Performance and Stability of Commercial Wheat Cultivars under Terminal Heat Stress
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Field Conditions
2.2. Phenotypic Measurements
2.3. Statistical Analysis
2.4. Stability Analysis and Genotype × Interaction (G × E)
3. Results
3.1. Analysis of Variance
3.2. Interrelationships among the Studied Traits under Recommended Sown Condition
3.3. Interrelationships among the Studied Traits under the Late Sown Condition
3.4. Genotype × Environment Interaction (G × E) for Grain Yield
4. Discussion
5. Conclusions
Acknowledgments
Conflicts of Interest
References
- Enghiad, A.; Ufer, D.; Countryman, A.M.; Thilmany, D.D. An Overview of Global Wheat Market Fundamentals in an Era of Climate Concerns. Int. J. Agron. 2017, 2017, 3931897. [Google Scholar] [CrossRef]
- Curtis, T.; Halford, N.G. Food security: The challenge of increasing wheat yield and the importance of not compromising food safety. Ann. Appl. Biol. 2014, 164, 354–372. [Google Scholar] [CrossRef] [PubMed]
- Olmstead, A.L.; Rhode, P.W. Adapting North American wheat production to climatic challenges, 1839–2009. Proc. Natl. Acad. Sci. USA 2011, 108, 480–485. [Google Scholar] [CrossRef]
- Asseng, S.; Ewert, F.; Martre, P.; Rötter, R.P.; Lobell, D.B.; Cammarano, D.; Kimball, B.A.; Ottman, M.J.; Wall, G.W.; White, J.W.; et al. Rising temperatures reduce global wheat production. Nat. Clim. Chang. 2015, 5, 143–147. [Google Scholar] [CrossRef]
- Bita, C.E.; Gerats, T. Plant tolerance to high temperature in a changing environment: Scientific fundamentals and production of heat stress-tolerant crops. Front. Plant Sci. 2013, 4, 273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farooq, M.; Bramley, H.; Palta, J.A.; Siddique, K.H.M. Heat Stress in Wheat during Reproductive and Grain-Filling Phases. Crit. Rev. Plant Sci. 2011, 30, 491–507. [Google Scholar] [CrossRef]
- Jat, R.K.; Singh, P.; Jat, M.L.; Dia, M.; Sidhu, H.S.; Jat, S.L.; Bijarniya, D.; Jat, H.S.; Parihar, C.M.; Kumar, U.; et al. Heat stress and yield stability of wheat genotypes under different sowing dates across agro-ecosystems in India. Field Crops Res. 2018, 218, 33–50. [Google Scholar] [CrossRef]
- Akter, N.; Rafiqul Islam, M. Heat stress effects and management in wheat. A review. Agron. Sustain. Dev. 2017, 37, 37. [Google Scholar] [CrossRef]
- Spiertz, J.H.J.; Hamer, R.J.; Xu, H.; Primo-Martin, C.; Don, C.; van der Putten, P.E.L. Heat stress in wheat (Triticum aestivum L.): Effects on grain growth and quality traits. Eur. J. Agron. 2006, 25, 89–95. [Google Scholar] [CrossRef]
- Feng, B.; Liu, P.; Li, G.; Dong, S.T.; Wang, F.H.; Kong, L.A.; Zhang, J.W. Effect of Heat Stress on the Photosynthetic Characteristics in Flag Leaves at the Grain-Filling Stage of Different Heat-Resistant Winter Wheat Varieties. J. Agron. Crop Sci. 2014, 200, 143–155. [Google Scholar] [CrossRef]
