Potential Benefits of Polymers in Soil Erosion Control for Agronomical Plans: A Laboratory Experiment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Soil Characteristics and Erodibility
2.3. Polymer Application
2.4. Rainfall Simulation Experiments and Procedures
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Schimel, D.S.; Braswell, B.H.; Holland, E.A.; McKeown, R.; Ojima, D.S.; Painter, T.H.; Parton, W.J.; Townsend, A.R. Climatic, edaphic, and biotic controls over storage and turnover of carbon in soils. Glob. Biogeochem. Cycles 2012, 8, 279–293. [Google Scholar] [CrossRef]
- Smith, P.; Cotrufo, M.F.; Rumpel, C.; Paustian, K.; Kuikman, P.J.; Elliott, J.A.; McDowell, R.; Griffiths, R.I.; Asakawa, S.; Bustamante, M.; et al. Biogeochemical cycles and biodiversity as key drivers of ecosystem services provided by soils. Soil 2015, 1, 665–685. [Google Scholar] [CrossRef] [Green Version]
- Alewell, C.; Egli, M.; Meusburger, K. An attempt to estimate tolerable soil erosion rates by matching soil formation with denudation in Alpine grasslands. J. Soils Sediments 2015, 15, 1383–1399. [Google Scholar] [CrossRef]
- Nearing, M.A.; Xie, Y.; Liu, B.; Ye, Y. Natural and anthropogenic rates of soil erosion. Intern. Soil Water Cons. Res. 2017, 5, 77–84. [Google Scholar] [CrossRef]
- Raich, J.W.; Potter, C.S. Global patterns of carbon dioxide emissions from soils. Glob. Biogeochem. Cycles 1995, 9, 23–36. [Google Scholar] [CrossRef] [Green Version]
- Delgado-Baquerizo, M.; Maestre, F.T.; Gallardo, A.; Bowker, M.A.; Wallenstein, M.D.; Quero, J.L.; Ochoa, V.; Gozalo, B.; García-Gómez, M.; Soliveres, S.; et al. Decoupling of soil nutrient cycles as a function of aridity in global drylands. Nature 2013, 502, 672–676. [Google Scholar] [CrossRef]
- Keesstra, S.; Mol, G.; de Leeuw, J.; Okx, J.; de Cleen, M.; Visser, S. Soil-related Sustainable Development Goals: Four concepts to make land degradation neutrality and restoration work. Land 2018, 7, 133. [Google Scholar] [CrossRef]
- García-Ruiz, J.M.; Beguería, S.; Nadal-Romero, E.; González-Hidalgo, J.C.; Lana-Renault, N.; Sanjuána, Y. A meta-analysis of soil erosion rates across the world. Geomorphology 2015, 239, 160–173. [Google Scholar] [Green Version]
- Ochoa, P.A.; Fries, A.; Mejía, D.; Burneo, J.I.; Ruíz-Sinoga, J.D.; Cerdà, A. Effects of climate, land cover and topography on soil erosion risk in a semiarid basin of the Andes. Catena 2016, 140, 31–42. [Google Scholar] [CrossRef]
- Karydas, C.G.; Sekuloska, T.; Silleos, G.N. Quantification and site-specification of the support practice factor when mapping soil erosion risk associated with olive plantations in the Mediterranean island of Crete. Environ. Monit. Assess. 2009, 149, 19–28. [Google Scholar] [CrossRef]
- Acín-Carrera, M.; José Marques, M.; Carral, P.; Álvarez, A.M.; López, C.; Martín-López, B.; González, J.A. Impacts of land-use intensity on soil organic carbon content, soil structure and water-holding capacity. Soil Use Manag. 2013, 29, 547–556. [Google Scholar] [CrossRef]
