Next Article in Journal
First Report of Herbicide-Resistant Echinochloa crus-galli in Uruguayan Rice Fields
Previous Article in Journal
Performances of Durum Wheat Varieties Under Conventional and No-Chemical Input Management Systems in a Semiarid Mediterranean Environment
Open AccessArticle

Growth, Evapotranspiration, and Ion Uptake Characteristics of Alfalfa and Triticale Irrigated with Brackish Groundwater and Desalination Concentrate

1
Plant and Environmental Sciences Department, New Mexico State University, P.O. Box 30003, MSC 3Q, Las Cruces, NM 88003, USA
2
Economics, Applied Statistics & International Business Department, New Mexico State University, Las Cruces, NM 88003, USA
3
Entomology, Plant Pathology, and Weed Science, New Mexico State University, Las Cruces, NM 88003, USA
*
Author to whom correspondence should be addressed.
Agronomy 2019, 9(12), 789; https://doi.org/10.3390/agronomy9120789
Received: 24 September 2019 / Revised: 5 November 2019 / Accepted: 15 November 2019 / Published: 22 November 2019
Persistent drought, low snowfall, and low rainfall have reduced availability of fresh water for irrigating agricultural crops in many arid and semi-arid regions of the world. Brackish groundwater (electrical conductivity; EC > 3 dSm−1) is increasingly used for irrigation in New Mexico. This study investigates the effect of ion uptake from brackish groundwater and concentrate irrigation on the performance of two forage species, alfalfa (Medicago sativa) and triticale (×Triticosecale), in sand soils in greenhouse conditions. Two simultaneous experiments were run for 90 days using tap water (control; 0.7 dSm−1), brackish groundwater (BGW; 4 dSm−1), reverse osmosis concentrate (RO; 8 dSm−1, Ca2+ dominant), and BGW plus sodium chloride (BGW + NaCl; 8 dSm−1, Na+ dominant). BGW + NaCl irrigation significantly reduced the evapotranspiration (ET) of both the species. Deep percolation (DP) increased significantly with RO and BGW + NaCl irrigation in alfalfa but only with BGW + NaCl irrigation in triticale. Alfalfa plant growth decreased with increasing salinity, while triticale plants followed an opposite trend. ET continued to decrease with increasing salinity for both species. Na+ dominant (BGW + NaCl) irrigation produced robust growth and early flowering and ear head formation in triticale. Na+ ion concentration in shoots was above 0.66%, which led to reduced alfalfa growth, while more than 1.22% did not decrease triticale growth or biomass. Increased Ca2+ sequestration in alfalfa played a crucial role in reducing Na+ ion toxicity. Species performance primarily confirmed that alfalfa is moderately salt-tolerant while triticale is confirmed to be a halophyte producing abundant growth and biomass with higher Na+ uptake. Triticale proved to be a promising species for reuse of RO concentrate for agriculture in marginal lands. View Full-Text
Keywords: brackish groundwater (BGW); reverse osmosis (RO); evapotranspiration (ET); biomass; ion concentration brackish groundwater (BGW); reverse osmosis (RO); evapotranspiration (ET); biomass; ion concentration
Show Figures

Figure 1

MDPI and ACS Style

Kankarla, V.; Shukla, M.K.; VanLeeuwen, D.; Schutte, B.J.; Picchioni, G.A. Growth, Evapotranspiration, and Ion Uptake Characteristics of Alfalfa and Triticale Irrigated with Brackish Groundwater and Desalination Concentrate. Agronomy 2019, 9, 789.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Search more from Scilit
 
Search
Back to TopTop