Harvest Maturity Stage and Cold Storage Length Influence on Flavour Development in Peach Fruit
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Maturity Class Definition
2.3. Experimental Design and Storage Conditions
2.4. Fruit Quality Assessment
2.5. Sample Preparation for VOCs Analysis
2.6. Headspace SPME and GC-MS Setup
2.7. Statistical Analysis
3. Results
3.1. Maturity, Cold Storage and Shelf-Life Influence on Fruit Quality Traits
3.2. Maturity, Cold Storage and Shelf-Life Influence on VOC Emission
4. Discussion
4.1. Quality Parameters Are Affected by Maturity Class and Storage
4.2. Evolution of VOCs Profiles in Shelf-Life
4.3. Control of Fruit Ripening and Quality through Cold Storage
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- FAOSTAT. Available online: http://www.fao.org/faostat/en/#home (accessed on 31 August 2017).
- Wang, L.; Chen, S.; Kong, W.; Li, S.; Archbold, D.D. Salicylic acid pretreatment alleviates chilling injury and affects the antioxidant system and heat shock proteins of peaches during cold storage. Postharvest Biol. Technol. 2006, 41, 244–251. [Google Scholar] [CrossRef]
- Crisosto, C.H.; Crisosto, G.M.; Echeverria, G.; Puy, J. Segregation of peach and nectarine (Prunus persica (L.) Batsch) cultivars according to their organoleptic characteristics. Postharvest Biol. Technol. 2006, 39, 10–18. [Google Scholar] [CrossRef]
- Bianchi, T.; Weesepoel, Y.; Koot, A.; Iglesias, I.; Eduardo, I.; Gratacós-cubarsí, M.; Guerrero, L.; Hortós, M.; van Ruth, S. Investigation of the aroma of commercial peach (Prunus persica L. Batsch) types by Proton Transfer Reaction—Mass Spectrometry (PTR-MS) and sensory analysis. Food Res. Int. 2017, 99, 133–146. [Google Scholar] [CrossRef] [PubMed]
- Infante, R.; Aros, D.; Contador, L.; Rubio, P. Does the maturity at harvest affect quality and sensory attributes of peaches and nectarines? N. Z. J. Crop Hortic. Sci. 2012, 40, 103–113. [Google Scholar] [CrossRef] [Green Version]
- Cano-Salazar, J.; Echeverría, G.; Crisosto, C.H.; Lopez, L. Cold-storage potential of four yellow-fleshed peach cultivars defined by their volatile compounds emissions, standard quality parameters, and consumer acceptance. J. Agric. Food Chem. 2012, 60, 1266–1282. [Google Scholar] [CrossRef] [PubMed]
- Infante, R.; Farcuh, M.; Meneses, C. Monitoring the sensorial quality and aroma through an electronic nose in peaches during cold storage. J. Sci. Food Agric. 2008, 88, 2073–2078. [Google Scholar] [CrossRef]
- Giné-Bordonaba, J.; Cantín, C.M.; Echeverría, G.; Ubach, D.; Larrigaudière, C. The effect of chilling injury-inducing storage conditions on quality and consumer acceptance of different Prunus persica cultivars. Postharvest Biol. Technol. 2016, 115, 38–47. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, C.; Li, S.; Yang, L.; Wang, Y.; Zhao, J.; Jiang, Q. Volatile characteristics of 50 peaches and nectarines evaluated by HP-SPME with GC-MS. Food Chem. 2009, 116, 356–364. [Google Scholar] [CrossRef]
- Eduardo, I.; Chietera, G.; Bassi, D.; Rossini, L.; Vecchietti, A. Identification of key odor volatile compounds in the essential oil of nine peach accessions. J. Sci. Food Agric. 2010, 90, 1146–1154. [Google Scholar] [CrossRef]