- Beguería, S.; Angulo-Martínez, M.; Gaspar, L.; Navas, A. Detachment of soil organic carbon by rainfall splash: Experimental assessment on three agricultural soils of Spain. Geoderma 2015, 245–246, 21–30. [Google Scholar] [CrossRef]
- Buczko, U.; Bens, O.; Hüttl, R.F. Tillage effects on hydraulic properties and macroporosity in silty and sandy soils. Soil Sci. Soc. Am. J. 2006, 70, 1998–2007. [Google Scholar] [CrossRef]
- Reynolds, W.D.; Lewis, J.K. A drive point application of the Guelph Permeameter method for coarse-textured soils. Geoderma 2012, 187–188, 59–66. [Google Scholar] [CrossRef]
- Fischer, C.; Roscher, C.; Jensen, B.; Eisenhauer, N.; Baade, J.; Attinger, S.; Scheu, S.; Weisser, W.W.; Schumacher, J.; Hildebrandt, A. How do earthworms, soil texture and plant composition affect infiltration along an experimental plant diversity gradient in grassland? PLoS ONE 2014, 9, e98987. [Google Scholar] [CrossRef]
- Al-Shammary, A.A.G.; Kouzani, A.Z.; Kaynak, A.; Khoo, S.Y.; Norton, M.; Gates, W. Soil bulk density estimation methods: A review. Pedosphere 2018, 28, 581–596. [Google Scholar] [CrossRef]
- Xiao, H.; Liu, G.; Liu, P.; Zheng, F.; Zhang, J.; Hu, F. Developing equations to explore relationships between aggregate stability and erodibility in Ultisols of subtropical China. Catena 2017, 157, 279–285. [Google Scholar] [CrossRef]
- Barthès, B.; Roose, E. Aggregate stability as an indicator of soil susceptibility to runoff and erosion; validation at several levels. Catena 2002, 47, 133–149. [Google Scholar] [CrossRef] [Green Version]
- Mamedov, A.I.; Huang, C.; Aliev, F.A.; Levy, G.J. Aggregate stability and water retention near saturation characteristics as affected by soil texture, aggregate size and polyacrylamide application. Land Degrad. Dev. 2017, 28, 543–552. [Google Scholar] [CrossRef]
- Hartley, W.; Riby, P.; Waterson, J. Effects of three different biochars on aggregate stability, organic carbon mobility and micronutrient bioavailability. J. Environ. Manag. 2016, 181, 770–778. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Casasnovas, J.A.; Ramos, M.C.; García-Hernández, D. Effects of land-use changes in vegetation cover and sidewall erosion in a gully head of the Penedès region (northeast Spain). Earth Surf. Proc. Land. 2009, 34, 1927–1937. [Google Scholar] [CrossRef]
- Smith, J.V.; Sullivan, L.A. Construction and maintenance of embankments using highly erodible soils in the Pilbara, North-Western Australia. Intern. J. GEOMATE 2014, 6, 897–902. [Google Scholar] [CrossRef]
- Cerdà, A.; Rodrigo-Comino, J.; Giménez-Morera, A.; Novara, A.; Pulido, M.; Kapović-Solomun, M.; Keesstra, S.D. Policies can help to apply successful strategies to control soil and water losses. The case of chipped pruned branches (CPB) in Mediterranean citrus plantations. Land Use Policy 2018, 75, 734–745. [Google Scholar] [CrossRef] [Green Version]
- Di Prima, S.; Marrosu, R.; Lassabatere, L.; Angulo-Jaramillo, R.; Pirastru, M. In situ characterization of preferential flow by combining plot- and point-scale infiltration experiments on a hillslope. J. Hydrol. 2018, 563, 633–642. [Google Scholar] [CrossRef]
