [CrossRef]
- Maestresalas, A.L.; Keresztes, J.C.; Arazuri, S.; Jarén, C.; Saeys, W. Recent applications of near infrared hyperspectral imaging for quality inspection in the potato sector. Nir News 2016, 27, 11–14. [Google Scholar] [CrossRef]
- Sánchez, M.T.; Torres, I.; De la Haba, M.J.; Garrido-Varo, A.; Pérez-Marín, D. Evaluation of NIRS for the prediction of physical and sensorial quality parameters in intact RAF tomato. In Proceedings of the 18th International Conference on Near Infrared spectroscopy—NIR Spectroscopy at work in Industry (Program Book), Copenhagen, Denmark, 11–15 June 2017; p. 41. [Google Scholar]
- Sánchez, M.T.; Entrenas, J.A.; Torres, I.; Vega, M.; Pérez-Marín, D. Monitoring texture and other quality parameters in spinach plants using NIR spectroscopy. Comput. Electron. Agric. 2018, 155, 446–452. [Google Scholar] [CrossRef]
- Civelli, R.; Beghi, R.; Giovenzana, V.; Buratti, S.; Guidetti, R. Analisi della freschezza di valerianella locusta laterr. di IV gamma mediante spettroscopia VIS/NIR. In Proceedings of the Atti del 6th Simposio Italiano di Spettroscopia NIR, Lodi, Italy, 28–30 May 2014; pp. 152–157. [Google Scholar]
- Malegori, C.; Marques, E.J.N.; Pimentel, M.F.; Tonetto de Freitas, S.; de França Souza, F.; Pasquini, C.; Casiraghi, E. Utilizzo del micro-NIR per la valutazione della maturazione dell’acerola. In Proceedings of the Atti del 7th Simposio Italiano di Spettroscopia NIR, Lodi, Italy, 12–14 October 2016; p. 64. [Google Scholar]
- Tamburini, E.; Ferrari, G.; Pedrini, P.; Donegà, V.; Malavasi, M.; Marchetti, M.G. Non-destructive quantification of carotenoids in intact watermelon (Citrullus lanatus) using on-line near infrared spectroscopy. In Proceedings of the 17th International Conference on Near Infrared Spectroscopy, Foz do Iguassu, Brazil, 18–23 October 2015; pp. 32–36. [Google Scholar]
- Tamburini, E.; Ferrari, G.; Pedrini, P.; Donegà, V.; Malavasi, M.; Marchetti, M.G. Quantificazione non distruttiva del contenuto di carotenoidi in cocomeri interi (Citrullus lanatus) attraverso la tecnica NIR-on line 110. In Proceedings of the Atti del 7th Simposio Italiano di Spettroscopia NIR, Lodi, Italy, 12–14 October 2016; pp. 110–114. [Google Scholar]
- Ncama, K.; Magwaza, L.S.; Echeverrı´, C.A.P.; Nieuwoud, H.H.; Tesfay, S.Z.; Mditshwa, A. On-tree indexing of ‘Hass’ avocado fruit by non-destructive assessment of pulp dry matter and oil content. Biosyst. Eng. 2018, 174, 41–49. [Google Scholar] [CrossRef]
- Pu, Y.Y.; Cattaneo, T.M.P.; Buccheri, M.; Grassi, M.; Gowen, A. Modelli previsionali per la valutazione dello stadio di maturazione di bananito mediante hyperspectral imaging. In Proceedings of the Atti del 7th Simposio Italiano di Spettroscopia NIR, Lodi, Italy, 12–14 October 2016; p. 145. [Google Scholar]
- Bureau, S.; Bertrand, D.; Jaillais, B.; Reling, P.; Gouble, B.; Renard, C.M.G.C.; Dekdouk, B.; Marsh, L.A.; O’Toole, M.D.; Armitage, D.W.; et al. Fruitgrading: Development of a fruit sorting technology based on internal quality parameters. In Proceedings of the NIR 2013—Picking up Good Vibrations, 16th International Conference on Near Infrared Spectroscopy, La Grande-Motte, France, 2–7 June 2013; pp. 145–148. [Google Scholar]
- Nordey, T.; Davrieux, F.; Léchaudel, M. Predictions of fruit shelf life and quality after ripening: Are quality traits measured at harvest reliable indicators? Postharvest Biol. Technol. 2019, 153, 52–60. [Google Scholar] [CrossRef]
- Acharya, U.K.; Walsh, K.B.; Hayes, C.; Subedi, P.P. Spectrophotometer ageing and prediction of fruit attributes. J. Near Infrared Spectrosc. 2016, 24, 337–344. [Google Scholar] [CrossRef]
- Walsh, K.B.; Subedi, P.P. Starch and sugar—The assessment of maturation and ripening of fruit by shortwave near infrared spectroscopy. In Proceedings of the 14th ICNIRS Conference, Bangkok, Thailand, 7–12 November 2009; pp. 225–228. [Google Scholar]
- Mcglone, A.; Wohlers, M. The introduction of commercial NIR fruit grading in the New Zealand kiwifruit industry: Performance analysis. In Proceedings of the 18th International Conference on Near Infrared spectroscopy—NIR Spectroscopy at work in Industry (Program Book) Bella Center, Copenhagen, Denmark, 11–15 June 2017; p. 38. [Google Scholar]
- De la Haba, M.J.; Garrido-Varo, A.; Sanchez, M.T.; Guerrero Ginel, J.E.; Pérez-Marin, D. On-tree monitoring of quality evolution in citrus by using a mems-based NIR spectro-photometer. In Proceedings of the NIR 2013—Picking up Good Vibrations, 16th International Conference on Near Infrared Spectroscopy, La Grande-Motte, France, 2–7 June 2013; pp. 149–152. [Google Scholar]
- Cheng, W.; Sørensen, K.M.; Mongi, R.J.; Ndabikunze, B.K.; Chove, B.E.; Sun, D.W.; Engelsen, S.B. A comparative study of mango solar drying methods by visible and near-infrared spectroscopy coupled with ANOVA-simultaneous component analysis (ASCA). LWT 2019, 112, 108214. [Google Scholar] [CrossRef]
- Nagle, M.; Mahayothee, B.; Rungpichayapichet, P.; Janjai, S.; Müller, J. Effect of irrigation on near-infrared (NIR) based prediction of mango maturity. Sci. Hortic. 2010, 125, 771–774. [Google Scholar] [CrossRef]
