In-Field Estimation of Orange Number and Size by 3D Laser Scanning
Abstract
1. Introduction
2. Materials and Methods
2.1. Orange Trees Plots
2.2. Data
2.2.1. Yield and Orange Sampling
2.2.2. Three-Dimensional Modelling Using Laser Scanner
(a) Data Acquisition
(b) Data Processing
2.3. K-Means Algorithm Application
2.3.1. Data Segmentation
2.3.2. Algorithm
2.4. Statistical Analysis
3. Results
3.1. Orange Count with K-Means Algorithm
3.2. Yield Estimation
Fruit weighti = −212.8 + 5.344 × Diameteri + Ɛi c
a,b: perpendicular axis in the horizontal plane; c: Z axle.
4. Discussion
4.1. Orange Count with K-Means Algorithm
4.2. Yield Estimation
R2 = 0.88, p < 10−10
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sarig, Y. Robotics of Fruit Harvesting: A State-of-the-art Review. J. Agric. Eng. Res. 1993, 54, 265–280. [Google Scholar] [CrossRef]
- Underwood, J.P.; Hung, C.; Whelan, B.; Sukkarieh, S. Mapping almond orchard canopy volume, flowers, fruit and yield using LiDAR and vision sensors. Comput. Electron. Agric. 2016, 130, 83–96. [Google Scholar] [CrossRef]
- Grand d’Esnon, A. Robotic Harvesting of Apples. In Proceedings of Agri-Mation 1 Conference and Exposition; ASAE: St. Joseph, MI, USA, 1985; pp. 210–214. [Google Scholar]
- Kassay, L.; Slaughter, D.C.; Molnar, S. Hungarian Robotic Apple Harvester; ASAE: St. Joseph, MI, USA, 1992. [Google Scholar]
- Bulanon, D.M.; Burks, T.F.; Alchanatis, V. Study on Fruit Visibility for Robotic Harvesting; ASABE Paper No. 07-3124; ASABE: St. Joseph, MI, USA, 2007. [Google Scholar]
- Tabb, A.; Peterson, D.; Park, J. Segmentation of Apple Fruit from Video via Background Modeling; ASAE: St. Joseph, MI, USA, 2006. [Google Scholar]
- Bargoti, S.; Underwood, J.P. Image segmentation for fruit detection and yield estimation in apple orchards. J. Field Robot. 2017, 34, 1039–1060. [Google Scholar] [CrossRef]
- Tanigaki, K.; Fujiura, T.; Akase, A.; Imagawa, I. Cherry Harvesting Robot. In Proceedings of the 3rd IFAC International Workshop on Bio-robotics, Information Technology and Intelligent Control for Bioproduction Systems, Sapporo, Japan, 9–10 September 2006; pp. 254–260. [Google Scholar]
- Van Henten, E.J.; Hemming, J.; Van Tuijl, B.A.J.; Kornet, J.G.; Bontsema, J. Collision-free Motion Planning for a Cucumber Picking Robot. Biosyst. Eng. 2003, 86, 135–144. [Google Scholar] [CrossRef]
- Payne, A.B.; Walsh, K.B.; Subedi, P.P.; Jarvis, D. Estimation of mango crop yield using image analysis–segmentation method. Comput. Electron. Agric. 2013, 91, 57–64. [Google Scholar] [CrossRef]
- Qureshi, W.S.; Payne, A.; Walsh, K.B.; Linker, R.; Cohen, O.; Dailey, M.N. Machine vision for counting fruit on mango tree canopies. Precis. Agric. 2017, 18, 224–244. [Google Scholar] [CrossRef]
- Harrell, R.C.; Adsit, P.D.; Pool, T.A.; Hoffman, R. The Florida Robotic Grove Lab; ASAE Paper no. 88–1578; ASAE: St. Joseph, MI, USA, 1988. [Google Scholar]
- Hannan, M.W.; Burks, T.F. Current Developments in Automated Citrus Harvesting; ASAE Paper no., 043087; ASAE: St. Joseph, MI, USA, 2004. [Google Scholar]
- Chaivivatrakul, S.; Moonrinta, J.; Dailey, M.N. Towards Automated Crop Yield Estimation-Detection and 3D Reconstruction of Pineapples in Video Sequences. In Proceedings of the Fifth International Conference on Computer Vision Theory and Applications, Angers, France, 17–21 May 2010; pp. 180–183. [Google Scholar]