- Gonzalez, A.; Bermejo, V.; Gimeno, B.S. Effect of different physiological traits on grain yield in barley grown under irrigated and terminal water deficit conditions. J. Agric. Sci. 2010, 148, 319–328. [Google Scholar] [CrossRef]
- Matsui, T.; Omasa, K.; Horie, T. The Difference in Sterility due to High Temperatures during the Flowering Period among Japonica-Rice Varieties. Plant Prod. Sci. 2001, 4, 90–93. [Google Scholar] [CrossRef]
- Vara Prasad, P.V.; Craufurd, P.Q.; Summerfield, R.J. Sensitivity of peanut to timing of heat stress during reproductive development. Crop Sci. 1999, 39, 1352–1357. [Google Scholar] [CrossRef]
- Batts, G.R.; Ellis, R.H.; Morison, J.I.L.; Nkemka, P.N.; Gregory, P.J.; Hadley, P. Yield and partitioning in crops of contrasting cultivars of winter wheat in response to CO2 and temperature in field studies using temperature gradient tunnels. J. Agric. Sci. 1998, 130, 17–27. [Google Scholar] [CrossRef]
- Wardlaw, F.; Sofieldb, I.; Cartwrightc, P.M. Factors Limiting the Rate of Dry Matter Accumulation in the Grain of Wheat Grown at High Temperature. Aust. J. Plant Physiol. 1980, 7, 387–400. [Google Scholar] [CrossRef]
- Iqbal, M.; Raja, N.I.; Yasmeen, F.; Hussain, M.; Ejaz, M.; Shah, M.A. Impacts of Heat Stress on Wheat: A Critical Review. Adv. Crop Sci. Technol. 2017, 5, 251. [Google Scholar] [CrossRef]
- Adams, S. Effect of Temperature on the Growth and Development of Tomato Fruits. Ann. Bot. 2001, 88, 869–877. [Google Scholar] [CrossRef]
- Abiko, M.; Akibayashi, K.; Sakata, T.; Kimura, M.; Kihara, M.; Itoh, K.; Asamizu, E.; Sato, S.; Takahashi, H.; Higashitani, A. High-temperature induction of male sterility during barley (Hordeum vulgare L.) anther development is mediated by transcriptional inhibition. Sex. Plant Reprod. 2005, 18, 91–100. [Google Scholar] [CrossRef]
- Al-Otayk, S.M. Performance of Yield and Stability of Wheat Genotypes under High Stress Environments of the Central Region of Saudi Arabia. Meteorol. Environ. Arid Land Agric. Sci. 2010, 21, 81–92. [Google Scholar] [CrossRef]
- Farshadfar, E.; Sabaghpour, S.H.; Zali, H. Comparison of parametric and non-parametric stability statistics for selecting stable chickpea (Cicer arietinum L.) genotypes under diverse environments. Aust. J. Crop Sci. 2012, 6, 514–524. [Google Scholar]
- Lin, C.S.; Binns, M.R. A superiority measure of cultivar performance for cultivar × location data. Can. J. Plant Sci. 1988, 68, 193–198. [Google Scholar] [CrossRef]
- Eberhart, S.A.; Russell, W.A. Stability Parameters for Comparing Varieties. Crop Sci. 1966, 6, 36–40. [Google Scholar] [CrossRef]
- Romagosa, I.; Fox, P.N. Genotype × environment interaction and adaptation. In Plant Breeding; Springer: Dordrecht, The Netherlands, 1993; pp. 373–390. ISBN 9401046654. [Google Scholar]
- Akcura, M.; Kaya, Y. Nonparametric stability methods for interpreting genotype by environment interaction of bread wheat genotypes (Triticum aestivum L.). Genet. Mol. Biol. 2008, 31, 906–913. [Google Scholar] [CrossRef]
