Nondestructive Estimation of the Chlorophyll b of Apple Fruit by Color and Spectral Features Using Different Methods of Hybrid Artificial Neural Network
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples Used
2.2. Development of Visible and Near-Infrared Light Spectroscopy System
2.3. Extracting Color Features
2.4. Extraction of Chlorophyll b
2.5. Different Hybrids of Artificial Neural Networks Used for Selecting Effective Features and Predicting Chlorophyll b
2.6. Hybrid Neural Networks Used to Select the Most Effective Color Features
2.7. Neural Network Hybrid Used to Estimate the Amount of Chlorophyll b Using Color Features
2.8. Neural Network Hybrid Used to Select Effective Wavelengths
2.9. Neural Network Hybrid Used to Estimate Chlorophyll b Content Using Spectral Data
Algorithm 1: Algorithm of biogeography-based optimization. |
1: Production of initial populations and sorting 2: Determining rates of immigrant receptivity and receiving 3: For (habitat like j) 4: For (variable such as k in the habitat j) 5: With the probability of immigrant receptivity in a settlement in the variable, changes are applied according to steps 6 to 8 6: Determining the origin of immigration using immigrant receptivity values randomly 7: Immigration from a settlement to another 8: With a certain probability, are applied to the variable component (random changes (mutation)) 9: end for 10: end for 11: The set of new answers is evaluated 12: Combining the main population (old) and the population from migration Create a new stage population 13: If the termination conditions are not fulfilled, the algorithm will be returned to step 3 14: End process |
2.10. Parameters Used to Evaluate the Performance of Proposed Methods for Estimating the Amount of Chlorophyll b
3. Results and Discussion
3.1. Response of Apple Samples to Visible/Near-Infrared Wavelengths
3.2. Estimation of chlorophyll b Using Color Features
3.3. Estimation of Chlorophyll b Content Using Non-Destructive Spectroscopy Method
3.4. Analyzing the Performance of Chlorophyll b Predictive Systems Based on Color and Spectroscopy Methods
3.5. Effective Wavelengths Selected by the Hybrid Artificial Neural Network—Differential Evolution Algorithm
3.6. The Performance of the Chlorophyll b Estimation System Based on the Effective Wavelengths Selected
4. Conclusions
- The cost of the configuration and set-up of the spectroscopy system is very important for real time aims. To reduce the cost of configuration, a small window of around 680 nm wavelength could be used instead of using spectroscopy over the entire visible/near-infrared range.
- The largest peak in spectral diagrams in the visible light region is related to the chlorophyll absorption because the chlorophyll b content was predicted to be high when the coefficient was predicted using the relevant spectral data of this region.
- There is a relationship between the color features of the apple and the amount of chlorophyll b so that the chlorophyll b values are estimated using these color features, with a coefficient of more than 0.996.
- Performance of the spectral method is higher than the color method in terms of the determination and regression coefficients as well as the error estimation parameters.