- Keesstra, S.D.; Rodrigo-Comino, J.; Novara, A.; Giménez-Morera, A.; Pulido, M.; Di Prima, S.; Cerdà, A. Straw mulch as a sustainable solution to decrease runoff and erosion in glyphosate-treated clementine plantations in Eastern Spain. An assessment using rainfall simulation experiments. Catena 2019, 174, 95–103. [Google Scholar] [CrossRef]
- Novara, A.; Gristina, L.; Guaitoli, F.; Santoro, A.; Cerdà, A. Managing soil nitrate with cover crops and buffer strips in Sicilian vineyards. Solid Earth 2013, 4, 255–262. [Google Scholar] [CrossRef] [Green Version]
- Davies, K.; Fullen, M.A.; Booth, C.A. A pilot project on the potential contribution of palm-mat geotextiles to soil conservation. Earth Surf. Process. Landforms 2006, 31, 561–569. [Google Scholar] [CrossRef]
- Giménez-Morera, A.; Ruiz Sinoga, J.D.; Cerdà, A. The impact of cotton geotextiles on soil and water losses from Mediterranean rainfed agricultural land. Land Degrad. Dev. 2010, 21, 210–217. [Google Scholar] [CrossRef]
- Pulido, M.; Schnabel, S.; Lavado Contador, J.F.; Lozano-Parra, J.; González, F. The Impact of Heavy Grazing on Soil Quality and Pasture Production in Rangelands of SW Spain. Land Degrad. Dev. 2018, 29, 219–230. [Google Scholar] [CrossRef]
- Lasanta, T.; Nadal-Romero, E.; Arnáez, J. Managing abandoned farmland to control the impact of re-vegetation on the environment. The state of the art in Europe. Environ. Sci. Policy 2015, 52, 99–109. [Google Scholar] [CrossRef] [Green Version]
- Ben-Salem, N.; Álvarez, S.; López-Vicente, M. Soil and water conservation in rainfed vineyards with common sainfoin and spontaneous vegetation under different ground conditions. Water 2018, 10, 1058. [Google Scholar] [CrossRef]
- Hueso-González, P.; Martínez-Murillo, J.F.; Ruiz-Sinoga, J.D. Effects of topsoil treatments on afforestation in a dry Mediterranean climate (southern Spain). Solid Earth 2016, 7, 1479–1489. [Google Scholar] [CrossRef] [Green Version]
- Cao, Y.; Wang, B.; Guo, H.; Xiao, H.; Wei, T. The effect of super absorbent polymers on soil and water conservation on the terraces of the loess plateau. Ecol. Eng. 2017, 102, 270–279. [Google Scholar] [CrossRef]
- Blanco-Canqui, H.; Lal, R. Principles of Soil Conservation and Management; Springer Science + Business Media B.V.: Columbus, OH, USA, 2008. [Google Scholar] [CrossRef]
- Gabriels, D. Application of soil conditioners for agriculture and engineering. In Soil Colloids and Their Association in Aggregates; De Boodt, M.F., Hayes, M., Herbillon, A., Eds.; Plenum Press: New York, NY, USA, 1990; pp. 557–565. [Google Scholar]
- Sojka, R.E.; Lentz, R.D. Time for yet another look at soil conditioners. Soil Sci. 1994, 158, 233–234. [Google Scholar] [CrossRef]
- Heitner, H.I. Flocculating agents. In Encyclopedia of Chemical Technology, 4th ed.; Kroschwitz, J.I., Howe-Grant, M., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1994; Available online: https://doi.org/10.1002/0471238961 (accessed on 4 May 2019).