- Lavilla, T.; Recasens, I.; Lopez, M.L.; Puy, J. Multivariate analysis of maturity stages, including quality and aroma, in “Royal Glory” peaches and “Big Top” nectarines. J. Sci. Food Agric. 2002, 82, 1842–1849. [Google Scholar] [CrossRef]
- Aubert, C.; Günata, Z.; Ambid, C.; Baumes, R. Investigation of Bound Aroma Constituents of Yellow-Fleshed Nectarines (Prunus persica L. Cv. Springbright). Changes in Bound Aroma Profile during Maturation. J. Agric. Food Chem. 2003, 51, 6280–6286. [Google Scholar] [CrossRef] [PubMed]
- Pesis, E. The role of the anaerobic metabolites, acetaldehyde and ethanol, in fruit ripening, enhancement of fruit quality and fruit deterioration. Postharvest Biol. Technol. 2005, 37, 1–19. [Google Scholar] [CrossRef]
- Defilippi, B.G.; Dandekar, A.M.; Kader, A.A. Relationship of ethylene biosynthesis to volatile production, related enzymes, and precursor availability in apple peel and flesh tissues. J. Agric. Food Chem. 2005, 53, 3133–3141. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Xi, W.P.; Wei, W.W.; Shen, J.Y.; Ferguson, I.; Chen, K.S. Changes in aroma-related volatiles and gene expression during low temperature storage and subsequent shelf-life of peach fruit. Postharvest Biol. Technol. 2011, 60, 7–16. [Google Scholar] [CrossRef]
- Cano-Salazar, J.; López, M.L.; Crisosto, C.H.; Echverria, G. Cold storage of six nectarine cultivars: Consequences of volatile compounds emissions, physicochemical parameters, and consumer acceptance. Eur. Food Res. Technol. 2013, 76, 571–589. [Google Scholar] [CrossRef]
- Ortiz, A.; Echeverría, G.; Graell, J.; Lara, I. Overall quality of “Rich Lady” peach fruit after air- or CA storage. The importance of volatile emission. LWT Food Sci. Technol. 2009, 42, 1520–1529. [Google Scholar] [CrossRef]
- Bonora, E.; Noferini, M.; Stefanelli, D.; Costa, G. A new simple modeling approach for the early prediction of harvest date and yield in nectarines. Sci. Hortic. (Amst.) 2014, 172, 1–9. [Google Scholar] [CrossRef]
- Ziosi, V.; Noferini, M.; Fiori, G.; Tadiello, A.; Trainotti, L.; Casadoro, G.; Costa, G. A new index based on vis spectroscopy to characterize the progression of ripening in peach fruit. Postharvest Biol. Technol. 2008, 49, 319–329. [Google Scholar] [CrossRef]
- Aprea, E.; Gika, H.; Carlin, S.; Theodoridis, G.; Vrhovsek, U.; Mattivi, F. Metabolite profiling on apple volatile content based on solid phase microextraction and gas-chromatography time of flight mass spectrometry. J. Chromatogr. A 2011, 1218, 4517–4524. [Google Scholar] [CrossRef]
- Aubert, C.; Günata, Z.; Ambid, C.; Baumes, R. Changes in physicochemical characteristics and volatile constituents of yellow- and white-fleshed nectarines during maturation and artificial ripening. J. Agric. Food Chem. 2003, 51, 3083–3091. [Google Scholar] [CrossRef]
- Crisosto, C.H. How do we increase peach consumption? Acta Hortic. 2002, 592, 601–605. [Google Scholar] [CrossRef]
- Lurie, S.; Crisosto, C.H. Chilling injury in peach and nectarine. Postharvest Biol. Technol. 2005, 37, 195–208. [Google Scholar] [CrossRef]