- When effective spectra selected by the hybrid artificial neural network-differential evolution algorithm are introduced as an input to a hybrid artificial neural network-biogeography-based algorithm, it has high regression and determination coefficients.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Blasco, J.; Aleixos, N.; Moltó, E. Machine vision system for automatic quality grading of fruit. Biosyst. Eng. 2003, 85, 415–423. [Google Scholar] [CrossRef]
- Leemans, V.; Magein, H.; Destain, M.F. AE—Automation and emerging technologies: On-line fruit grading according to their external quality using machine vision. Biosyst. Eng. 2002, 83, 397–404. [Google Scholar] [CrossRef]
- Kondo, N.; Ahmad, U.; Monta, M.; Murase, H. Machine vision based quality evaluation of Iyokan orange fruit using neural networks. Comput. Electron. Agric. 2000, 29, 135–147. [Google Scholar] [CrossRef]
- Liu, Y.; Sun, X.; Zhang, H.; Aiguo, O. Nondestructive measurement of internal quality of Nanfeng mandarin fruit by charge coupled device near infrared spectroscopy. Comput. Electron. Agric. 2010, 71, S10–S14. [Google Scholar] [CrossRef]
- Arendse, E.; Fawole, O.A.; Magwaza, L.S.; Opara, U.L. Non-destructive prediction of internal and external quality attributes of fruit with thick rind: A review. J. Food Eng. 2018, 217, 11–23. [Google Scholar] [CrossRef]
- Nicolai, B.M.; Beullens, K.; Bobelyn, E.; Peirs, A.; Saeys, W.; Theron, K.I.; Lammertyn, J. Nondestructive measurement of fruit and vegetable quality by means of NIR spectroscopy: A review. Postharvest Biol. Technol. 2007, 46, 99–118. [Google Scholar] [CrossRef]
- Gowen, A.; O’Donnell, C.; Cullen, P.; Downey, G.; Frias, J. Hyperspectral imaging—An emerging process analytical tool for food quality and safety control. Trends Food Sci. Technol. 2007, 18, 590–598. [Google Scholar] [CrossRef]
- Marcone, M.F.; Wang, S.; Albabish, W.; Nie, S.; Somnarain, D.; Hill, A. Diverse food-based applications of nuclear magnetic resonance (NMR) technology. Food Res. Int. 2013, 51, 729–747. [Google Scholar] [CrossRef]
- Zhang, L.; McCarthy, M.J. Assessment of pomegranate postharvest quality using nuclear magnetic resonance. Postharvest Biol. Technol. 2013, 77, 59–66. [Google Scholar] [CrossRef]
- Donis-González, I.R.; Guyer, D.E.; Fulbright, D.W.; Pease, A. Postharvest noninvasive assessment of fresh chestnut (Castanea spp.) internal decay using computer tomography images. Postharvest Biol. Technol. 2014, 94, 14–25. [Google Scholar] [CrossRef]
- Magwaza, L.S.; Opara, U.L. Investigating non-destructive quantification and characterization of pomegranate fruit internal structure using X-ray computed tomography. Postharvest Biol. Technol. 2014, 95, 1–6. [Google Scholar] [CrossRef]
- Clément, A.; Dorais, M.; Vernon, M. Nondestructive measurement of fresh tomato lycopene content and other physicochemical characteristics using visible- NIR spectroscopy. J. Agric. Food Chem. 2008, 56, 9813–9818. [Google Scholar] [CrossRef] [PubMed]