- de Vleeschauwer, D.; Lal, R.; De Boodt, M. Comparison of detachability indices in relation to soil erodibility for some important Nigerian soils. Pedologie 1978, 1, 5–20. [Google Scholar]
- Chiellini, E.; Corti, A.; Politi, B.; Solaro, R. Adsorption/desorption of polyvinyl alcohol on solid substrates and relevant biodegradation. J. Polym. Environ. 2000, 8, 67–79. [Google Scholar] [CrossRef]
- Laird, D.A. Bonding between polyacrylamide and clay mineral surfaces. Soil Sci. 1997, 162, 826–832. [Google Scholar] [CrossRef]
- Lu, J.H.; Wu, L.; Letey, J. Effects of soil and water properties on anionic polyacrylamide sorption. Soil Sci. Soc. Am. J. 2002, 66, 578–584. [Google Scholar] [CrossRef]
- McLaughlin, R.A.; Bartholomew, N. Soil factors influencing suspended sediment flocculation by polyacrylamide. Soil Sci. Soc. Am. J. 2007, 71, 537–544. [Google Scholar] [CrossRef]
- Kussainova, M.; Durmuş, M.; Erkoçak, A.; Kızılkaya, R. Soil dehydrogenase activity of natural macro aggregates in a toposequence of forest soil. Eurasian J. Soil Sci. 2013, 2, 69–75. [Google Scholar]
- Bogunovic, I.; Bilandzija, D.; Andabaka, Z.; Stupic, D.; Rodrigo-Comino, J.; Cacic, M.; Brezinscak, L.; Maletic, E.; Pereira, P. Soil compaction under different management practices in a Croatian vineyard. Arab. J. Geosci. 2017, 10, 340. [Google Scholar] [CrossRef]
- Bagagiolo, G.; Biddoccu, M.; Rabino, D.; Cavallo, E. Effects of rows arrangement, soil management, and rainfall characteristics on water and soil losses in Italian sloping vineyards. Environ. Res. 2018, 166, 690–704. [Google Scholar] [CrossRef] [PubMed]
- Lieskovský, J.; Kenderessy, P. Modelling the effect of vegetation cover and different tillage practices on soil erosion in vineyards: A case study in Vráble (Slovakia) using WATEM/SEDEM. Land Degrad. Dev. 2014, 25, 288–296. [Google Scholar] [CrossRef]
- Plante, A.F.; Feng, Y.; McGill, W.B. A modeling approach to quantifying soil macroaggregate dynamics. Can. J. Soil Sci. 2002, 82, 181–190. [Google Scholar] [CrossRef]
- Marzen, M.; Iserloh, T.; Casper, M.C.; Ries, J.B. Quantification of particle detachment by rain splash and wind-driven rain splash. Catena 2015, 127, 135–141. [Google Scholar] [CrossRef]
- Soil Survey Staff. Keys to Soil Taxonomy, 12th ed.; USDA-Natural Resources Conservation Service: Washington, DC, USA, 2014.
- Turkish Republic General Directorate of Meteorology. 2017. Available online: https://www.mgm.gov.tr (accessed on 30 January 2018).
- Wischmeier, W.H.; Smith, D.D. Predicting Rainfall Erosion Losses: A Guide to Conservation Planning; Agriculture Handbook No. 537; USDA/Science and Education Administration: Washington, DC, USA, 1978.
- Eijkelkamp, Product Manual. 2015. Available online: https://www.eijkelkamp.com/download.php?file=M10906e_Rainfall_simulator_30f2.pdf. (accessed on 30 January 2018).
- Christiansen, J.E. Irrigation by Sprinkling; California Agriculture Experiment Station Bulletin 670; University of California: Berkley, CA, USA, 1942. [Google Scholar]
- Van Dijk, A.I.J.M.; Bruijnzeel, L.A.; Rosewell, C.J. Rainfall intensity-kinetic energy relationships: A critical literature appraisal. J. Hydrol. 2002, 261, 1–23. [Google Scholar] [CrossRef]
- IBM Corp. USA. IBM SPSS Statistics 24 Brief Guide. Available online: http://public.dhe.ibm.com/software/analytics/spss/documentation/statistics/24.0/en/client/Manuals/IBM_SPSS_Statistics_Brief_Guide.pdf (accessed on 30 April 2019).