- Bavec, M.; Vuković, K.; Grobelnik Mlakar, S.; Rozman, Č.; Bavec, F. Leaf area index in winter wheat: response on seed rate and nitrogen application by different varieties. J. Cent. Eur. Agric. 2007, 8, 337–342. [Google Scholar] [CrossRef]
- Peterson, R.F.; Campbell, A.B.; Hannah, A.E. A diagrammatic scale for estimating rust intensity on leaves and stems of cereals. Can. J. Res. 1948, 26, 496–500. [Google Scholar] [CrossRef]
- Roelfs, A.P.; Singh, R.P.; Saari, E.E. Rust Diseases of Wheat: Concepts and Methods of Disease Management; CIMMYT (International Maize and Wheat Improvement Center): Mexico, D.F., Mexico, 1992; ISBN 968612747X. [Google Scholar]
- Gomez, K.A.; Gomez, A.A.; Gomez, K.A. Statistical Procedures for Agricultural Research; John Wiley & Sons: New York, NY, USA, 1984; ISBN 9780471870920. [Google Scholar]
- Steel, R.G.D.; Torrie, J.H. Principles and Procedures of Statistics: A Biometrical Approach, 2nd ed.; McGraw-Hill Publishing Co.: New York, NY, USA, 1980; 631p. [Google Scholar]
- Mellenbergh, G.J.; Arce, C. Experimental design and analysis. J. Mark. Res. (JMR) 1992, 29, 155–156. [Google Scholar] [CrossRef]
- Pinthus, M.J. Estimate of genotypic value: A proposed method. Euphytica 1973, 22, 121–123. [Google Scholar] [CrossRef]
- Mulusew, F.; Bing, D.J.; Tadele, T.; Amsalu, A. Comparison of biometrical methods to describe yield stability in field pea (Pisum sativum L.) under south eastern Ethiopian conditions. Afr. J. Agric. Res. 2014, 9, 2574–2583. [Google Scholar] [CrossRef]
- Blanco, A.; Mangini, G.; Giancaspro, A.; Giove, S.; Colasuonno, P.; Simeone, R.; Signorile, A.; De Vita, P.; Mastrangelo, A.M.; Cattivelli, L.; et al. Relationships between grain protein content and grain yield components through quantitative trait locus analyses in a recombinant inbred line population derived from two elite durum wheat cultivars. Mol. Breed. 2012, 30, 79–92. [Google Scholar] [CrossRef]
- Pacheco, Á.; Vargas, M.; Alvarado, G.; Rodríguez, F.; Crossa, J.; Burgueño, J. GEA-R (Genotype × Environment Analysis with R for Windows) Version 4.0. Available online: http://hdl.handle.net/11529/10203 (accessed on 29 January 2018).
- Hereher, M.E. Time series trends of land surface temperatures in Egypt: a signal for global warming. Environ. Earth Sci. 2016, 75, 1218. [Google Scholar] [CrossRef]
- Valizadeh, J.; Ziaei, S.M.; Mazloumzadeh, S.M. Assessing climate change impacts on wheat production (a case study). J. Saudi Soc. Agric. Sci. 2014, 13, 107–115. [Google Scholar] [CrossRef]
- Castro, M.; Peterson, C.J.; Dalla Rizza, M.; Díaz Dellavalle, P.; Vázquez, D.; Ibañez, V.; Ross, A. Influence of heat stress on wheat grain characteristics and protein molecular weight distribution. In Wheat Production in Stressed Environments; Springer: Dordrecht, The Netherlands, 2007; pp. 365–371. ISBN 978-1-4020-5496-9. [Google Scholar]