- Rungpichayapichet, P.; Mahayothee, B. Influence of harvesting period on mango quality as determined by near infrared spectroscopy. In Proceedings of the 14th ICNIRS Conference, Bangkok, Thailand, 7–12 November 2009; pp. 277–279. [Google Scholar]
- Pornprasit, R.; Theanjumpol, P.; Pattana, S.; Klongpanichban, W.; Natwichai, J. Prototype of automatic line sorting of mango. In Proceedings of the 14th ICNIRS Conference, Bangkok, Thailand, 7–16 November 2009; pp. 285–289. [Google Scholar]
- Vanoli, M.; Rizzolo, A.; Grassi, M.; Meirelles de Azevedo Pimentel, R.; Eccher Zerbini, P.; Spinelli, L.; Torricelli, A. Valutazione non distruttiva dell’età biologica di mango brasiliani mediante spettroscopia VIS/NIR risolta nel tempo. In Proceedings of the Atti 5 Simposio Italiano di Spettroscopia NIR, Legnaro, Italy, 26–28 September 2012; pp. 113–118. [Google Scholar]
- Sinelli, N.; Giovanelli, G.; Fongaro, L.; Beghi, R.; Casiraghi, E. Applicazione della spettroscopia NIR per ottimizzare la gestione delle mele in post-raccolta. In Proceedings of the Atti IV Simposio Italiano di Spettroscopia NIR, Sestri Levante, Italy, 13–14 May 2010; pp. 241–242. [Google Scholar]
- Li, J.; Luo, W.; Wang, Z.; Fan, S. Early detection of decay on apples using hyperspectral reflectance imaging combining both principal component analysis and improved watershed segmentation method. Postharvest Biol. Technol. 2019, 149, 235–246. [Google Scholar] [CrossRef]
- Schmilovitch, Z.; Ignat, T.; Nyasordzi, J.; Ostrovsky, V.; Egozia, H.; Hoffman, A.; Friedman, H.; Wekslerb, A.; Rotb, I.; Lurie, S. Forecast of apple internal quality indices during storage by spectroscopy. In Proceedings of NIR 2013—Picking Up Good Vibrations; Bellon-Maurel, V., Williams, P., Downey, G., Eds.; IRSTEA: Montpellier, France, 2013; pp. 171–176. [Google Scholar]
- Sanchez, M.T.; Garrido-Varo, A.; De la Haba, M.J.; Fernandez-Novales, J.; Guerrero-Ginel, J.E.; Perez-Marin, D. In situ monitoring of fruit ripening during posthaverst storage using a miniature handheld NIR sensor. In Proceedings of the NIR 2013—Picking up Good Vibrations, 16th International Conference on Near Infrared Spectroscopy, La Grande-Motte, France, 2–7 June 2013; pp. 167–170. [Google Scholar]
- McCormick, R.; Biegert, K. Monitoring the growth and maturation of apple fruit on the tree with handheld Vis/NIR devices. Nir News 2018, 30, 12–15. [Google Scholar] [CrossRef]
- Buccheri, M.; Grassi, M.; Lovati, F.; Petriccione, M.; Rega, P.; Lo Scalzo, R.; Cattaneo, T.M.P. Near infrared spectroscopy in the supply chain monitoring of Annurca apple. J. Near Infrared Spectrosc. 2018, 27, 86–92. [Google Scholar] [CrossRef]
- Giovanelli, G.; Sinelli, N.; Beghi, R.; Guidetti, R.; Casiraghi, E. NIR spectroscopy for the optimization of postharvest apple management. Postharvest Biol. Technol. 2014, 87, 13–20. [Google Scholar] [CrossRef]
- Buccheri, M.; Grassi, M.; Lovati, F.; Petriccione, M.; Rega, P.; Lo Scalzo, R.; Cattaneo, T.M.P. NIR spectroscopy in the supply chain monitoring of Annurca apple (IGP). In Proceedings of the Atti del 8th Simposio Italiano di Spettroscopia NIR, Lodi, Italy, 30–31 May 2018; p. 84. [Google Scholar]
- Khatiwada, B.; Subedi, P.; Hayes, C.; Walsh, K.; Loeffen, M. Sorting for internal flesh browning in apple using visible-shortwave near infrared spectroscopy. In Proceedings of the 17th International Conference on Near Infrared Spectroscopy, Foz do Iguassu, Brazil, 18–23 October 2015; pp. 61–64. [Google Scholar]
- Buccheri, M.; Grassi, M.; Lovati, F.; Pietriccione, M.; Rega, P.; Lo Scalzo, R.; Cattaneo, T.M.P. The Aquaphotomics approach to discriminate apples stored in air or in controlled atmosphere. In Proceedings of the Atti del 8th Simposio Italiano di Spettroscopia NIR, Genova, Italy, 30–31 May 2018; p. 86. [Google Scholar]
- Eisenstecken, D.; Stürz, B.; Robatscher, P.; Lozano, L.; Zanella, A.; Oberhuber, M. The potential of near infrared spectroscopy (NIRS) to trace apple origin: Study on different cultivars and orchard elevations. Postharvest Biol. Technol. 2019, 147, 123–131. [Google Scholar] [CrossRef]
- Barzaghi, S.; Cremonesi, K. Use of near infrared spectroscopy to discriminate pink lady® and golden delicious apples after different storage protocols. In Proceedings of the NIR 2013—Picking up Good Vibrations, 16th International Conference on Near Infrared Spectroscopy, La Grande-Motte, France, 2–7 June 2013; pp. 772–777. [Google Scholar]
- Barzaghi, S.; Cremonesi, K.; Pani, P. Utilizzo della spettroscopia NIR per lo studio del processo di essiccamento di mele osmodisidratate. In Proceedings of the Atti IV Simposio Italiano di Spettroscopia NIR, Sestri Levante, Italy, 13–14 May 2010; pp. 200–205. [Google Scholar]
- Carvalho, L.C.; Leite, M.L.; Morais, C.L.M.; Lima, K.M.G.; Teixeira, G.H.A. Non-destructive assessment of the oxidative stability of intact macadamia nuts during the drying process by near-infrared spectroscopy. LWT 2019, 103, 101–107. [Google Scholar] [CrossRef]