- Chaplot, V.; Le Bissonnais, Y. Field measurements of interrill erosion under -different slopes and plot sizes. Earth Surf. Process. Landf. 2000, 25, 145–153. [Google Scholar] [CrossRef]
- Sadeghi, S.H.R.; Seghaleh, M.B.; Rangavar, A.S. Plot sizes dependency of runoff and sediment yield estimates from a small watershed. Catena 2013, 102, 55–61. [Google Scholar] [CrossRef]
- de Lima, J.L.M.P.; Singh, V.P. The influence of the pattern of moving rainstorms on overland flow. Adv. Water Resour. 2002, 25, 817–828. [Google Scholar] [CrossRef] [Green Version]
- Sadeghi, S.H.; Kiani Harchegani, M.; Asadi, H. Variability of particle size distributions of upward/downward splashed materials in different rainfall intensities and slopes. Geoderma 2017, 290, 100–106. [Google Scholar] [CrossRef]
- Taboada, M.A.; Barbosa, O.A.; Rodríguez, M.B.; Cosentino, D.J. Mechanisms of aggregation in a silty loam under different simulated management regimes. Geoderma 2004, 123, 233–244. [Google Scholar] [CrossRef]
- Barry, P.V.; Stott, D.E.; Turco, R.F.; Bradford, J.M. Organic polymers’ effect on soil shear strength and detachment by single raindrops. Soil Sci. Soc. Am. J. 1991, 55, 799–804. [Google Scholar] [CrossRef]
- Nadler, A.; Perfect, E.; Kay, B.D. Effect of polyacrylamide application on the stability of dry and wet aggregates. Soil Sci. Soc. Am. J. 1996, 60, 555–561. [Google Scholar] [CrossRef]
- Nishimura, T.; Yomamato, T.; Suzuki, S.; Kato, M. Effect of gypsum and polyacrylamide application on erodibility of an acid Kunigami Mahji Soil. Soil Sci. Plant Nutr. 2005, 51, 641–644. [Google Scholar] [CrossRef]
- Mamedov, A.I.; Beckmann, S.; Huang, C.; Levy, G.J. Aggregate stability as affected by polyacrylamide molecular weight, soil texture, and water quality. Soil Sci. Soc. Am. J. 2007, 71, 1909–1918. [Google Scholar] [CrossRef]
- Fernández-Raga, M.; Palencia, C.; Keesstra, S.; Jordán, A.; Fraile, R.; Angulo-Martínez, M.; Cerdà, A. Splash erosion: A review with unanswered questions. Earth-Sci. Rev. 2017, 171, 463–477. [Google Scholar] [CrossRef] [Green Version]
- Tisdall, J.M.; Oades, J.M. Organic matter and water-stable aggregates in soils. J. Soil Sci. 1982, 33, 141–163. [Google Scholar] [CrossRef]
- Singer, M.J.; Shainberg, I. Mineral soil surface crusts and wind and water erosion. Earth Surf. Process. Landf. 2004, 29, 1065–1075. [Google Scholar] [CrossRef]
- Burguet, M.; Taguas, E.V.; Cerdà, A.; Gómez, J.A. Soil water repellency assessment in olive groves in Southern and Eastern Spain. Catena 2016, 147, 187–195. [Google Scholar] [CrossRef]
- Ben-Hur, M.; Malik, M.; Letey, J.; Mingelgrin, U. Adsorption of polymers on clays as affected by clay charge and structure, polymer properties, and water quality. Soil Sci. 1992, 153, 349–356. [Google Scholar] [CrossRef]