- Mohammed, A.R.; Tarpley, L. Impact of high nighttime temperature on respiration, membrane stability, antioxidant capacity, and yield of rice plants. Crop Sci. 2009, 49, 313–322. [Google Scholar] [CrossRef]
- Ayeneh, A.; Van Ginkel, M.; Reynolds, M.P.; Ammar, K. Comparison of leaf, spike, peduncle and canopy temperature depression in wheat under heat stress. Field Crops Res. 2002, 79, 173–184. [Google Scholar] [CrossRef]
- Fu, G.; Feng, B.; Zhang, C.; Yang, Y.; Yang, X.; Chen, T.; Zhao, X.; Zhang, X.; Jin, Q.; Tao, L. Heat Stress Is More Damaging to Superior Spikelets than Inferiors of Rice (Oryza sativa L.) due to Their Different Organ Temperatures. Front. Plant Sci. 2016, 7, 1637. [Google Scholar] [CrossRef] [PubMed]
- Gadallah, A.; Milad, I.; Yossef, Y.A.; Gouda, M.A. Evaluation of Some Egyptian Bread Wheat (Triticum aestivum) Cultivars under Salinity Stress. Alex. Sci. Exch. 2017, 38, 260. [Google Scholar]
- Chen, W.R.; Zheng, J.S.; Li, Y.Q.; Guo, W.D. Effects of high temperature on photosynthesis, chlorophyll fluorescence, chloroplast ultrastructure, and antioxidant activities in fingered citron. Russ. J. Plant Physiol. 2012, 59, 732–740. [Google Scholar] [CrossRef]
- Kreslavski, V.D.; Lyubimov, V.Y.; Shabnova, N.I.; Balakhnina, T.I.; Kosobryukhov, A.A. Heat-induced impairments and recovery of photosynthetic machinery in wheat seedlings. Role of light and prooxidant-antioxidant balance. Physiol. Mol. Biol. Plants 2009, 15, 115–122. [Google Scholar] [CrossRef] [PubMed]
- Kreslavski, V.; Tatarinzev, N.; Shabnova, N.; Semenova, G.; Kosobryukhov, A. Characterization of the nature of photosynthetic recovery of wheat seedlings from short-term dark heat exposures and analysis of the mode of acclimation to different light intensities. J. Plant Physiol. 2008, 165, 1592–1600. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Li, J.; Zhang, X.; Wei, H.; Cui, L. Effects of heat acclimation pretreatment on changes of membrane lipid peroxidation, antioxidant metabolites, and ultrastructure of chloroplasts in two cool-season turfgrass species under heat stress. Environ. Exp. Bot. 2006, 56, 274–285. [Google Scholar] [CrossRef]
- Guo, Y.-P.; Zhou, H.-F.; Zhang, L.-C. Photosynthetic characteristics and protective mechanisms against photooxidation during high temperature stress in two citrus species. Sci. Hortic. 2006, 108, 260–267. [Google Scholar] [CrossRef]
- Havaux, M. Characterization of thermal damage to the photosynthetic electron transport system in potato leaves. Plant Sci. 1993, 94, 19–33. [Google Scholar] [CrossRef]
- Del Río, L.A.; Pastori, G.M.; Palma, J.M.; Sandalio, L.M.; Sevilla, F.; Corpas, F.J.; Jiménez, A.; López-Huertas, E.; Hernández, J.A. The Activated Oxygen Role of Peroxisomes in Senescence. Plant Physiol. 1998, 116, 1195–1200. [Google Scholar] [CrossRef] [PubMed]
- Asthir, B. Protective mechanisms of heat tolerance in crop plants. J. Plant Interact. 2015, 10, 202–210. [Google Scholar] [CrossRef]