- Crisosto, C.H.; Crisosto, G.M. Relationship between ripe soluble solids concentration (RSSC) and consumer acceptance of high and low acid melting flesh peach and nectarine (Prunus persica (L.) Batsch) cultivars. Postharvest Biol. Technol. 2005, 38, 239–246. [Google Scholar] [CrossRef]
- Rizzolo, A.; Zerbini, P.E.; Grassi, M.; Cambiaghi, P.; Bianchi, G. Effect of Methylcyclopropene on aroma compounds in Big Top nectarines after shelf-life. J. Food Qual. 2006, 29, 184–202. [Google Scholar] [CrossRef]
- Sánchez, G.; Besada, C.; Badenes, M.L.; Monforte, A.J.; Granell, A. A non-targeted approach unravels the volatile network in peach fruit. PLoS ONE 2012, 7, e38992. [Google Scholar] [CrossRef] [PubMed]
- Matsui, K. Green leaf volatiles: Hydroperoxide lyase pathway of oxylipin metabolism. Curr. Opin. Plant Biol. 2006, 9, 274–280. [Google Scholar] [CrossRef] [PubMed]
Storage (weeks) | Shelf-Life (days) | IAD | Ethylene (nL L−1 h−1 g−1 FW) | ||||
---|---|---|---|---|---|---|---|
0 | C-I | C-M | C-R | C-I | C-M | C-R | |
0 | 1.28 | 0.95 | 0.39 | 0.10 | 0.39 | 2.76 | |
3 | 0.8 | 0.53 | 0.17 | 1.03 | 1.70 | 2.80 | |
6 | 0.34 | 0.23 | 0.06 | 0.85 | 2.34 | 15.76 | |
0 | 1.23 | 0.74 | 0.33 | 0.72 | 1.60 | 3.88 | |
1 | 3 | 0.47 | 0.11 | 0.09 | 4.43 | 17.68 | 38.62 |
6 | 0.11 | 0.08 | 0.12 | 33.15 | 32.08 | 65.93 | |
0 | 1.04 | 0.68 | 0.25 | 8.84 | 8.74 | 13.40 | |
2 | 3 | 0.12 | 0.08 | 0.08 | 13.53 | 13.76 | 57.80 |
6 | 0.06 | 0.06 | 0.09 | 56.48 | 79.49 | 95.20 | |
0 | 0.9 | 0.56 | 0.26 | 4.95 | 8.41 | 10.27 | |
3 | 3 | 0.12 | 0.07 | 0.07 | 25.73 | 54.99 | 33.37 |
6 | 0.06 | 0.04 | 0.1 | 54.40 | 113.63 | 84.19 | |
0 | 0.83 | 0.52 | 0.52 | 0.73 | 2.12 | 6.10 | |
4 | 3 | 0.27 | 0.12 | 0.1 | 5.55 | 11.62 | 35.19 |
6 | 0.18 | 0.13 | 0.11 | 18.13 | 31.31 | 56.26 | |
LSD | 0.07 (p < 0.001) | - Storage x shelf-life day (no IAD interaction): 20.36 (p < 0.001) - Storage x IAD (no shelf-life interaction: 13.78 (p = 0.009) - IAD (no other interations): 6.52 (p < 0.001) |
Storage (weeks) | Shelf-Life (days) | Firmness (N) | SSC (°Brix) | TA (g L−1 malic acid) | SSC/TA Ratio | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | C-I | C-M | C-R | C-I | C-M | C-R | C-I | C-M | C-R | C-I | C-M | C-R | |
0 | 68.4 | 64.6 | 54.3 | 15.2 | 16 | 17.3 | 10.8 | 11 | 9.9 | 1.38 | 1.4 | 1.53 | |
3 | 56.1 | 41.1 | 30.9 | 15.8 | 16.3 | 16.2 | 11 | 11.2 | 8.8 | 1.39 | 1.39 | 1.81 | |
6 | 33.2 | 29.8 | 8.7 | 15.8 | 15.9 | 17.2 | 10.2 | 9.4 | 7.7 | 1.47 | 1.74 | 2.08 | |
1 | 0 | 57.2 | 54.6 | 39.4 | 15.3 | 16 | 16.6 | 8.5 | 9.4 | 8.6 | 1.75 | 1.64 | 1.73 |
3 | 23.1 | 13.4 | 10.2 | 15.1 | 15.8 | 16 | 7.8 | 8.4 | 7.6 | 1.87 | 1.81 | 1.78 | |
6 | 8.6 | 7 | 5.3 | 16.2 | 16.3 | 16.7 | 9.2 | 7.5 | 6.7 | 1.68 | 1.96 | 2.23 | |
2 | 0 | 54.5 | 53.9 | 36.9 | 15.9 | 16.4 | 17 | 10.5 | 9.3 | 8.8 | 1.5 | 1.7 | 1.87 |
3 | 8.7 | 8.4 | 7.8 | 16 | 16.2 | 17.2 | 11.2 | 9.1 | 8 | 1.47 | 1.73 | 2.09 | |
6 | 5.8 | 6.1 | 6 | 16 | 16.8 | 17.9 | 7.9 | 7.4 | 6.1 | 1.97 | 2.22 | 2.58 | |
3 | 0 | 43.3 | 36.1 | 25.9 | 15.6 | 16.3 | 17.5 | 7.9 | 7.8 | 9.2 | 1.9 | 2.01 | 2.22 |
3 | 8.8 | 8.4 | 6.5 | 16 | 16 | 16.9 | NA | 6.1 | 4.9 | NA | 2.64 | 3.71 | |