- Miller, W.P.; Willis, R.L.; Levy, G.J. Aggregate stabilization in kaolinitic soils by low rates of anionic polyacrylamide. Soil Use Manag. 1998, 14, 101–105. [Google Scholar] [CrossRef]
- Asano, M.; Wagai, R. Evidence of aggregate hierarchy at micro- to submicron scales in an allophanic Andisol. Geoderma 2014, 216, 62–74. [Google Scholar] [CrossRef]
- Oades, J.M. Soil organic matter and structural stability: Mechanism and implications for management. Plant Soil 1984, 76, 319–337. [Google Scholar] [CrossRef]
- Kay, B.D. Rates of change of soil structure under different systems. Adv. Soil Sci. 1990, 12, 1–52. [Google Scholar]
- Levy, G.J.; Miller, W.P. Polyacrylamide adsorption and aggregate stability. Soil Till. Res. 1999, 51, 121–128. [Google Scholar] [CrossRef]
- Parlak, M. Study on splash erosion with interaction of different kinetic energy flux and soil texture. J. Agric. Sci. 2009, 15, 341–347. [Google Scholar]
- Leguedois, S.; Le Bissonnais, Y. Size fractions resulting from an aggregate stability test, interrill detachment and transport. Earth Surf. Proc. Land. 2004, 29, 1117–1129. [Google Scholar] [CrossRef]
- Gumiere, S.J.; Le Bissonnais, Y.; Raclot, D. Soil resistance to interill erosion: Model parameterization and sensitivity. Catena 2009, 77, 274–284. [Google Scholar] [CrossRef]
- Rodrigo-Comino, J.; Giménez-Morera, A.; Panagos, P.; Pourghasemi, H.R.; Pulido, M.; Cerdà, A. The potential of straw mulch as a nature-based solution in olive groves treated with glyphosate. A biophysical and socio-economic assessment. Land Degrad. Dev. 2019, in press. [Google Scholar] [CrossRef]
- Salesa, D.; Terol, E.; Cerdà, A. Soil erosion on the “El Portalet” mountain trails in the Eastern Iberian Peninsula. Sci. Total Environ. 2019, 661, 504–513. [Google Scholar] [CrossRef] [PubMed]
- Wenger, A.S.; Atkinson, S.; Santini, T.; Falinski, K.; Hutley, N.; Albert, S.; Horning, N.; Watson, J.E.M.; Mumby, P.J.; Jupiter, S.D. Predicting the impact of logging activities on soil erosion and water quality in steep, forested tropical islands. Environ. Res. Lett. 2018, 13, 044035. [Google Scholar] [CrossRef]
- Plastina, A.; Liu, F.; Miguez, F.; Carlson, S. Cover crops use in Midwestern US agriculture: Perceived benefits and net returns. Renew. Agric. Food Syst. 2018, 1–11. [Google Scholar] [CrossRef]
- Ghosh, B.N.; Dogra, P.; Sharma, N.K.; Bhattacharyya, R.; Mishra, P.K. Conservation agriculture impact for soil conservation in maize–wheat cropping system in the Indian sub-Himalayas. Intern. Soil Water Conserv. Res. 2015, 3, 112–118. [Google Scholar] [CrossRef]
Horizon | Depth (cm) | Color (dry; wet) | Sand (g kg−1) | Silt (g kg−1) | Clay (g kg−1) | pH | Salinity (%) | CEC (meq 100 g−1) | Total CaCO3 (g kg−1) | SOM (g kg−1) |