- Hasanuzzaman, M.; Nahar, K.; Alam, M.M.; Roychowdhury, R.; Fujita, M. Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. Int. J. Mol. Sci. 2013, 14, 9643–9684. [Google Scholar] [CrossRef] [PubMed]
- Hemantaranjan, A. Heat Stress Responses and Thermotolerance. Adv. Plants Agric. Res. 2014, 1. [Google Scholar] [CrossRef]
- Liu, J.Q.; Kolmer, J.A. Genetics of Leaf Rust Resistance in Canadian Spring Wheats AC Domain and AC Taber. Plant Dis. 1997, 81, 757–760. [Google Scholar] [CrossRef]
- Huerta-Espino, J.; Singh, R.P.; Germán, S.; McCallum, B.D.; Park, R.F.; Chen, W.Q.; Bhardwaj, S.C.; Goyeau, H. Global status of wheat leaf rust caused by Puccinia triticina. Euphytica 2011, 179, 143–160. [Google Scholar] [CrossRef]
- Liu, J.Q.; Kolmer, J.A. Inheritance of Leaf Rust Resistance in Wheat Cultivars Grandin and CDC Teal. Plant Dis. 1997, 81, 505–508. [Google Scholar] [CrossRef]
- Herrera-Foessel, S.A.; Singh, R.P.; Huerta-Espino, J.; Crossa, J.; Yuen, J.; Djurle, A. Effect of Leaf Rust on Grain Yield and Yield Traits of Durum Wheats with Race-Specific and Slow-Rusting Resistance to Leaf Rust. Plant Dis. 2006, 90, 1065–1072. [Google Scholar] [CrossRef]
- Broers, L.H.M. Partial resistance to wheat leaf rust in 18 spring wheat cultivars. Euphytica 1989, 44, 247–258. [Google Scholar] [CrossRef]
- Broers, L.H.M. Influence of development stage and host genotype on three components of partial resistance to leaf rust in spring wheat. Euphytica 1989, 44, 187–195. [Google Scholar] [CrossRef]
- Draz, I.S.; Abou-Elseoud, M.S.; Kamara, A.-E.M.; Alaa-Eldein, O.A.-E.; El-Bebany, A.F. Screening of wheat genotypes for leaf rust resistance along with grain yield. Ann. Agric. Sci. 2015, 60, 29–39. [Google Scholar] [CrossRef]
- Khan, A.A.; Kabir, M.R. Evaluation of Spring Wheat Genotypes (Triticum Aestivum L.) for Heat Stress Tolerance Using Different Stress Tolerance Indices. Cercet. Agron. Mold. 2015, 47, 49–63. [Google Scholar] [CrossRef]
- Mir, R.R.; Zaman-Allah, M.; Sreenivasulu, N.; Trethowan, R.; Varshney, R.K. Integrated genomics, physiology and breeding approaches for improving drought tolerance in crops. Theor. Appl. Genet. 2012, 125, 625–645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cossani, C.M.; Reynolds, M.P. Physiological Traits for Improving Heat Tolerance in Wheat. Plant Physiol. 2012, 160, 1710–1718. [Google Scholar] [CrossRef] [PubMed]
- Aziz, A.; Mahmood, T.; Mahmood, Z.; Shazadi, K.; Mujeeb-Kazi, A.; Rasheed, A. Genotypic Variation and Genotype × Environment Interaction for Yield-Related Traits in Synthetic Hexaploid Wheats under a Range of Optimal and Heat-Stressed Environments. Crop Sci. 2018, 58, 295–303. [Google Scholar] [CrossRef]
- Acevedo, E.; Silva, P.; Silva, H. Wheat Growth and Physiology; FAO Plant Production and Protection Series (FAO): Rome, Italy, 2002. [Google Scholar]
- Altenbach, S.B.; Dupont, F.M.; Kothari, K.M.; Chan, R.; Johnson, E.L.; Lieu, D. Temperature, Water and Fertilizer Influence the Timing of Key Events During Grain Development in a US Spring Wheat. J. Cereal Sci. 2003, 37, 9–20. [Google Scholar] [CrossRef]