- Baranska, M.; Schütze, W.; Schulz, H. Determination of lycopene and β-carotene content in tomato fruits and related products: Comparison of FT-Raman, ATR-IR, and NIR spectroscopy. Anal. Chem. 2006, 78, 8456–8461. [Google Scholar] [CrossRef] [PubMed]
- Pan, L.; Lu, R.; Zhu, Q.; McGrath, J.M.; Tu, K. Measurement of moisture, soluble solids, sucrose content and mechanical properties in sugar beet using portable visible and near-infrared spectroscopy. Postharvest Biol. Technol. 2015, 102, 42–50. [Google Scholar] [CrossRef]
- Huang, Y.; Lu, R.; Chen, K. Assessment of tomato soluble solids content and pH by spatially-resolved and conventional Vis/NIR spectroscopy. J. Food Eng. 2018, 236, 19–28. [Google Scholar] [CrossRef]
- Amoriello, T.; Ciccoritti, R.; Paliotta, M.; Carbone, K. Classification and prediction of early-to-late ripening apricot quality using spectroscopic techniques combined with chemometric tools. Sci. Hortic. 2018, 240, 310–317. [Google Scholar] [CrossRef]
- Moscetti, R.; Haff, R.P.; Monarca, D.; Cecchini, M.; Massantini, R. Near-infrared spectroscopy for detection of hailstorm damage on olive fruit. Postharvest Biol. Technol. 2016, 120, 204–212. [Google Scholar] [CrossRef]
- Bexiga, F.; Rodrigues, D.; Guerra, R.; Brázio, A.; Balegas, T.; Cavaco, A.M.; Antunes, M.D.; de Oliveira, J.V. A TSS classification study of ‘Rocha’pear (Pyrus communis L.) based on non-invasive visible/near infra-red reflectance spectra. Postharvest Biol. Technol. 2017, 132, 23–30. [Google Scholar] [CrossRef]
- Eisenstecken, D.; Stürz, B.; Robatscher, P.; Lozano, L.; Zanella, A.; Oberhuber, M. The potential of near infrared spectroscopy (NIRS) to trace apple origin: Study on different cultivars and orchard elevations. Postharvest Biol. Technol. 2019, 147, 123–131. [Google Scholar] [CrossRef]
- Ncama, K.; Opara, U.L.; Tesfay, S.Z.; Fawole, O.A.; Magwaza, L.S. Application of Vis/NIR spectroscopy for predicting sweetness and flavour parameters of ‘Valencia’orange (Citrus sinensis) and ‘Star Ruby’grapefruit (Citrus x paradisi Macfad). J. Food Eng. 2017, 193, 86–94. [Google Scholar] [CrossRef]
- Nordey, T.; Joas, J.; Davrieux, F.; Chillet, M.; Léchaudel, M. Robust NIRS models for non-destructive prediction of mango internal quality. Sci. Hortic. 2017, 216, 51–57. [Google Scholar] [CrossRef]
- Huang, Y.; Lu, R.; Hu, D.; Chen, K. Quality assessment of tomato fruit by optical absorption and scattering properties. Postharvest Biol. Technol. 2018, 143, 78–85. [Google Scholar] [CrossRef]
- Uwadaira, Y.; Sekiyama, Y.; Ikehata, A. An examination of the principle of non-destructive flesh firmness measurement of peach fruit by using VIS-NIR spectroscopy. Heliyon 2018, 4, e00531. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oliveira-Folador, G.; de Oliveira Bicudo, M.; de Andrade, E.F.; Renard, C.M.G.C.; Bureau, S.; de Castilhos, F. Quality traits prediction of the passion fruit pulp using NIR and MIR spectroscopy. LWT 2018, 95, 172–178. [Google Scholar] [CrossRef]
- Francis, F. Quality as influenced by color. Food Qual. Prefer. 1995, 6, 149–155. [Google Scholar] [CrossRef]