6 | 4.6 | 4.9 | 3.9 | 16.9 | 16.7 | 15.9 | 7.2 | 6.4 | 4.4 | 2.2 | 2.56 | 3.26 | |
4 | 0 | 44.8 | 35.6 | 21.8 | 16 | 16.2 | 17 | 7.7 | 5.7 | 4.5 | 2.13 | 2.76 | 2.56 |
3 | 28.8 | 12.5 | 7.8 | 15.7 | 16.1 | 17.8 | NA | NA | NA | NA | NA | NA | |
6 | 6.3 | 7.4 | 4.4 | NA | 19.6 | 20.8 | NA | NA | NA | NA | NA | NA | |
LSD | 6.4 (p < 0.001) | 2.0 (p = 0.014) | 3.0 (p = 0.096) | 0.51 (p = 0.150) |
Compounds | ID | RT | Mean at Harvest * | Standard Deviation | ||||
---|---|---|---|---|---|---|---|---|
C-I | C-M | C-R | C-I | C-M | C-R | |||
Aldehydes | ||||||||
(E)-2-Hexenal | Ald_1 | 10.34 | 0.85 | 1.21 | 0.74 | 0.12 | 0.51 | 0.40 |
(E,E)-2,4-hexadienal | Ald_2 | 16.39 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 |
(Z)-3-Hexenal | Ald_3 | 8.05 | 0.90 | 1.02 | 0.82 | 0.43 | 0.34 | 0.23 |
Hexanal | Ald_4 | 6.23 | 1.61 | 2.38 | 1.43 | 0.29 | 0.59 | 0.51 |
Pentanal | Ald_5 | 3.87 | 0.13 | 0.14 | 0.07 | 0.10 | 0.08 | 0.05 |
Furfural | Ald_6 | 18.43 | 0.02 | 0.02 | 0.01 | 0.01 | 0.01 | 0.01 |
Alcohols | ||||||||
(Z)-3-hexen-1-ol | Alc_1 | 16 | 0.10 | 0.12 | 0.09 | 0.05 | 0.04 | 0.02 |
2-Ethylhexan-1-ol | Alc_2 | 19.52 | 0.04 | 0.04 | 0.03 | 0.01 | 0.01 | 0.01 |
1-Pentanol | Alc_3 | 11.99 | 0.02 | 0.02 | 0.01 | 0.01 | 0.01 | 0.01 |
Esters | ||||||||
Ethyl acetate | Est_1 | 2.55 | ND | ND | ND | ND | ND | ND |
Methyl acetate | Est_2 | 2.06 | ND | ND | ND | ND | ND | ND |
(Z)-3-hexenyl acetate | Est_3 | 14.07 | 0.05 | 0.05 | 0.03 | 0.02 | 0.02 | 0.01 |
Lactones | ||||||||
6-Amyl-α-pyrone | Lac_1 | 37.31 | 0.01 | 0.01 | 0.02 | 0.01 | 0.01 | 0.01 |
γ-Decalactone | Lac_2 | 36.48 | 0.05 | 0.06 | 0.07 | 0.01 | 0.01 | 0.02 |
δ-Decalactone | Lac_3 | 37.41 | 0.02 | 0.03 | 0.04 | 0.01 | 0.01 | 0.01 |
γ-Hexalactone | Lac_4 | 25.24 | 0.01 | 0.02 | 0.02 | 0.01 | 0.01 | 0.01 |
γ-Octalactone | Lac_5 | 30.86 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 |
5-ethyl-(5H)-furan-2-one | Lac_6 | 22.34 | 0.03 | 0.03 | 0.02 | 0.01 | 0.01 | 0.01 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ceccarelli, A.; Farneti, B.; Frisina, C.; Allen, D.; Donati, I.; Cellini, A.; Costa, G.; Spinelli, F.; Stefanelli, D. Harvest Maturity Stage and Cold Storage Length Influence on Flavour Development in Peach Fruit. Agronomy 2019, 9, 10. https://doi.org/10.3390/agronomy9010010
Ceccarelli A, Farneti B, Frisina C, Allen D, Donati I, Cellini A, Costa G, Spinelli F, Stefanelli D. Harvest Maturity Stage and Cold Storage Length Influence on Flavour Development in Peach Fruit. Agronomy. 2019; 9(1):10. https://doi.org/10.3390/agronomy9010010
Chicago/Turabian StyleCeccarelli, Alessandro, Brian Farneti, Christine Frisina, David Allen, Irene Donati, Antonio Cellini, Guglielmo Costa, Francesco Spinelli, and Dario Stefanelli. 2019. "Harvest Maturity Stage and Cold Storage Length Influence on Flavour Development in Peach Fruit" Agronomy 9, no. 1: 10. https://doi.org/10.3390/agronomy9010010
APA StyleCeccarelli, A., Farneti, B., Frisina, C., Allen, D., Donati, I., Cellini, A., Costa, G., Spinelli, F., & Stefanelli, D. (2019). Harvest Maturity Stage and Cold Storage Length Influence on Flavour Development in Peach Fruit. Agronomy, 9(1), 10. https://doi.org/10.3390/agronomy9010010