- Chamekh, Z.; Karmous, C.; Ayadi, S.; Sahli, A.; Hammami, Z.; Fraj, M.B.; Benaissa, N.; Trifa, Y.; Slim-Amara, H. Stability analysis of yield component traits in 25 durum wheat (Triticum durum Desf.) genotypes under contrasting irrigation water salinity. Agric. Water Manag. 2015, 152, 1–6. [Google Scholar] [CrossRef]
- Mohamed, N.E.M.; Said, A.A. 7 Stability Parameters for Comparing Bread Wheat Genotypes under Combined Heat and Drought Stress. Egypt. J. Agron. 2014, 36, 123–146. [Google Scholar]
- Abbas Mosavi, A.; Babaiean Jelodar, N.; Kazemitabar, K. Environmental Responses and Stability Analysis for Grain Yield of Some Rice Genotypes. World Appl. Sci. J. 2013, 21, 105–108. [Google Scholar] [CrossRef]
- Witcombe, J.R. Estimates of stability for comparing varieties. Euphytica 1988, 39, 11–18. [Google Scholar] [CrossRef]
- Lopes, M.S.; El-Basyoni, I.; Baenziger, P.S.; Singh, S.; Royo, C.; Ozbek, K.; Aktas, H.; Ozer, E.; Ozdemir, F.; Manickavelu, A.; et al. Exploiting genetic diversity from landraces in wheat breeding for adaptation to climate change. J. Exp. Bot. 2015, 66, 3477–3486. [Google Scholar] [CrossRef] [PubMed]
- Omae, H.; Kumar, A.; Shono, M. Adaptation to High Temperature and Water Deficit in the Common Bean (Phaseolus vulgaris L.) during the Reproductive Period. J. Bot. 2012, 2012, 803413. [Google Scholar] [CrossRef]
- Qu, A.-L.; Ding, Y.-F.; Jiang, Q.; Zhu, C. Molecular mechanisms of the plant heat stress response. Biochem. Biophys. Res. Commun. 2013, 432, 203–207. [Google Scholar] [CrossRef] [PubMed]
- Lobell, D.B.; Field, C.B. Global scale climate–crop yield relationships and the impacts of recent warming. Environ. Res. Lett. 2007, 2, 14002. [Google Scholar] [CrossRef]
- Krasensky, J.; Jonak, C. Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. J. Exp. Bot. 2012, 63, 1593–1608. [Google Scholar] [CrossRef] [PubMed]
Cultivar | Pedigree | Year of Release |
---|---|---|
Giza168 | MRL/BUC//SERI | 1995 |
Gemmeiza7 | 7CMH74A-630/SX//SERI82/AGEN | 1999 |
Gemmeiza9 | ALD“s”/HUAC//CMH74A-630/SX | 1999 |
Gemmeiza10 | Maya74“S”/ON/1160-147/3/Bb/G11/4/chat“S”/5/crow“S”CGM5820-3GM-1GM-2GM-0GM | 2004 |
Gemmeiza11 | BOW “S”/KVZ “S”//7C/SERI82/3/GIZA168/SKHA61 | 2011 |
Gemmeiza12 | OTUS/3/SARA/THB//VEECMSS97Y00227S-5Y- | 2011 |
Sakha94 | OPATA/RAYON//KAUZ | 2004 |
Sids12 | BUC//7C/ALD/5/MAYA74/ON//1160-147/3/BB/GLL/4/CHAT“S”/6/MAYA/VUL-4SD-1SD-1SD-0SD. | 2007 |
Sids13 | KAUZ “S”//TSI/SNB“S”. ICW94-0375-4AP-2AP-030AP-0APS-3AP-0APS-050AP-0AP-0SD. | 2010 |
Misr2 | SKAUZ/BAV92. CMSS96M0361S-1M-010SY-010M-010SY-8M-0Y-0S. | 2011 |
SOURCE | DF | Mean Squares | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
CHLOR | CANO | LA | GFD | PH | YIELD | LR | SR | NDF | ||
ENV | 5 | 72.6 ** | 1316.1 ** | 212.7 ** | 492.5 ** | 785.5 ** | 34.02 ** | 0.025 | 0.016 | 2263.5 ** |
Replication(ENV) | 12 | 0.60 | 2.27 | 1.44 | 3.36 | 37.73 | 0.10 | 0.017 | 0.017 | 67.00 ** |