- Casiraghi, E.; Grassi, S.; Giovenzana, V.; Guidetti, R.; Alamprese, C. Application of FT-NIR spectroscopy to assess the ripening stage of olives. In Proceedings of the Atti del 8th Simposio Italiano di Spettroscopia NIR, Genova, Italy, 30–31 May 2018; p. 80. [Google Scholar]
- Allouche, Y.; López, E.F.; Maza, G.B.; Márquez, A.J. Near infrared spectroscopy and artificial neural network to characterise olive fruit and oil online for process optimisation. J. Near Infrared Spectrosc. 2015, 23, 111–121. [Google Scholar] [CrossRef]
- Stella, E.; Moscetti, R.; Haff, R.P.; Monarca, D.; Cecchini, M.; Contini, M.; Massantini, R. Review: Recent advances in the use of non-destructive near infrared spectroscopy for intact olive fruits. J. Near Infrared Spectrosc. 2015, 23, 197–208. [Google Scholar] [CrossRef]
- Cattaneo, T.M.P.; Grassi, M.; Vanoli, M.; Barzaghi, S.; Rizzolo, A. Strumentazione NIR portatile nella valutazione della shelf life di prodotti caseari, ortofrutticoli e di norcineria. In Proceedings of the Atti del 6th Simposio Italiano di Spettroscopia NIR, Modena, Italy, 28–30 May 2014; pp. 118–123. [Google Scholar]
- Giovenzana, V.; Tugnolo, A.; Guidetti, R.; Beghi, R. Potential effectiveness of visible and near infrared spectroscopy coupled with wavelengths selection for real time control of the fresh fruit and vegetable quality in large-scale mass distribution channel: The case study of tomatoes. In Proceedings of the Atti del 8th Simposio Italiano di Spettroscopia NIR, Genova, Italy, 30–31 May 2018; p. 88. [Google Scholar]
- Chaudhry Muhammad, M.A.; Amodio, M.L.; Babellahi, F.; Amigo Rubio, J.M.; Colelli, G. Uso di immagini iperspettrali e tecniche multivariate per la predizione della shelf-life di foglie di rucola minimamente processate. In Proceedings of the Atti del 8th Simposio Italiano di Spettroscopia NIR, Genova, Italy, 30–31 May 2018; p. 21. [Google Scholar]
- Pérez-Marín, D.; Torres, I.; Entrenas, J.A.; Vega, M.; Sánchez, M.T. Pre-harvest screening on-vine of spinach quality and safety using NIRS technology. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2019, 207, 242–250. [Google Scholar] [CrossRef] [PubMed]
- Phetpan, K.; Udompetaikul, V.; Sirisomboon, P. In-line near infrared spectroscopy for the prediction of moisture content in the tapioca starch drying process. Powder Technol. 2019, 345, 608–615. [Google Scholar] [CrossRef]
- Xiaoa, H.; Lia, A.; Lia, M.; Suna, Y.; Tua, K.; Wangb, S.; Pana, L. Quality assessment and discrimination of intact white and red grapes from Vitis vinifera L. at five ripening stages by visible and near-infrared spectroscopy. Sci. Hortic. 2018, 233, 99–107. [Google Scholar] [CrossRef]
- Beghi, R.; Giovenzana, V.; Civelli, R.; Oberti, R.; Guidetti, R. Sperimentazione di un sistema ottico semplificato per la valutazione rapida della maturazione di uva bianca da vino 57. In Proceedings of the Atti del 7th Simposio Italiano di Spettroscopia NIR, Milano, Italy, 12–14 October 2016; pp. 57–62. [Google Scholar]
- Malegori, C.; Grassi, S.; Marquez, E.; Tonetto de Freitas, S.; Casiraghi, E. Mappatura della vitamina c in immagini hs-NIR di acerola mediante CLS. In Proceedings of the Atti del 7th Simposio Italiano di Spettroscopia NIR, Milano, Italy, 12–14 October 2016; p. 71. [Google Scholar]
- Kang, Y.S.; Ryu, C.S.; Jun, S.R.; Jang, S.H.; Park, J.W.; Song, H.Y.; Sarkar, T.K.; Kim, S.H.; Lee, W.S. Distinguishing between closely related species of allium and of brassicaceae by narrowband hyperspectral imagery. Biosyst. Eng. 2018, 176, 103–113. [Google Scholar] [CrossRef]
- Windham, W.; Poole, G.; Park, B.; Heitschmidt, G.; Gottwald, T.; Lawrence, K.C. Near-infrared spectroscopy for discrimination of huanglongbing-infected citrus leaves from uninfected leaves. In Proceedings of the 14th ICNIRS Conference, Bangkok, Thailand, 7–12 November 2009; pp. 235–239. [Google Scholar]
- Richter, B.; Rurik, M.; Gurk, S.; Kohlbacher, O.; Fischer, M. Food monitoring: Screening of the geographical origin of white asparagus using FT-NIR and machine learning. Food Control 2019, 104, 318–325. [Google Scholar] [CrossRef]
- Wedding, B.; Wright, C.; Grauf, S.; White, R.; Gadek, P. Impact assessment and prediction of rot susceptibility of Hass avocado fruit using FT-NIRspectroscopy142. In Proceedings of the 15th International Conference on Near Infrared Spectroscopy, Cape Town, South Africa, 13–20 May 2011; pp. 398–401. [Google Scholar]
- Amodio, M.L.; Berardi, A.; Ricci, I.; Colelli, G. Utilizzo di imaging iperspettrale per la discriminazione varietale e di raccolto di carciofi. In Proceedings of the Atti del 7th Simposio Italiano di Spettroscopia NIR, Milano, Italy, 12–14 October 2016; p. 143. [Google Scholar]
- Giovenzana, V.; Beghi, R.; Civelli, R.; Guidetti, R. Application of near infrared spectroscopy and development of simplified optical devices for the fresh-cut fruit and vegetable sector. Nir News 2016, 27, 4–6. [Google Scholar] [CrossRef]
- Müller, C.; Leontin, D.; Cintu Pînzaru, S. Detection of Thiabendazole Applied to Organic Fruit by Near Infrared Surface-Enhanced Raman. Available online: www.spectroscopyspectroscopyeurope.com (accessed on 1 August 2013).