---|---|---|---|---|---|---|---|---|---|---|
Ap | 0–25 | 7.5YR4/3; 7.5YR4/3 | 376 | 231 | 393 | 8.3 | 0.05 | 38.0 | 117 | 207 |
AC | 25–45 | 7.5YR6/4; 7.5YR5/4 | 590 | 280 | 130 | 7.44 | 0.10 | 19.13 | 244 | 103 |
1C | 45–107 | 7.5YR8/2; 10YR6/4 | 723 | 197 | 80 | 7.84 | 0.06 | 11.13 | 285 | 038 |
2Ck1 | 107–150 | 7.5YR8/2; 7.5YR7/4 | 153 | 583 | 264 | 7.55 | 0.10 | 22.52 | 661 | 026 |
2Ck2 | +150 | 7.5YR8/2; 10YR7/4 | 275 | 459 | 266 | 7.35 | 0.05 | 22.17 | 454 | 006 |
Application | Initial Aggregate Size (mm) | R (mm) | Sy (g m−2) | Sp-Sy (g m−2) | |||
---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | ||
No polymer | <1 | 46.4 | 2.3 | 2925.6 | 263.6 | 18.1 | 3.3 |
1–2 | 38.8 | 2.9 | 332.5 | 10.4 | 16.2 | 2.5 | |
2–4 | 32.0 | 1.4 | 231.0 | 80.3 | 9.8 | 0.8 | |
4–6.4 | 26.2 | 3.7 | 143.4 | 26.9 | 8.2 | 0.2 | |
>6.4 | 23.6 | 0.6 | 110.1 | 17.2 | 6.3 | 2.0 | |
All | 34.1 | 0.1 | 196.5 | 24.3 | 8.6 | 1.2 | |
PAM | <1 | 45.1 | 2.6 | 2071.0 | 35.3 | 18.0 | 1.4 |
1–2 | 34.7 | 2.1 | 307.6 | 16.4 | 3.8 | 0.8 | |
2–4 | 21.5 | 3.1 | 131.2 | 33.5 | 3.6 | 0.7 | |
4–6.4 | 18.3 | 2.9 | 116.2 | 0.2 | 2.1 | 0.1 | |
>6.4 | 12.6 | 0.3 | 86.5 | 15.5 | 2.0 | 0.8 | |
All | 24.8 | 2.8 | 156.5 | 6.6 | 4.0 | 0.3 | |
PVA | <1 | 42.4 | 2.7 | 2310.2 | 89.1 | 13.8 | 1.1 |
1–2 | 34.9 | 1.6 | 176.4 | 37.8 | 7.9 | 1.7 | |
2–4 | 29.1 | 5.6 | 107.5 | 27.1 | 7.4 | 0.7 | |
4–6.4 | 21.9 | 2.3 | 69.1 | 16.2 | 4.0 | 1.1 | |
>6.4 | 14.3 | 0.1 | 53.3 | 2.1 | 3.2 | 0.8 | |
All | 34.4 | 2.0 | 112.6 | 7.9 | 6.4 | 1.1 |
Application | Initial Aggregate Size (mm) | R (mm) | Sy (g m−2) | Sp-Sy (g m−2) | |||
---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | ||
No polymer | <1 | 61.1 | 3.5 | 4699.3 | 357.2 | 21.1 | 6.8 |
1–2 | 48.1 | 2.5 | 794.2 | 19.6 | 20.3 | 0.1 | |
2–4 | 43.6 | 2.1 | 314.5 | 0.6 | 12.0 | 5.7 | |
4–6.4 | 37.3 | 5.2 | 156.0 | 19.0 | 10.7 | 1.1 | |
>6.4 | 32.2 | 0.3 | 137.9 | 6.9 | 12.3 | 4.2 | |
All | 47.9 | 0.2 | 477.3 | 68.2 | 13.2 | 4.4 | |
PAM | <1 | 55.0 | 0.1 | 2428.0 | 794.8 | 19.6 | 1.8 |
1–2 | 44.6 | 2.2 | 330.8 | 4.0 | 13.8 | 3.7 | |
2–4 | 28.9 | 3.1 | 186.6 | 61.9 | 10.3 | 1.8 | |
4–6.4 | 26.5 | 2.6 | 126.7 | 4.9 | 6.4 | 5.1 | |
>6.4 | 18.7 | 3.2 | 89.1 | 1.3 | 5.5 | 0.7 | |
All | 36.9 | 0.3 | 160.1 | 19.9 | 12.3 | 2.9 | |
PVA | <1 | 52.0 | 0.1 | 2844.2 | 751.3 | 18.7 | 3.3 |
1–2 | 44.8 | 6.4 | 304.8 | 21.7 | 12.0 | 5.7 | |
2–4 | 40.5 | 3.0 | 138.8 | 14.3 | 9.1 | 0.2 | |
4–6.4 | 36.5 | 1.3 | 117.0 | 1.7 | 6.8 | 1.6 | |
>6.4 | 25.6 | 2.5 | 71.8 | 4.4 | 6.3 | 1.7 | |
All | 39.0 | 1.4 | 145.3 | 22.0 | 11.4 | 4.1 |
Variables | Rainfalls | Variation Source | ||
---|---|---|---|---|
Applications | Initial Aggregate Size Groups | R2 | ||