- Crisosto, C.H.; Crisosto, G.M.; Metheney, P. Consumer acceptance of ‘Brooks’ and ‘Bing’cherries is mainly dependent on fruit SSC and visual skin color. Postharvest Biol. Technol. 2003, 28, 159–167. [Google Scholar] [CrossRef]
- Nisha, P.; Singhal, R.S.; Pandit, A.B. Kinetic modelling of colour degradation in tomato puree (Lycopersicon esculentum L.). Food Bioprocess Technol. 2011, 4, 781–787. [Google Scholar] [CrossRef]
- Hertog, M.L.; Lammertyn, J.; Desmet, M.; Scheerlinck, N.; Nicolaı, B.M. The impact of biological variation on postharvest behaviour of tomato fruit. Postharvest Biol. Technol. 2004, 34, 271–284. [Google Scholar] [CrossRef]
- Pinheiro, J.; Alegria, C.; Abreu, M.; Gonçalves, E.M.; Silva, C.L. Kinetics of changes in the physical quality parameters of fresh tomato fruits (Solanum lycopersicum, cv.‘Zinac’) during storage. J. Food Eng. 2013, 114, 338–345. [Google Scholar] [CrossRef]
- Lana, M.M.; Tijskens, L.; De Theije, A.; Hogenkamp, M.; Van Kooten, O. Assessment of changes in optical properties of fresh-cut tomato using video image analysis. Postharvest Biol. Technol. 2006, 41, 296–306. [Google Scholar] [CrossRef]
- Schouten, R.E.; Huijben, T.P.; Tijskens, L.; Van Kooten, O. Modelling quality attributes of truss tomatoes: Linking colour and firmness maturity. Postharvest Biol. Technol. 2007, 45, 298–306. [Google Scholar] [CrossRef]
- Schouten, R.E.; Farneti, B.; Tijskens, L.; Alarcón, A.A.; Woltering, E.J. Quantifying lycopene synthesis and chlorophyll breakdown in tomato fruit using remittance VIS spectroscopy. Postharvest Biol. Technol. 2014, 96, 53–63. [Google Scholar] [CrossRef]
- Tilahun, S.; Park, D.S.; Seo, M.H.; Hwang, I.G.; Kim, S.H.; Choi, H.R.; Jeong, C.S. Prediction of lycopene and β-carotene in tomatoes by portable chroma-meter and VIS/NIR spectra. Postharvest Biol. Technol. 2018, 136, 50–56. [Google Scholar] [CrossRef]
- Clerici, M.; Kallmann, C.; Gaspi, F.; Morgano, M.; Martinez-Bustos, F.; Chang, Y. Physical, chemical and technological characteristics of Solanum lycocarpum A. St.-HILL (Solanaceae) fruit flour and starch. Food Res. Int. 2011, 44, 2143–2150. [Google Scholar] [CrossRef]
- Costa, G.; Noferini, M.; Fiori, G.; Torrigiani, P. Use of Vis/NIR spectroscopy to assess fruit ripening stage and improve management in post-harvest chain. Fresh Prod 2009, 1, 35–41. [Google Scholar]
- Eberhart, R.; Kennedy, J. Particle swarm optimization. In Proceedings of the IEEE International Conference on Neural Networks, Perth, WA, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948. [Google Scholar]
- Ali, M.Z.; Awad, N.H.; Suganthan, P.N.; Duwairi, R.M.; Reynolds, R.G. A novel hybrid Cultural Algorithms framework with trajectory-based search for global numerical optimization. Inf. Sci. 2016, 334, 219–249. [Google Scholar] [CrossRef]
- Storn, R.; Price, K. Minimizing the real functions of the ICEC’96 contest by differential evolution. In Proceedings of the IEEE International Conference on Evolutionary Computation, Nagoya, Japan, 20–22 May 1996; pp. 842–844. [Google Scholar]
- Simon, D. Biogeography-based optimization. IEEE Trans. Evol. Comput. 2008, 12, 702–713. [Google Scholar] [CrossRef]