- Wu, Q.; Xie, L.; Xu, X. Determination of toxigenic fungi and aflatoxins in nuts and dried fruits using imaging and spectroscopic techniques. Food Chem. 2018, 252, 228–242. [Google Scholar] [CrossRef] [PubMed]
- Nturambirwe, J.F.I.; Nieuwoudt, H.H.; Perold, W.J.; Opara, U.L. Non-destructive measurement of internal quality of apple fruit by a contactless NIR spectrometer with genetic algorithm model optimization. Sci. Afr. 2019, 3, e00051. [Google Scholar] [CrossRef]
- Walsh, K. Classification of citrus fruit with ensemble techniques. In Proceedings of the 18th International Conference on Near Infrared spectroscopy—NIR Spectroscopy at work in Industry (Program Book), Copenhagen, Denmark, 11–15 June 2017; University of Copenaghen: Copenaghen, Denmark, 2017. OP38. p. 27. [Google Scholar]
- Keeffe, E. Classification of citrus fruit with ensemble techniques. In Proceedings of the 18th International Conference on Near Infrared spectroscopy – NIR Spectroscopy at Work in Industry (Program Book), Copenhagen, Denmark, 11–15 June 2017; University of Copenaghen: Copenaghen, Denmark, 2017. OP42. p. 27. [Google Scholar]
- Shawky, E.; Selim, D.A. NIR spectroscopy-multivariate analysis for discrimination and bioactive compounds prediction of different Citrus species peels. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2019, 219, 1–7. [Google Scholar] [CrossRef]
- Lorente, D.; Escandell-Montero, P.; Cubero, S.; Gómez-Sanchis, J.; Blasco, J. Visible–NIR reflectance spectroscopy and manifold learning methods applied to the detection of fungal infections on citrus fruit. J. Food Eng. 2015, 163, 17–24. [Google Scholar] [CrossRef]
- Blasco, J.; Lorente, D.; Cortes, V.; Talens, P.; Cubero, S.; Munera, S.; Aleixos, N. Application of near infrared spectroscopy to the quality control of citrus fruits and mango. Nir News 2016, 27, 4–7. [Google Scholar] [CrossRef]
- Thanapase, W.; Suttiwijitpukdee, N.; Kaewcheenchai, R.; Kasemsumran, S.; Saranwong, S.; Kawano, S. Feasibility study for non-invasive detection of fruit fly eggs and larvae in intact mangoes using a hand-held near infared instrument. In Proceedings of the 14th ICNIRS Conference, Bangkok, Thailand, 7–12 November 2009; pp. 299–303. [Google Scholar]
- Kikuchi, K.; Nakamura, T.; Taira, E. Relationships of flavour and quality of the Keitt mango. In Proceedings of the 14th ICNIRS Conference, Bangkok, Thailand, 7–12 November 2009; pp. 265–269. [Google Scholar]
- Teerachaichayut, S.; Thanapase, W.; Kasemsumran, S.; Shigefuji, K.; Kiji, K.; Nitta, Y.; Saranwong, S.; Kawano, S. The methods of illumination and scanning for detecting internal disorders and quality of mango steen by near infrared spectroscopy. In Proceedings of the 14th ICNIRS Conference, Bangkok, Thailand, 7–12 November 2009; pp. 219–223. [Google Scholar]
- Amodio, M.L.; Tsouvaltzis, P.; Babellahi, F.; Colelli, G. Rilevamento precoce di danni da freddo durante la conservazione di frutti di melanzana. In Proceedings of the Atti del 8th Simposio Italiano di Spettroscopia NIR, Genova, Italy, 30–31 May 2018; p. 25. [Google Scholar]
- Subedi, P.P.; Khatiwada, B.P.; Walshaand, K.B.; Plagnol, P. A bad apple in the barrel? –Apple internal defect detection using NIR transmittance spectroscopy. In Proceedings of the NIR 2013—Picking up Good Vibrations, 16th International Conference on Near Infrared Spectroscopy, La Grande-Motte, France, 2–7 June 2013; pp. 153–155. [Google Scholar]
- Zhou, W.; Zhang, J. Algorithms research of near infrared spectral database of apples. J. Near Infrared Spectrosc. 2015, 23, 343–352. [Google Scholar] [CrossRef]
- Schmutzler, M.; Huck, C.W. Automatic sample rotation for simultaneous determination of geographical origin and quality characteristics of apples based on near infrared spectroscopy (NIRS). Vib. Spectrosc. 2014, 72, 97–104. [Google Scholar] [CrossRef]
- Nouri, M.; Gorretta, N.; Roger, J.M.; Vaysse, P. Early detection of the fungal disease “apple scab” using hyperspectral imaging. Data Brief 2018, 16, 967–971. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; McGlone, A.; Künnemeyer, R.; Tomer, N. NIR transmission and multi-laser systems for detecting vascular browning in apples. In Proceedings of the 18th International Conference on Near Infrared spectroscopy–NIR Spectroscopy at work in Industry (Program Book), Copenhagen, Denmark, 11–15 June 2017; p. 41. [Google Scholar]
- Jannok, P.; Kamitani, Y.; Kawano, S. Development of a common calibration model for determining the brix value of intact apple, pear and persimmon fruits by near infrared spectroscopy. J. Near Infrared Spectroscopy. 2014, 22, 367–373. [Google Scholar] [CrossRef]
- Che, W.; Sun, L.; Zhang, Q.; Tan, W.; Ye, D.; Zhang, D.; Liu, Y. Pixel based bruise region extraction of apple using VIS-NIR hyperspectral imaging. Comput. Electron. Agric. 2018, 146, 12–21. [Google Scholar] [CrossRef]
