Next Article in Journal
Insights into the Positive Effect of Pyraclostrobin on Sugarcane Productivity
Next Article in Special Issue
Synergistic Effect of Sulfur and Nitrogen in the Organic and Mineral Fertilization of Durum Wheat: Grain Yield and Quality Traits in the Mediterranean Environment
Previous Article in Journal
Does Nitrogen Matter for Legumes? Starter Nitrogen Effects on Biological and Economic Benefits of Cowpea (Vigna unguiculata L.) in Guinea and Sudan Savanna of West Africa
Previous Article in Special Issue
Nitrate Assimilation Limits Nitrogen Use Efficiency (NUE) in Maize (Zea mays L.)
Open AccessArticle

Potassium Supplying Capacity of Diverse Soils and K-Use Efficiency of Maize in South Asia

1
International Maize and Wheat Improvement Centre, Bangladesh Office, House-10/B, Road-53, Gulshan-2, Dhaka 1212, Bangladesh
2
Soil Research Group, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Victoria 3010, Australia
3
Department of Agronomy, Bangladesh Agricultural University, Mymensingh 2022, Bangladesh
4
International Plant Nutrition Institute, South Asia Office, Palm Drive, B-1602, Golf Course Ext Road, Sector-66, Gurgaon 122001, Haryana, India
*
Author to whom correspondence should be addressed.
Agronomy 2018, 8(7), 121; https://doi.org/10.3390/agronomy8070121
Received: 13 June 2018 / Revised: 4 July 2018 / Accepted: 12 July 2018 / Published: 16 July 2018
(This article belongs to the Special Issue Fertilizer Application on Crop Yield)
Increased nutrient withdrawal by rapidly expanding intensive cropping systems, in combination with imbalanced fertilization, is leading to potassium (K) depletion from agricultural soils in Asia. There is an urgent need to better understand the soil K-supplying capacity and K-use efficiency of crops to address this issue. Maize is increasingly being grown in rice-based systems in South Asia, particularly in Bangladesh and North East India. The high nutrient extraction, especially K, however, causes concerns for the sustainability of maize production systems in the region. The present study was designed to estimate, through a plant-based method, the magnitude, and variation in K-supplying capacity of a range of soils from the maize-growing areas and the K-use efficiency of maize in Bangladesh. Eighteen diverse soils were collected from several upazillas (or sub-districts) under 11 agro-ecological zones to examine their K-supplying capacity from the soil reserves and from K fertilization (100 mg K kg−1 soil) for successive seven maize crops grown up to V10–V12 in pots inside a net house. A validation field experiment was conducted with five levels of K (0, 40, 80, 120 and 160 kg ha−1) and two fertilizer recommendations based on “Nutrient Expert for Maize-NEM” and “Maize Crop Manager-MCM” decision support tools (DSSs) in 12 farmers’ fields in Rangpur, Rajshahi and Comilla districts in Bangladesh. Grain yield and yield attributes of maize responded significantly (p < 0.001) to K fertilizer, with grain yield increase from 18 to 79% over control in all locations. Total K uptake by plants not receiving K fertilizer, considered as potential K-supplying capacity of the soil in the pot experiment, followed the order: Modhukhali > Mithapukur > Rangpur Sadar > Dinajpur Sadar > Jhinaidah Sadar > Gangachara > Binerpota > Tarash > Gopalpur > Daudkandi > Paba > Modhupur > Nawabganj Sadar > Shibganj > Birganj > Godagari > Barura > Durgapur. Likewise, in the validation field experiment, the K-supplying capacity of soils was 83.5, 60.5 and 57.2 kg ha−1 in Rangpur, Rajshahi, and Comilla, respectively. Further, the order of K-supplying capacity for three sites was similar to the results from pot study confirming the applicability of results to other soils and maize-growing areas in Bangladesh and similar soils and areas across South Asia. Based on the results from pot and field experiments, we conclude that the site-specific K management using the fertilizer DSSs can be the better and more efficient K management strategy for maize. View Full-Text
Keywords: site-specific K management; soil K supply; maize yield response to K; maize crop manager; nutrient expert for maize site-specific K management; soil K supply; maize yield response to K; maize crop manager; nutrient expert for maize
Show Figures

Figure 1

MDPI and ACS Style

Islam, S.; Timsina, J.; Salim, M.; Majumdar, K.; Gathala, M.K. Potassium Supplying Capacity of Diverse Soils and K-Use Efficiency of Maize in South Asia. Agronomy 2018, 8, 121.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Search more from Scilit
 
Search
Back to TopTop