- Chaivivatrakul, S.; Dailey, M.N. Texture-based fruit detection. Precis. Agric. 2014, 15, 662–683. [Google Scholar] [CrossRef]
- Kondo, N.; Nishitsuji, Y.; Ling, P.P.; Ting, K.C. Visual Feedback Guided Robotic Cherry Tomato Harvesting. Trans. ASAE 1996, 39, 2331–2338. [Google Scholar] [CrossRef]
- Clement, J.; Novas, N.; Gazquez, J.A.; Manzano-Agugliaro, F. An active contour computer algorithm for the classification of cucumbers. Comput. Electron. Agric. 2013, 92, 75–81. [Google Scholar] [CrossRef]
- Novas, N.; Álvarez-Bermejo, J.A.; Valenzuela, J.L.; Gázquez, J.A.; Manzano-Agugliaro, F. Development of a smartphone application for assessment of chilling injuries in zucchini. Biosyst. Eng. 2019, 181, 114–127. [Google Scholar] [CrossRef]
- Whittaker, D.; Miles, G.E.; Mitchell, O.R.; Gaultney, L.D. Fruit location in a partially occluded image. Trans. ASAE 1987, 30, 591–596. [Google Scholar] [CrossRef]
- Pla, F. Recognition of partial circular shapes from segmented contours. Comput. Vis. Image Undst. 1996, 63, 334–343. [Google Scholar] [CrossRef]
- Grasso, G.M.; Recce, M. Scene analysis for an orange harvesting robot. AI Appl. 1997, 11, 9–15. [Google Scholar]
- Qureshi, W.S.; Satoh, S.I.; Dailey, M.N.; Ekpanyapong, M. Dense segmentation of textured fruits in video sequences. In Proceedings of the IEEE International Conference on Computer Vision Theory and Applications (VISAPP), Lisbon, Portugal, 5–8 January 2014; Volume 2. [Google Scholar]
- Jiménez, A.R.; Ceres, R.; Pons, J.L. A survey of computer vision methods for locating fruit on trees. Trans. ASAE 2000, 43, 1911. [Google Scholar] [CrossRef]
- Sharifi, M.; Rafiee, S.; Keyhani, A.; Jafari, A.; Mobli, H.; Rajabipour, A.; Akram, A. Some physical properties of orange (var. Tompson). Int. Agrophys. 2007, 21, 391–397. [Google Scholar]
- Hannan, M.W.; Burks, T.F.; Bulanon, D.M.A. A machine vision algorithm combining adaptive segmentation and shape analysis for orange fruit detection. Agric. Eng. Int. CIGR J. 2010, 11, 1281. [Google Scholar]
- Zapata-Sierra, A.J.; Manzano-Agugliaro, F. Controlled deficit irrigation for orange trees in Mediterranean countries. J. Clean. Prod. 2017, 162, 130–140. [Google Scholar] [CrossRef]
- Plebe, A.; Grasso, G. Localization of spherical fruits for robotic harvesting. Mach. Vis. Appl. 2001, 13, 70–79. [Google Scholar] [CrossRef]
- Gongal, A.; Amatya, S.; Karkee, M.; Zhang, Q.; Lewis, K. Sensors and systems for fruit detection and localization: A review. Comput. Electron. Agric. 2015, 116, 8–19. [Google Scholar] [CrossRef]
- Lefsky, M.A.; Harding, D.; Cohen, W.B.; Parker, G.; Shugart, H.H. Surface lidar remote sensing of basal area and biomass in deciduous forests of eastern Maryland, USA. Remote Sens. Environ. 1999, 67, 83–98. [Google Scholar] [CrossRef]
- Huang, H.; Li, Z.; Gong, P.; Cheng, X.; Clinton, N.; Cao, C.; Wenjian, N.; Wang, L. Automated methods for measuring DBH and tree heights with a commercial scanning lidar. Photogramm. Eng. Remote Sens. 2011, 77, 219–227. [Google Scholar] [CrossRef]