- Bobelyn, E.; Serban, A.S.; Nicu, M.; Lammertyn, J.; Nicolai, B.M.; Saeys, W. Postharvest quality of apple predicted by NIR-spectroscopy: Study of the effect of biological variability on spectra and model performance. Postharvest Biol. Technol. 2010, 55, 133–143. [Google Scholar] [CrossRef]
- Grandón, S.; Sanchez-Contreras, J.; Torres, C.A. Prediction models for sunscald on apples (Malus domestica Borkh.) cv. Granny Smith using Vis-NIR reflectance. Postharvest Biol. Technol. 2019, 151, 36–44. [Google Scholar]
- Bertone, E.; Venturello, A.; Leardi, R.; Geobaldo, F. Prediction of the optimum harvest time of ‘Scarlet’ apples using DR-UV–Vis and NIR spectroscopy. Postharvest Biol. Technol. 2012, 69, 15–23. [Google Scholar] [CrossRef]
- Shuaibua, M.; Suk Leea, W.; Schuellerb, J.; Gaderc, P.; Hongd, Y.K.; Kimd, S. Unsupervised hyperspectral band selection for apple Marssonina blotch detection. Comput. Electron. Agric. 2018, 148, 45–53. [Google Scholar] [CrossRef]
- Sinnaeve, G.; Pissard, A.; Pierna, J.A.F.; Lognay, G.; Rondia, A.; Dupont, P.; Donis, T.; Baeten, V.; Mouteau, A.; Romnée, J.M.; et al. Use of near infrared spectroscopy for the determination of internal quality of entire apples. In Proceedings of the 14th ICNIRS Conference, Bangkok, Thailand, 7–12 November 2009; pp. 255–259. [Google Scholar]
- Peshlov, B.N.; Dowell, F.E.; Drummond, F.A.; Donahue, D.W. Comparison of three near infrared spectrophotometers for infestation detection in wild blueberries using multivariate calibration models. J. Near Infrared Spectrosc. 2009, 17, 203–212. [Google Scholar] [CrossRef]
- Oliveri, P.; López, M.I.; Casolino, M.C.; Bagnasco, L.; Lanteri, S.; Medini, L. Caratterizzazione di olive taggiasche in salamoia mediante un metodo di modellamento di classe basato su PLS. In Proceedings of the Atti del 6th Simposio Italiano di Spettroscopia NIR, Modena, Italy, 28–30 May 2014; pp. 178–183. [Google Scholar]
- Moscetti, R.; Haff, R.P.; Stella, E.; Contini, M.; Monarca, D.; Cecchini, M.; Massantini, R. Feasibility of NIR spectroscopy to detect olive fruit infested by Bactrocera oleae. Postharvest Biol. Technol. 2015, 99, 58–62. [Google Scholar] [CrossRef]
- Pérez-Marin, D.; Adame-Siles, J.A.; Müller, F.S.; Molina, F.M.; Varo, A.G. Fine-tuning and cloning of a fiber-optic probe for in situ monitoring and evaluation of quality of olive oil products. In Proceedings of the 18th International Conference on Near Infrared spectroscopy, Copenhagen, Denmark, 11–15 June 2017; pp. 115–122. [Google Scholar]
- Bagnasco, L.; Casolino, M.C.; Casale, M.; Lanteri, S.; Cosulich, M.E.; Pistarino, E.; De Costa, N.; Medini, L. Modellamento di classe per la discriminazione delle olive da tavola di cultivar Taggiasca mediante la spettroscopia nel vicino infrarosso. In Proceedings of the Atti IV Simposio Italiano di Spettroscopia NIR, Sestri Levante, Italy, 13–14 May 2010; pp. 140–145. [Google Scholar]
- Oliveri, P.; Casolino, M.C.; Casale, M.; Lanteri, S.; Medini, L.; Mare, F. Una procedura di trasferimento spettrale per l’applicazione di un unico modello di classe a spettri acquisiti con strumenti diversi per l’autenticazione di olive in salamoia. In Proceedings of the Atti 5 Simposio Italiano di Spettroscopia NIR, Legnaro, Italy, 26–28 September 2012; pp. 16–22. [Google Scholar]
- Rittiron, R.; Narongwongwattana, S.; Pookpul, K.; Choonui, W.; Boonprako, U. Nondestructive detection of watercore damage in asian pear by near infrared spectroscopy. In Proceedings of the 14th ICNIRS Conference, Bangkok, Thailand, 7–12 November 2009; pp. 271–275. [Google Scholar]
- Uwadaira, Y. NIR and 1H NMR statistical hetero spectroscopy for nondestructive quality evaluation of peaches. In Proceedings of the 18th International Conference on Near Infrared spectroscopy—NIR Spectroscopy at work in Industry (Program Book), Copenhagen, Denmark, 11–15 June 2017; p. 22. [Google Scholar]
- Li, J.; Chen, L.; Huang, W. Detection of early bruises on peaches (Amygdalus persica L.) using hyperspectral imaging coupled with improved watershed segmentation algorithm. Postharvest Biol. Technol. 2018, 135, 104–113. [Google Scholar] [CrossRef]
- Jun, S.; Xin, Z.; Xiaohong, W.; Bing, L.; Jifeng, S. Research and analysis of cadmium residue in tomato leaves based on WT-LSSVR and Vis-NIR hyperspectral imaging. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2019, 212, 215–221. [Google Scholar]
- Hill, G.N.; Evans, K.J.; Beresford, R.M.; Dambergs, R.G. Near and mid-infrared spectroscopy for the quantification of botrytis bunch rot in white wine grapes. J. Near Infrared Spectrosc. 2013, 21, 467–475. [Google Scholar] [CrossRef]