SD | 1 | 1055.4 ** | 61871.3 ** | 11969.29 ** | 6002.5 ** | 63374.9 ** | 836.1 ** | 14.88 ** | 16.72 ** | 85069.9 ** |
ENV * SD | 5 | 119.0 ** | 463.2 ** | 115.33 ** | 16.3 * | 393.3 ** | 13.0 ** | 0.02 | 0.036 | 360.9 ** |
Main plot Error | 12 | 0.59 | 1.36 | 2.10 | 6.83 | 37.55 | 0.12 | 0.042 | 0.011 | 68.9 |
CULTIVAR | 9 | 15.1 ** | 182.5 ** | 142.8 ** | 116.7 ** | 1141.2 ** | 6.6 ** | 1.46 ** | 1.77 ** | 3500.5 ** |
SD * CULTIVAR | 9 | 6.4 ** | 84.3 ** | 20.2 ** | 43.8 ** | 761.1 ** | 2.9 ** | 1.47 ** | 0.89 ** | 2003.76 ** |
ENV * CULTIVAR | 45 | 9.08 ** | 109.7 ** | 53.4 ** | 38.04 ** | 371.1 ** | 2.2 ** | 0.02 | 0.035 * | 600.3 ** |
ENV * SD * CULTIVAR | 45 | 6.8 ** | 193.18 ** | 28.59 ** | 44.9 ** | 423.2 ** | 2.8 ** | 0.019 | 0.031 | 682.9 ** |
ERROR | 216 | 0.14 | 2.71 | 0.69 | 1.4 | 14.95 | 0.1 | 0.019 | 0.02 | 22.2 |
PH | GY | NDF | LR | SR | CHLOR | CANO | LA | GFD | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sowing date | R | L | R | L | R | L | R | L | R | L | R | L | R | L | R | L | R | L |
Sids12 | 83.5 | 62.5 | 8.08 | 4.27 | 139.5 | 112.1 | 0.40 (40.7) | 0.36 (49.9) | 0.09 (37.52) | 0.46 (53.2) | 32.6 | 29.0 | 33.9 | 46.9 | 36.1 | 24.6 | 31.32 | 28.9 |
Gemmeiza10 | 65.7 | 52.2 | 7.65 | 3.12 | 116.2 | 103.4 | 0.06 (40.5) | 0.85 (57.1) | 0.14 (32.6) | 0.90 (46.8) | 31.3 | 28.0 | 32.2 | 44.4 | 33.8 | 22.4 | 32.2 | 27.9 |
Gemmeiza7 | 88.3 | 58.3 | 4.67 | 4.15 | 132.5 | 124.4 | 0.41 (30.4) | 0.94 (54.1) | 0.40 (39.2) | 0.95 (43.2) | 32.6 | 28.6 | 36.6 | 42.6 | 38.36 | 25.2 | 34.8 | 25.25 |
Gemmeiza9 | 89.3 | 58.3 | 7.6 | 4.87 | 133.7 | 119.8 | 0.11 (38.8) | 0.41 (68.1) | 0.40 (32.8) | 0.46 (55.5) | 32.4 | 28.5 | 37.1 | 44.1 | 38.5 | 25.1 | 34.5 | 29.3 |
Gemmeiza11 | 88.4 | 52.3 | 5.0 | 2.9 | 126 | 109.6 | 0.32 (20.6) | 0.36 (43.9) | 0.16 (26.3) | 0.41 (54.6) | 30.7 | 28.4 | 34.3 | 41.9 | 34.4 | 24.6 | 30.2 | 24.2 |
Gemmeiza12 | 76.3 | 60.1 | 8.8 | 3.12 | 117.5 | 95.2 | 0.05 (36.6) | 0.84 (47.7) | 0.16 (26.3) | 0.93 (54.6) | 30.8 | 28.3 | 33.1 | 47.6 | 33.4 | 23.1 | 33.3 | 22.3 |
Misr2 | 90.6 | 61.5 | 5.0 | 3.4 | 128.4 | 110.7 | 0.78 (38.4) | 0.83 (56.7) | 0.35 (38.0) | 0.91 (55.1) | 31.3 | 28.7 | 32.4 | 60.4 | 36.25 | 24.2 | 34.9 | 25.3 |
Sakha94 | 75.5 | 63.9 | 5.0 | 3.3 | 127.0 | 121.4 | 0.94 (46.5) | 0.82 (44.3) | 0.08 (39.4) | 0.95 (56.8) | 30.8 | 27.8 | 31.1 | 47.5 | 29.9 | 20.1 | 28.3 | 21.8 |
Giza168 | 95.8 | 64.9 | 5.4 | 4.0 | 121.8 | 114.0 | 0.06 (39.4) | 0.93 (59.8) | 0.91 (32.9) | 0.97 (45.5) | 33.5 | 28.5 | 29.6 | 42.5 | 34.5 | 22.9 | 32.5 | 25.9 |
Sids13 | 79.9 | 58.3 | 5.0 | 3.7 | 126.7 | 110.3 | 0.11 (29.7) | 0.92 (52.2) | 0.88 (45.6) | 0.85 (52.5) | 32.7 | 29.5 | 33.5 | 48.7 | 36.5 | 23.2 | 32.7 | 24.2 |
Lsd | 6.0 | 0.5 | 1.8 | 0.071 | 0.065 | 0.6 | 2.6 | 1.3 | 1.8 | |||||||||
Sowing date mean | 83.3 | 59.2 | 6.2 | 3.7 | 126.9 | 112.1 | 0.32 | 0.73 | 0.36 | 0.78 | 31.9 | 28.5 | 33.4 | 46.7 | 35.2 | 23.5 | 32.5 | 25.5 |