R | First rainfall | ** | *** | 0.88 |
Sequential rainfall | *** | *** | 0.97 | |
Sy | First rainfall | *** | *** | 0.99 |
Sequential rainfall | *** | *** | 0.98 | |
Sp-Sy | First rainfall | ns | ** | 0.65 |
Sequential rainfall | * | *** | 072 |
Variables | Application | Subgroups | Application | Subgroups |
---|---|---|---|---|
First Rainfall | Sequential Rainfall | |||
R | PAM | 26b | PAM | 350c |
PVA | 29ab | PVA | 39b | |
No polymer | 33a | No polymer | 45a | |
Sy | PVA | 471b | PAM | 553b |
PAM | 478b | PVA | 603b | |
No polymer | 656a | No polymer | 1096a | |
Sp-Sy | PAM | ns | PVA | 10b |
PVA | ns | PAM | 11b | |
No polymer | ns | No polymer | 14a |
Variables | Initial Aggregate Size (mm) | Subgroups | Initial Aggregate Size (mm) | Subgroups |
---|---|---|---|---|
First rainfall | Sequential rainfall | |||
R | >6.4 | 16e | >6.4 | 25f |
4–6.4 | 22de | 4–6.4 | 33e | |
2–4 | 27cd | 2–4 | 37d | |
All | 31bc | All | 41c | |
1–2 | 36b | 1–2 | 45b | |
<1 | 44a | <1 | 56a | |
Sy | >6.4 | 83c | >6.4 | 99c |
4–6.4 | 109c | 4–6.4 | 133bc | |
All | 155c | 2–4 | 213bc | |
2–4 | 156c | All | 260bc | |
1–2 | 272b | 1–2 | 476b | |
<1 | 2435a | <1 | 3323a | |
Sp-Sy | >6.4 | 3.8b | 4–6.4 | 7.9c |
4–6.4 | 4.7b | >6.4 | 8.0c | |
All | 6.3b | 2–4 | 10.4bc | |
2–4 | 6.9b | All | 12.3bc | |
1–2 | 9.3b | 1–2 | 15.3ab | |
<1 | 16.6a | <1 | 19.8a |
Pairs | Paired Differences | t | df | Sig. (2-Tailed) | ||||
---|---|---|---|---|---|---|---|---|
Mean | Std. Deviation | Std. Error Mean | 95% Confidence Interval of the Difference | |||||
Lower | Upper | |||||||
First sequential rainfall (R) | −10 | 4 | 0.7 | −11 | −8 | −13 | 35 | 0.000 |
First sequential rainfall (Sy) | −215 | 465 | 77 | −373 | −58 | −2.7 | 35 | 0.009 |
First sequential rainfall (Sp-Sy) | −4 | 6 | 1 | −6 | −2 | −4.3 | 35 | 0.000 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yakupoglu, T.; Rodrigo-Comino, J.; Cerdà, A. Potential Benefits of Polymers in Soil Erosion Control for Agronomical Plans: A Laboratory Experiment. Agronomy 2019, 9, 276. https://doi.org/10.3390/agronomy9060276
Yakupoglu T, Rodrigo-Comino J, Cerdà A. Potential Benefits of Polymers in Soil Erosion Control for Agronomical Plans: A Laboratory Experiment. Agronomy. 2019; 9(6):276. https://doi.org/10.3390/agronomy9060276
Chicago/Turabian StyleYakupoglu, Tugrul, Jesús Rodrigo-Comino, and Artemi Cerdà. 2019. "Potential Benefits of Polymers in Soil Erosion Control for Agronomical Plans: A Laboratory Experiment" Agronomy 9, no. 6: 276. https://doi.org/10.3390/agronomy9060276
APA StyleYakupoglu, T., Rodrigo-Comino, J., & Cerdà, A. (2019). Potential Benefits of Polymers in Soil Erosion Control for Agronomical Plans: A Laboratory Experiment. Agronomy, 9(6), 276. https://doi.org/10.3390/agronomy9060276