- Ribeiro, L.P.D.; Monteiro da Silva, A.P.; de Lima, A.A.; de Oliveira Silva, E.; Rinnan, A.; Pasquini, C. Non-destructive determination of quality traits of cashew apples (Anacardium occidentale L.) using a portable near infrared spectrophotometer. J. Near Infrared Spectrosc. 2016, 24, 77–82. [Google Scholar] [CrossRef]
- Jannok, P.; Kamitani, Y.; Hironaka, K.; Shibayama, M.; Kawano, S. Development of a near infrared calibration model with temperature compensation using common temperature-difference spectra for determining the Brix value of intact fruits. J. Near Infrared Spectrosc. 2017, 25, 26–35. [Google Scholar] [CrossRef]
- Lia, X.; Weia, Y.; Xub, J.; Fenga, X.; Wuc, F.; Zhoua, R.; Jina, J.; Xua, K.; Yud, X.; Hea, Y. SSC and pH for sweet assessment and maturity classification of harvested cherry fruit based on NIR hyperspectral imaging technology. Postharvest Biol. Technol. 2018, 143, 112–118. [Google Scholar] [CrossRef]
- Masithoh, R.E.; Haff, R.; Kawano, S. Determination of soluble solids content and titratable acidity of intact fruit and juice of satsuma mandarin using a hand-held near infrared instrument in transmittance mode. J. Near Infrared Spectrosc. 2016, 24, 83–88. [Google Scholar] [CrossRef]
- Fan, G.; Zha, J.; Du, R.; Gao, L. Determination of soluble solids and firmness of apples by Vis/NIR transmittance. J. Food Eng. 2009, 93, 416–420. [Google Scholar] [CrossRef]
- Olarewaju, O.O.; Magwaza, L.S.; Nieuwoudt, H.; Poblete-Echeverría, C.; Fawole, O.A.; Tesfay, S.Z.; Opara, U.L. Model development for non-destructive determination of rind biochemical properties of ‘Marsh’ grapefruit using visible to near-infrared spectroscopy and chemometrics. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2019, 209, 62–69. [Google Scholar] [CrossRef] [PubMed]
- Amodio, M.L.; Piazzolla, F.; Colelli, G. Uso di immagini iperspettrali per predire solidi solubili, pH, acidità titolabile, fenoli e attività antiossidante di uva da tavola (cv. Italia). In Proceedings of the Atti del 6th Simposio Italiano di Spettroscopia NIR, Modena, Italy, 28–30 May 2014; p. 138. [Google Scholar]
- Van Beers, R.; Aernouts, B.; Watté, R.; Schenk, A.; Nicolaï, B.; Saeys, W. Evolution of VIS/NIR bulk optical properties of apple skin and flesh during fruit maturation. In Proceedings of the 17th International Conference on Near Infrared spectroscopy, Foz do Iguassu, Brazil, 18–23 October 2015; pp. 74–78. [Google Scholar]
- Giovenzana, V.; Beghi, R.; Brancadoro, L.; Guidetti, R. Sperimentazione di un sistema NIR per la valutazione dello stato sanitario di uva al conferimento in cantina. In Proceedings of the Atti del 7th Simposio Italiano di Spettroscopia NIR, Milano, Italy, 12–14 October 2016; pp. 23–28. [Google Scholar]
- Li, X.; Huang, J.; Xiong, Y.; Zhou, J.; Tan, X.; Zhang, B. Determination of soluble solid content in multi-origin ‘Fuji’ apples by using FT-NIR spectroscopy and an origin discriminant strategy. Comput. Electron. Agric. 2018, 155, 23–31. [Google Scholar] [CrossRef]
- Arendse, E.; Fawole, O.A.; Magwaza, L.S.; Nieuwoudt, H.; Opara, U.L. Evaluation of biochemical markers associated with the development of husk scald and the use of diffuse reflectance NIR spectroscopy to predict husk scald in pomegranate fruit. Sci. Hortic. 2018, 232, 240–249. [Google Scholar] [CrossRef]
- Amodio, M.L.; Ceglie, F.; Chaudhry, M.A.; Piazzolla, F.; Colelli, G. Potenzialità della spettroscopia NIR di discriminare tra diversi sistemi produttivi e di predire la qualità alla raccolta: Caso studio su fragole. In Proceedings of the Atti del 7th Simposio Italiano di Spettroscopia NIR, Milano, Italy, 12–14 October 2016; p. 34. [Google Scholar]
- Magwaza, L.S.; Landahl, S.; Cronje, P.J.R.; Nieuwoudt, H.H.; Mouazen, A.M.M.; Nicolaï, B.M.; Terry, L.A.; Opara, U.L. The use of Vis/NIRS and chemometric analysis to predict fruit defects and postharvest behaviour of ‘Nules Clementine’ mandarin fruit. Food Chem. 2014, 163, 267–274. [Google Scholar] [CrossRef]
- Rivera, N.V.; Sanchis, J.G.; Pérez, J.C.; Carrasco, J.J.; Giraldo, M.M.; Lorente, D.; Cubero, S.; Blasco, J. Early detection of mechanical damage in mango using NIR hyperspectral images and machine learning. Biosyst. Eng. 2014, 122, 91–98. [Google Scholar] [CrossRef]
- Barzaghi, S.; Grassi, M.; Beccari, F.; Cattaneo, T.M.P. A portable microNIR instrument as a useful screening tool in discriminating between conservation conditions applied to preserve pear samples cv Conference. In Proceedings of the NIR 2013—Picking up Good Vibrations, 16th International Conference on Near Infrared Spectroscopy, La Grande-Motte, France, 2–7 June 2013; pp. 135–141. [Google Scholar]