- Sabzi, S.; Javadikia, P.; Rabani, H.; Adelkhani, A. Mass modeling of Bam orange with ANFIS and SPSS methods for using in machine vision. Measurement 2013, 46, 3333–3341. [Google Scholar] [CrossRef]
- Sabzi, S.; Arribas, J.I. A visible-range computer-vision system for automated, non-intrusive assessment of the pH value in Thomson oranges. Comput. Ind. 2018, 99, 69–82. [Google Scholar] [CrossRef]
- Cayuela, J.A. Vis/NIR soluble solids prediction in intact oranges (Citrus sinensis L.) cv. Valencia Late by reflectance. Postharvest Biol. Technol. 2008, 47, 75–80. [Google Scholar] [CrossRef]
- Martínez-Valdivieso, D.; Font, R.; Blanco-Díaz, M.T.; Moreno-Rojas, J.M.; Gómez, P.; Alonso-Moraga, Á.; Del Río-Celestino, M. Application of near-infrared reflectance spectroscopy for predicting carotenoid content in summer squash fruit. Comput. Electron. Agric. 2014, 108, 71–79. [Google Scholar] [CrossRef]
- Adebayo, S.E.; Hashim, N.; Abdan, K.; Hanafi, M.; Mollazade, K. Prediction of quality attributes and ripeness classification of bananas using optical properties. Sci. Hortic. 2016, 212, 171–182. [Google Scholar] [CrossRef]
- Betemps, D.L.; Fachinello, J.C.; Galarça, S.P.; Portela, N.M.; Remorini, D.; Massai, R.; Agati, G. Non-destructive evaluation of ripening and quality traits in apples using a multiparametric fluorescence sensor. J. Sci. Food Agric. 2012, 92, 1855–1864. [Google Scholar] [CrossRef] [PubMed]
- Kuckenberg, J.; Tartachnyk, I.; Noga, G. Evaluation of fluorescence and remission techniques for monitoring changes in peel chlorophyll and internal fruit characteristics in sunlit and shaded sides of apple fruit during shelf-life. Postharvest Biol. Technol. 2008, 48, 231–241. [Google Scholar] [CrossRef]
Parameter | Values |
---|---|
Number of layers | 2 |
Number of neurons | First layer: 11, Second layer: 15 |
Transfer function | First layer: tribas, Second layer: logsig |
Backpropagation network training function | trainscg |
Backpropagation weight/bias learning function | learnpn |
Parameter | Values |
---|---|
Number of layers | 2 |
Number of neurons | First layer: 19, Second layer: 13 |
Transfer function | First layer: radbas, Second layer: tansig |
Backpropagation network training function | traingda |
Backpropagation weight/bias learning function | learngd |
Parameter | Values |
---|---|
Number of layers | 3 |
Number of neurons | First layer: 9, Second layer: 19, Third layer: 7 |
Transfer function | First layer: satlin, Second layer: purelin, Third layer: satlins |
Backpropagation network training function | traingdm |
Backpropagation weight/bias learning function | learncon |
Statistics | MSE | RMSE | MAE | SSE | R |
---|---|---|---|---|---|
Mean ± Standard Deviation | 0.051 ± 0.054 | 0.209 ± 0.086 | 0.144 ± 0.055 | 0.665 ± 0.702 | 0.882 0.047 |
The best result | 0.002 | 0.039 | 0.031 | 0.021 | 0.9931 |
Parameter | Values |
---|---|
Number of layers | 3 |
Number of neurons | First layer: 16, Second layer: 17, Third layer: 13 |
Transfer function | First layer: softmax, Second layer: poslin, Third layer: tansig |