- Sola-Guirado, R.R.; Bayano-Tejero, S.; Rodríguez-Lizana, A.; Gil-Ribes, J.A.; Miranda-Fuentes, A. Assessment of the Accuracy of a Multi-Beam LED Scanner Sensor for Measuring Olive Canopies. Sensors 2018, 18, 4406. [Google Scholar] [CrossRef] [PubMed]
- Miranda-Fuentes, A.; Rodríguez-Lizana, A.; Gil, E.; Agüera-Vega, J.; Gil-Ribes, J.A. Influence of liquid-volume and airflow rates on spray application quality and homogeneity in super-intensive olive tree canopies. Sci. Total Environ. 2015, 537, 250–259. [Google Scholar] [CrossRef] [PubMed]
- Miranda-Fuentes, A.; Llorens, J.; Rodríguez-Lizana, A.; Cuenca, A.; Gil, E.; Blanco- Roldán, G.L.; Gil-Ribes, J.A. Assessing the optimal liquid volume to be sprayed on isolated olive trees according to their canopy volume. Sci. Total Environ. 2016, 568, 296–305. [Google Scholar] [CrossRef]
- Miranda-Fuentes, A.; Rodríguez-Lizana, A.; Cuenca, A.; González-Sánchez, E.J.; Blanco-Roldán, G.L.; Gil-Ribes, J.A. Improving plant protection product applications in traditional and intensive olive orchards through the development of new prototype air-assisted sprayers. Crop Prot. 2017, 94, 44–58. [Google Scholar] [CrossRef]
- Verroust, A.; Lazarus, F. Extracting skeletal curves from 3D scattered data. Vis. Comput. 2000, 16, 15–25. [Google Scholar] [CrossRef]
- Mizoue, N.; Masutani, T. Image analysis measure of crown condition, foliage biomass and stem growth relationships of Chamaecyparis obtusa. For. Ecol. Manag. 2003, 172, 79–88. [Google Scholar] [CrossRef]
- Pfeifer, N.; Gorte, B.; Winterhalder, D. Automatic reconstruction of single trees from terrestrial laser scanner data. In Proceedings of the 20th ISPRS Congress: Geo-imagery Bridging Continents, Istanbul, Turkey, 12–23 July 2004; pp. 114–119. [Google Scholar]
- Phattaralerphong, J.; Sinoquet, H. Tree Analyser: Software to Compute Tree Structure Parameters from Photographs. User Manual. PIAF-INRA. 2007. Available online: http://www2.clermont.inra.fr/piaf/eng/download/download.php (accessed on 1 August 2019).
- Phattaralerphong, J.; Sinoquet, H. A method for 3D reconstruction of tree crown volume from photographs: Assessment with 3D-digitized plants. Tree Physiol. 2005, 25, 1229–1242. [Google Scholar] [CrossRef]
- Bailey, B.N.; Ochoa, M.H. Semi-direct tree reconstruction using terrestrial LiDAR point cloud data. Remote Sens. Environ. 2018, 208, 133–144. [Google Scholar] [CrossRef]
- Lim, M.; Rosser, N.; Allison, R.; Petley, D. Erosional processes in the hard rock coastal cliffs at Staithes. Geomorphology 2010, 114, 12–21. [Google Scholar] [CrossRef]
- García-Gómez, I.; de Gorostiza, M.; Moraza, A. Láser escáner y nubes de puntos. Un horizonte aplicado al análisis arqueológico de edificios. Arqueol. Arquit. 2010, 30, 25–44. [Google Scholar] [CrossRef]
- Benedí, J.; Moreno, J.; Molina, C.; Arguedas, G.; Serrano, S.; Oliván, A. Utilización de técnicas de láser escáner terrestre en la monitorización de procesos geomorfológicos dinámicos: El manto de nieve y heleros en áreas de montaña. Cuadernos de investigación geográfica 2013, 39, 335–357. [Google Scholar]
- Ball, G.H.; Hall, D.J. ISODATA, A Novel Method of Data Analysis and Pattern Classification; Stanford Research Inst.: Menlo Park, CA, USA, 1965. [Google Scholar]