- Vanoli, M.; Rizzolo, A.; Grassi, M.; Spinelli, L.; Eccher Zerbini, P.; de Azevedo Pimentelean, R.M.; Torricellia, A. Quality of Brazilian mango fruit in relation to optical properties non-destructively measured by time-resolved reflectance spectroscopy. In Proceedings of the NIR 2013—Picking up Good Vibrations, 16th International Conference on Near Infrared Spectroscopy, La Grande-Motte, France, 2–7 June 2013; pp. 177–181. [Google Scholar]
- Magwaza, L.S.; Opara, U.L.; Nieuwoudt, H. NIR spectroscopy applications for internal and external quality analysis of citrus fruit—A review. Food Bioprocess Technol. 2012, 5, 425–444. [Google Scholar] [CrossRef]
- Zhang, B.; Dai, D.; Huang, J.; Zhou, J.; Gui, Q.; Dai, F. Influence of physical and biological variability and solution methods in fruit and vegetable quality nondestructive inspection by using imaging and near-infrared spectroscopy techniques: A review. Crit. Rev. Food Sci. Nutr. 2018, 58, 2099–2118. [Google Scholar] [CrossRef]
- Sánchez, M.T.; Pérez-Marín, D.; Torres, I.; Gil, B.; Garrido-Varo, A.; De la Haba, M.J. Use of NIRS technology for on-line measurement of nitrate content and other internal quality parameters in intact summer squash for baby food production. Postharvest Biol Technol 2017, 125, 122–128. [Google Scholar] [CrossRef]
- Srivichien, S.; Terdwongworakul, A.; Teerachaichayut, S. Quantitative prediction of nitrate level in intact pineapple using Vis-NIRS. J. Food Eng. 2015, 150, 29–34. [Google Scholar] [CrossRef]
- AACCI Method 39-00.01. Near-Infrared Methods—Guidelines for Model Development and Maintenance, Approved Methods of Analysis, 11th ed.; AACC International, AACCI Headquarters: St. Paul, MN, USA, 1999; ISBN 978-1-891127-68-2. [Google Scholar]
- ElMasry, G.; Da-Wen, S. Principles of hyperspectral imaging technology. In Hyperspectral Imaging for Food Quality Analysis and Control; Da-Wen, S., Ed.; Elsevier Inc.: Amsterdam, The Netherlands; Academic Press: Cambridge, MA, USA, 2010; pp. 3–43. [Google Scholar]
- Sánchez, M.T.; Pérez-Marín, D. Non-destructive measurement of fruit quality by NIR spectroscopy. In Advances in Post-Harvest Treatments and Fruit Quality and Safety; Vázquez, M., Ramírez, J.A., Eds.; Nova Science Publishers, Inc.: Hauppauge, NY, USA, 2011; pp. 101–163. [Google Scholar]
- Pasquini, C. Near infrared spectroscopy: A mature analytical technique with new perspectives. A review. Analytica Chimica Acta 2018, 1026, 8–36. [Google Scholar] [CrossRef]
- Arendse, E.; Fawole, O.A.; Magwaza, L.S.; Opara, U.L. Non-destructive prediction of internal and external quality attributes of fruit with thick rind: A review. J. Food Eng. 2018, 217, 11–23. [Google Scholar] [CrossRef]
- Yan, H.; Siesler, H.W. Hand-held near-infrared spectrometers: State-of-the-art instrumentation and practical applications. Nir News 2018, 29, 8–12. [Google Scholar] [CrossRef]
- Porep, J.U.; Kammerer, D.R.; Carle, R. On-line application of near infrared (NIR) spectroscopy in food production. Trends Food Sci. Tech. 2015, 46, 211–230. [Google Scholar] [CrossRef]
- Teixeira dos Santos, C.A.; Lopo, M.; Páscoa, R.N.M.J.; Lopes, J.A. A review on the applications of portable near-infrared spectrometers in the agro-food industry. App. Spectrosc. 2013, 67, 1215–1233. [Google Scholar] [CrossRef] [PubMed]
- Tsenkova, R. Visible-near infrared perturbation spectroscopy: Water in action seen as a source of information. In Proceedings of the 12th International Conference on Near-Infrared Spectroscopy, Auckland, New Zealand, 9–15 April 2005; pp. 607–612. [Google Scholar]
- Tsenkova, R. Aquaphotomics: Water in the biological and aqueous world scrutinised with invisible light. Spectrosc. Eur. 2010, 22, 6–10. [Google Scholar]
- Tsenkova, R.; Muncan, J.; Pollner, B.; Kovacs, Z. Essentials of aquaphotomics and its chemometrics approaches. Front. Chem. 2018, 6. [Google Scholar] [CrossRef] [PubMed]
Product/Class | Year of Publication | # of Papers | Reference Number | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | |||
acerola | 1 | 2 | 1 | 4 | |||||||||
P | 1 | 1 | 2 | [5,41] | |||||||||
PC | 1 | 1 | [64] | ||||||||||
AC | 1 | 1 | [104] | ||||||||||
apple | 3 | 3 | 2 | 4 | 3 | 4 | 2 | 2 | 8 | 10 | 41 | ||
P | 2 | 1 | 1 | 1 | 1 | 2 | 1 | 1 | 4 | 14 | [21,22,23,24,25,26,27,33,38] | ||
46,58–59,146,151 | |||||||||||||
PC | 2 | 2 | 1 | 2 | 3 | 3 | 13 | [80,81,82,84,85,86,87,88,89,90,91,92] | |||||
[153] | |||||||||||||
AC | 1 | 1 | 1 | 1 | 2 | 1 | 1 | 4 | 2 | 14 | [113,123,124,125,126,127,128,129,130,131,132,133,134] | ||
[155] | |||||||||||||
apricot | 1 | 1 | |||||||||||
P | 1 | 1 | [42] | ||||||||||
asparagus | 1 | 1 | |||||||||||
AC | 1 | 1 | [107] | ||||||||||
avocado | 1 | 1 | 2 | ||||||||||
P | 1 | 1 | [7] | ||||||||||
AC | 1 | 1 | [108] | ||||||||||
bananito | 1 | 1 | 2 | ||||||||||
P | 1 | 1 | [8] | ||||||||||
PC | 1 | 1 | [68] | ||||||||||
blueberry | 1 | 1 | 1 | 3 | |||||||||