Backpropagation network training function | traingbr |
Backpropagation weight/bias learning function | learnlv2 |
Statistics | MSE | RMSE | MAE | SSE | R |
---|---|---|---|---|---|
Mean ± Standard Deviation | 0.025 ± 0.032 | 0.141 ± 0.073 | 0.099 ± 0.047 | 0.329 ± 0.421 | 0.932 0.046 |
The best result | 0.001 | 0.031 | 0.027 | 0.013 | 0.9965 |
Apple | Measured | Estimated | Apple | Measured | Estimated | Apple | Measured | Estimated |
---|---|---|---|---|---|---|---|---|
Number | Value | Value | Number | Value | Value | Number | Value | Value |
1 | 3.73 | 3.56 ± 0.169 | 15 | 3.71 | 3.54 ± 0.164 | 29 | 3.60 | 3.36 ± 0.140 |
2 | 3.15 | 3.13 ± 0.077 | 16 | 3.37 | 3.39 ± 0.128 | 30 | 3.14 | 3.12 ± 0.074 |
3 | 3.06 | 3.08 ± 0.062 | 17 | 3.75 | 3.59 ± 0.172 | 31 | 3.44 | 3.40 ± 0.125 |
4 | 3.29 | 3.31 ± 0.102 | 18 | 3.49 | 3.39 ± 0.117 | 32 | 3.08 | 3.09 ± 0.077 |
5 | 4.06 | 3.87 ± 0.218 | 19 | 4.86 | 3.51 ± 0.529 | 33 | 3.59 | 3.42 ± 0.134 |
6 | 3.61 | 3.43 ± 0.125 | 20 | 3.11 | 3.14 ± 0.074 | 34 | 3.00 | 2.96 ± 0.150 |
7 | 3.28 | 3.32 ± 0.108 | 21 | 3.02 | 2.99 ± 0.140 | 35 | 3.86 | 3.87 ± 0.263 |
8 | 3.04 | 3.07 ± 0.068 | 22 | 3.69 | 3.50 ± 0.157 | 36 | 3.19 | 3.23 ± 0.093 |
9 | 3.07 | 3.08 ± 0.057 | 23 | 3.13 | 3.12 ± 0.082 | 37 | 3.09 | 3.10 ± 0.159 |
10 | 3.09 | 3.09 ± 0.065 | 24 | 3.12 | 3.12 ± 0.092 | 38 | 3.04 | 3.02 ± 0.191 |
11 | 3.81 | 3.59 ± 0.173 | 25 | 3.42 | 3.43 ± 0.195 | 39 | 3.63 | 3.45 ± 0.136 |
12 | 3.82 | 3.75 ± 0.227 | 26 | 4.26 | 4.02 ± 0.241 | 40 | 3.23 | 3.27 ± 0.110 |
13 | 3.69 | 3.53 ± 0.159 | 27 | 3.04 | 3.05 ± 0.137 | 41 | 3.83 | 3.87 ± 0.292 |
14 | 4.67 | 3.08 ± 0.179 | 28 | 3.18 | 316 ± 0.213 | 42 | 3.06 | 3.07 ± 0.091 |
Apple | Measured | Estimated | Apple | Measured | Estimated | Apple | Measured | Estimated |
---|---|---|---|---|---|---|---|---|
Number | Value | Value | Number | Value | Value | Number | Value | Value |
1 | 3.73 | 3.59 ± 0.167 | 15 | 3.71 | 3.56 ± 0.188 | 29 | 3.60 | 3.40 ± 0.119 |
2 | 3.15 | 3.21 ± 0.079 | 16 | 3.37 | 3.28 ± 0.090 | 30 | 3.14 | 3.16 ± 0.069 |
3 | 3.06 | 3.08 ± 0.049 | 17 | 3.75 | 3.62 ± 0.181 | 31 | 3.44 | 3.34 ± 0.107 |
4 | 3.29 | 3.28 ± 0.089 | 18 | 3.49 | 3.33 ± 0.105 | 32 | 3.08 | 3.09 ± 0.050 |
5 | 4.06 | 3.95 ± 0.249 | 19 | 3.84 | 4.55 ± 0.328 | 33 | 3.59 | 3.36 ± 0.121 |
6 | 3.61 | 3.55 ± 0.173 | 20 | 3.11 | 3.10 ± 0.056 | 34 | 3.00 | 2.96 ± 0.147 |
7 | 3.28 | 3.24 ± 0.083 | 21 | 3.02 | 3.04 ± 0.085 | 35 | 3.86 | 3.65 ± 0.241 |
8 | 3.04 | 3.07 ± 0.066 | 22 | 3.69 | 3.56 ± 0.164 | 36 | 3.19 | 3.22 ± 0.081 |
9 | 3.07 | 3.08 ± 0.069 | 23 | 3.13 | 3.18 ± 0.228 | 37 | 3.09 | 3.08 ± 0.058 |
10 | 3.09 | 3.09 ± 0.052 | 24 | 3.12 | 3.12 ± 0.064 | 38 | 3.04 | 3.05 ± 0.091 |
11 | 3.81 | 3.61 ± 0.176 | 25 | 3.42 | 3.33 ± 0.098 | 39 | 3.63 | 3.54 ± 0.159 |
12 | 3.82 | 3.66 ± 0.211 | 26 | 4.26 | 4.06 ± 0.228 | 40 | 3.23 | 3.28 ± 0.086 |
13 | 3.69 | 3.51 ± 0.154 | 27 | 3.04 | 3.04 ± 0.089 | 41 | 3.83 | 3.74 ± 0.239 |
14 | 4.67 | 4.03 ± 0.177 | 28 | 3.18 | 319 ± 0.069 | 42 | 3.06 | 3.07 ± 0.079 |
Number of Effective Wavelengths | Effective Wavelengths |