- Ridler, T.W.; Calvard, S. Picture thresholding using an iterative selection method. IEEE Trans. Syst. Man Cybern. 1978, 8, 630–632. [Google Scholar]
- Unay, D.; Gosselin, B. Thresholding-based segmentation and apple grading by machine vision. In Proceedings of the 13th European Signal Processing Conference, Antalya, Turkey, 4–8 September 2005. [Google Scholar]
- Shruthi, G. Automatic Detection and Classification of Apple-A Survey. In Proceedings of the Third International Conference on Current Trends in Engineering Science and Technology (ICCTEST 2017), Bangalore, India, 5–7 January 2017; Don Bosco Institute of Technology: Dbit, Bangalore, India. [Google Scholar]
- Lloyd, S.P. Least squares quantization in PCM. IEEE Trans. Inform. Theory 1982, 28, 129–137. [Google Scholar] [CrossRef]
- Cormen, T.H.; Leiserson, C.E.; Rivest, R.L.; Stein, C. Introduction to Algorithms, 3rd ed.; The MIT Press: London, UK, 2009; pp. 248–300. [Google Scholar]
- Goldberg, K.M.; Iglewicz, B. Bivariate extensions of the boxplot. Technometrics 1992, 34, 307–320. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Comput-Ing; R Foundation for Statistical Computing: Vienna, Austria, 2015. [Google Scholar]
- Stein, M.; Bargoti, S.; Underwood, J. Image Based Mango Fruit Detection, Localisation andYield Estimation Using Multiple View Geometry. Sensors 2016, 16, 1915. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Yuan, Y.; Zhou, Y.; Naz Syed, T. Experiments and Analysis of Close-Shot Identification of On-Branch Citrus Fruit with RealSense. Sensors 2018, 18, 1510. [Google Scholar] [CrossRef] [PubMed]
- Tabatabaeefar, A.; Vefagh-Nematolahee, A.; Rajabipour, A. Modeling of orange mass based on dimensions. Agric. Sci. Technol. 2000, 2, 299–305. [Google Scholar]
Harvest (kg) | Tree | Total (kg) | |||||||
---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | ||
Real | 78.0 | 76.0 | 56.5 | 59.0 | 52.0 | 75.5 | 86.0 | 66.0 | 549 |
Regression | 80.7 | 82.8 | 64.0 | 70.8 | 64.3 | 59.8 | 77.13 | 62.9 | 563 |
Algorithm | 64.9 | 67.4 | 45.1 | 53.2 | 45.5 | 40.1 | 60.7 | 43.8 | 421 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Méndez, V.; Pérez-Romero, A.; Sola-Guirado, R.; Miranda-Fuentes, A.; Manzano-Agugliaro, F.; Zapata-Sierra, A.; Rodríguez-Lizana, A. In-Field Estimation of Orange Number and Size by 3D Laser Scanning. Agronomy 2019, 9, 885. https://doi.org/10.3390/agronomy9120885
Méndez V, Pérez-Romero A, Sola-Guirado R, Miranda-Fuentes A, Manzano-Agugliaro F, Zapata-Sierra A, Rodríguez-Lizana A. In-Field Estimation of Orange Number and Size by 3D Laser Scanning. Agronomy. 2019; 9(12):885. https://doi.org/10.3390/agronomy9120885
Chicago/Turabian StyleMéndez, Valeriano, Antonio Pérez-Romero, Rubén Sola-Guirado, Antonio Miranda-Fuentes, Francisco Manzano-Agugliaro, Antonio Zapata-Sierra, and Antonio Rodríguez-Lizana. 2019. "In-Field Estimation of Orange Number and Size by 3D Laser Scanning" Agronomy 9, no. 12: 885. https://doi.org/10.3390/agronomy9120885
APA StyleMéndez, V., Pérez-Romero, A., Sola-Guirado, R., Miranda-Fuentes, A., Manzano-Agugliaro, F., Zapata-Sierra, A., & Rodríguez-Lizana, A. (2019). In-Field Estimation of Orange Number and Size by 3D Laser Scanning. Agronomy, 9(12), 885. https://doi.org/10.3390/agronomy9120885