P | 1 | 1 | 2 | [16,28] | |||||||||
AC | 1 | 1 | [135] | ||||||||||
cassava | 1 | 1 | |||||||||||
P | 1 | 1 | [20] | ||||||||||
cherry | 2 | 2 | |||||||||||
P | 2 | 2 | [43,148] | ||||||||||
cherry tomato | 1 | 1 | |||||||||||
P | 1 | 1 | [31] | ||||||||||
citrus | 1 | 1 | 1 | 1 | 2 | 1 | 8 | ||||||
PC | 1 | 1 | [74] | ||||||||||
AC | 1 | 1 | 1 | 1 | 2 | 1 | 7 | [106,114,115,116,117,118,162] | |||||
cynar | 1 | 1 | |||||||||||
AC | 1 | 1 | [109] | ||||||||||
fruit | 2 | 1 | 3 | 4 | 2 | 2 | 1 | 1 | 16 | ||||
P | 1 | 1 | 4 | 1 | 2 | 9 | [10,11,13,45,47,49,51,128,147] | ||||||
PC | 1 | 2 | 1 | 1 | 5 | [69,70,71,72,83] | |||||||
AC | 1 | 1 | 2 | [111,112] | |||||||||
fruit and vegetables | 1 | 1 | 1 | 3 | |||||||||
P | 1 | 1 | [14] | ||||||||||
PC | 1 | 1 | [97] | ||||||||||
AC | 1 | 1 | [163] | ||||||||||
garlic | 1 | 1 | |||||||||||
P | 1 | 1 | [6] | ||||||||||
grape | 2 | 1 | 1 | 1 | 1 | 2 | 1 | 1 | 10 | ||||
P | 2 | 1 | 1 | 1 | 1 | 6 | [34,35,36,37,151,152] | ||||||
PC | 2 | 1 | 3 | [102,103,154] | |||||||||
AC | 1 | 1 | [145] | ||||||||||
kiwi | 1 | 1 | 2 | ||||||||||
P | 1 | 1 | [52] | ||||||||||
PC | 1 | 1 | [73] | ||||||||||
macadamia | 1 | 1 | |||||||||||
PC | 1 | 1 | [93] | ||||||||||
mandarin | 2 | 1 | 1 | 4 | |||||||||
P | 2 | 1 | 3 | [17,53,149] | |||||||||
AC | 1 | 1 | [158] | ||||||||||
mango | 6 | 1 | 1 | 2 | 1 | 1 | 3 | 1 | 1 | 17 | |||
P | 1 | 1 | 1 | 3 | 6 | [18,19,54,55,56,57] | |||||||
PC | 2 | 1 | 1 | 1 | 1 | 1 | 7 | [67,75,76,77,78,79,161] | |||||
AC | 3 | 1 | 4 | [119,120,121,159] | |||||||||
eggplant | 1 | 1 | |||||||||||
AC | 1 | 1 | [122] | ||||||||||
olive | 1 | 1 | 1 | 3 | 1 | 1 | 8 | ||||||
PC | 2 | 1 | 3 | [94,95,96] | |||||||||
AC | 1 | 1 | 1 | 1 | 1 | 5 | [13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140] | ||||||
onion | 1 | 1 | |||||||||||
P | 1 | 1 | [44] | ||||||||||
orange | 1 | 1 | |||||||||||
P | 1 | 1 | [40] | ||||||||||
palm fruit | 1 | 1 | |||||||||||
P | 1 | 1 | [29] | ||||||||||
papaya | 2 | 2 | |||||||||||
P | 1 | 1 | [30] | ||||||||||
passion fruit | 1 | 1 | 2 | ||||||||||
P | 1 | 1 | 2 | [15,50] | |||||||||
peach | 1 | 1 | 2 | ||||||||||
AC | 1 | 1 | 2 | [142,143] | |||||||||
pear | 1 | 1 | 1 | 3 | |||||||||
P | 1 | 1 | [12] | ||||||||||
PC | 1 | 1 | [160] | ||||||||||
AC | 1 | 1 | [141] | ||||||||||
pineapple | 1 | 1 | |||||||||||
P | 1 | 1 | [165] | ||||||||||
pomegranate | 2 | 2 | |||||||||||
P | 1 | 1 | [48] | ||||||||||
AC | 1 | 1 | [156] | ||||||||||
potato | 1 | 1 | |||||||||||
P | 1 | 1 | [60] | ||||||||||
rape | 1 | 1 | |||||||||||
P | 1 | 1 | [32] | ||||||||||
spinach | 1 | 1 | 2 | ||||||||||
P | 1 | 1 | [62] | ||||||||||
PC | 1 | 1 | [100] | ||||||||||
strawberry | 1 | 1 | 2 | ||||||||||
P | 1 | 1 | [9] | ||||||||||
AC | 1 | 1 | [157] | ||||||||||
summer squash | 1 | 1 | |||||||||||
PC | 1 | 1 | [164] | ||||||||||
tapioca | 1 | 1 | |||||||||||
PC | 1 | 1 | [101] | ||||||||||
tomato | 1 | 1 | 1 | 3 | |||||||||
P | 1 | 1 | [61] | ||||||||||
PC | 1 | 1 | [98] | ||||||||||
AC | 1 | 1 | [144] | ||||||||||
vegetable | 1 | 1 | 2 | 4 | |||||||||
P | 1 | 1 | [63] | ||||||||||
PC | 1 | 1 | [99] | ||||||||||
AC | 1 | 1 | 2 | [105,110] | |||||||||
watermelon | 1 | 1 | 2 | ||||||||||
PC | 1 | 1 | 2 | [65,66] | |||||||||
zucchini | 1 | 1 | |||||||||||
P | 1 | 1 | [39] | ||||||||||
22 | 6 | 2 | 6 | 14 | 15 | 11 | 18 | 14 | 31 | 20 | 159 |
Technology | Advantages | Limitations | Applications |
---|---|---|---|
Scanning Grating | Signal/noise ratio | Measures needed to improve Wavelength accuracy | Quantitative measurements |
Wavelength range | Lower resolution | ||
Fixed Grating DDA | Robustness | Signal/noise ratio | Process control [172] |
Sample heating | Portable instrumentation [173] | ||
FT-NIR | Wavelength accuracy | Vibration sensitive | Qualitative measurements at lab |
Resolution | Sample heating | Authentication, identification, discrimination |
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cattaneo, T.M.P.; Stellari, A. Review: NIR Spectroscopy as a Suitable Tool for the Investigation of the Horticultural Field. Agronomy 2019, 9, 503. https://doi.org/10.3390/agronomy9090503
Cattaneo TMP, Stellari A. Review: NIR Spectroscopy as a Suitable Tool for the Investigation of the Horticultural Field. Agronomy. 2019; 9(9):503. https://doi.org/10.3390/agronomy9090503
Chicago/Turabian StyleCattaneo, Tiziana M.P., and Annamaria Stellari. 2019. "Review: NIR Spectroscopy as a Suitable Tool for the Investigation of the Horticultural Field" Agronomy 9, no. 9: 503. https://doi.org/10.3390/agronomy9090503
APA StyleCattaneo, T. M. P., & Stellari, A. (2019). Review: NIR Spectroscopy as a Suitable Tool for the Investigation of the Horticultural Field. Agronomy, 9(9), 503. https://doi.org/10.3390/agronomy9090503