---|---|
2 | 687.152, 662.295 |
4 | 664.006, 687.724, 673.425, 697.180 |
6 | 669.428, 664.862, 680.571, 696.033, 683.431, 677.711 |
8 | 683.431, 997.753, 666.287, 685.148, 674.568, 671.141, 672.283, 684.862 |
10 | 662.866, 686.007, 671.997, 676.282, 696.033, 689.156, 690.015, 686.293, 693.453, 686.865 |
The Number of Selected Effective Waveleghs | Statistics | MSE | RMSE | MAE | SSE | R2 |
---|---|---|---|---|---|---|
Mean ± | ||||||
2 | Standard Deviation | 0.032 ± 0.044 | 0.155 ± 0.095 | 0.099 ± 0.054 | 0.414 ± 0.5771 | 0.915 ± 0.106 |
The best result | 0.006 | 0.025 | 0.019 | 0.008 | 0.997 | |
Mean ± | ||||||
4 | Standard Deviation | 0.028 ± 0.112 | 0.138 ± 0.097 | 0.095 ± 0.073 | 0.368 ± 0.455 | 0.926 ± 0.087 |
The best result | 0.0007 | 0.027 | 0.022 | 0.009 | 0.998 | |
Mean ± | ||||||
6 | Standard Deviation | 0.026 ± 0.045 | 0.135 ± 0.087 | 0.093 ± 0.051 | 0.339 ± 0.587 | 0.924 ± 0.094 |
The best result | 0.0007 | 0.026 | 0.020 | 0.008 | 0.996 | |
Mean ± | ||||||
8 | Standard Deviation | 0.024 ± 0.034 | 0.134 ± 0.078 | 0.094 ± 0.048 | 0.315 ± 0.448 | 0.925 ± 0.090 |
The best result | 0.0010 | 0.033 | 0.022 | 0.014 | 0.997 | |
Mean ± | ||||||
10 | Standard Deviation | 0.024 ± 0.038 | 0.133 ± 0.079 | 0.093 ± 0.049 | 0.313 ± 0.496 | 0.930 ± 0.08 |
The best result | 0.001 | 0.031 | 0.027 | 0.013 | 0.9965 |
Method | Type of Fruit | Coefficient of Determination |
---|---|---|
Propose method using spectral features | Apple | 0.998 |
Propose method using color features | Apple | 0.996 |
Ncama et al. [20] | Grapefruit | 0.943 |
Adebayo et al. [44] | Banana | 0.978 |
Betemps et al. [45] | Apple | 0.934 |
Kuckenberg et al. [46] | Apple | 0.927 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abbaspour-Gilandeh, Y.; Sabzi, S.; Hernández-Hernández, M.; Hernández-Hernández, J.L.; Azadshahraki, F. Nondestructive Estimation of the Chlorophyll b of Apple Fruit by Color and Spectral Features Using Different Methods of Hybrid Artificial Neural Network. Agronomy 2019, 9, 735. https://doi.org/10.3390/agronomy9110735
Abbaspour-Gilandeh Y, Sabzi S, Hernández-Hernández M, Hernández-Hernández JL, Azadshahraki F. Nondestructive Estimation of the Chlorophyll b of Apple Fruit by Color and Spectral Features Using Different Methods of Hybrid Artificial Neural Network. Agronomy. 2019; 9(11):735. https://doi.org/10.3390/agronomy9110735
Chicago/Turabian StyleAbbaspour-Gilandeh, Yousef, Sajad Sabzi, Mario Hernández-Hernández, Jose Luis Hernández-Hernández, and Farzad Azadshahraki. 2019. "Nondestructive Estimation of the Chlorophyll b of Apple Fruit by Color and Spectral Features Using Different Methods of Hybrid Artificial Neural Network" Agronomy 9, no. 11: 735. https://doi.org/10.3390/agronomy9110735
APA StyleAbbaspour-Gilandeh, Y., Sabzi, S., Hernández-Hernández, M., Hernández-Hernández, J. L., & Azadshahraki, F. (2019). Nondestructive Estimation of the Chlorophyll b of Apple Fruit by Color and Spectral Features Using Different Methods of Hybrid Artificial Neural Network. Agronomy, 9(11), 735. https://doi.org/10.3390/agronomy9110735