CHLOR | CANO | LA | GFD | PH | YIELD | LR | SR | NDF | |
---|---|---|---|---|---|---|---|---|---|
CHLOR | −0.17 | 0.55 ** | 0.27 | 0.43 * | 0.07 | −0.33 * | 0.07 | −0.47 ** | |
CANO | 0.00 | 0.44 ** | −0.11 | 0.10 | −0.20 | −0.05 | −0.25 | −0.31 * | |
LA | 0.42 * | −0.21 | 0.61 ** | 0.50 ** | 0.43 * | 0.06 | −0.63 ** | −0.79 ** | |
GFD | 0.40 * | −0.57 ** | 0.56 ** | 0.31 | 0.60 ** | 0.17 | −0.69 ** | −0.56 ** | |
PH | 0.55 ** | −0.08 | 0.60 ** | 0.39 * | 0.45 * | 0.01 | −0.06 | −0.90 ** | |
YIELD | 0.39 * | −0.55 ** | 0.55 ** | 0.77 ** | 0.43 * | 0.01 | −0.67 ** | −0.59 ** | |
LR | −0.33 | 0.37 * | −0.71 ** | −0.81 ** | −0.53 ** | −0.82 ** | −0.38 | 0.42 * | |
SR | −0.28 | 0.41 * | −0.63 ** | −0.84 ** | −0.42 * | −0.85 ** | 0.97 ** | −0.06 | |
NDF | −0.30 | −0.80 ** | −0.30 | 0.25 | −0.46 ** | 0.23 | −0.53 ** | −0.1 |
Sowing Date | Genotypes | Coefficient of Variation C.V% | Regression Coefficient (bi) | Perkins and Jinks (Di) | Wrike’s Ecovalence (Wi) | Superiority Measure (Pi) | Average Absolute Rank (Si(1)) |
---|---|---|---|---|---|---|---|
Recommended & late combined | Sids12 | 49.03 | 1.60 | 0.60 | 28.42 | 0.78 | 0.82 |
Gemmeiza10 | 32.43 | 0.60 | −0.40 | 12.53 | 6.35 | 0.32 | |
Gemmeiza7 | 31.70 | 0.88 | −0.12 | 10.38 | 2.29 | 0.61 | |
Giza168 | 40.77 | 1.10 | 0.10 | 8.82 | 2.66 | 0.41 | |
Gemmeiza11 | 47.59 | 1.46 | 0.46 | 13.67 | 1.34 | 0.68 | |
Gemmeiza12 | 32.28 | 0.61 | −0.39 | 12.83 | 5.75 | 0.21 | |
Misr2 | 33.89 | 0.75 | −0.25 | 8.11 | 4.58 | 0.45 | |
Sakha94 | 47.22 | 1.11 | 0.11 | 18.29 | 3.56 | 0.52 | |
Gemmeiza9 | 30.03 | 1.06 | 0.06 | 3.91 | 0.54 | 0.24 | |
Sids13 | 35.91 | 0.83 | −0.17 | 7.49 | 4.39 | 0.48 | |
Recommended | Sids12 | 6.14 | 0.32 | −0.68 | 4.15 | 0.16 | 0.53 |
Misr2 | 31.73 | 1.47 | 0.47 | 2.52 | 7.75 | 0.53 | |
Gemmeiza7 | 24.62 | 0.62 | −0.38 | 5.79 | 11.01 | 0.47 | |
Gemmeiza9 | 31.65 | 1.73 | 0.73 | 6.18 | 4.50 | 1.00 | |
Gemmeiza11 | 30.89 | 1.54 | 0.54 | 7.61 | 4.44 | 1.20 | |
Gemmeiza12 | 13.53 | 0.86 | −0.14 | 1.09 | 0.91 | 0.33 | |
Gemmeiza10 | 19.67 | 0.18 | −0.82 | 9.98 | 9.74 | 0.60 | |
Sakha94 | 23.90 | 0.83 | −0.17 | 4.52 | 7.84 | 1.00 | |
Giza168 | 34.97 | 1.47 | 0.47 | 13.11 | 5.37 | 1.47 | |
Sids13 | 17.07 | 0.98 | −0.02 | 3.31 | 1.08 | 0.60 | |
late | Sids13 | 24.03 | 2.32 | 1.32 | 1.30 | 1.40 | 0.67 |
Gemmeiza9 | 22.99 | 2.48 | 1.48 | 1.35 | 1.03 | 0.73 | |
Gemmeiza7 | 25.24 | 2.26 | 1.26 | 1.36 | 1.69 | 0.67 | |
Gemmeiza10 | 6.74 | −0.33 | −1.33 | 1.47 | 0.09 | 0.60 | |
Gemmeiza11 | 8.37 | −0.12 | −1.12 | 1.21 | 0.88 | 0.87 | |
Gemmeiza12 | 30.57 | 2.56 | 1.56 | 2.74 | 1.77 | 0.73 | |
Misr2 | 11.30 | 0.50 | −0.51 | 0.63 | 1.77 | 0.80 | |
Sakha94 | 17.77 | 0.68 | −0.32 | 1.65 | 1.32 | 0.83 | |
Giza168 | 24.80 | −0.84 | −1.84 | 5.09 | 1.75 | 0.97 | |
Sids12 | 5.27 | 0.49 | −0.51 | 0.36 | 0.00 | 0.07 |
Sowing Date | Source | DF | MS | % of Variance Explained |
---|---|---|---|---|
Recommend and late combined | Environments (E) | 11 | 96.80 ** | 63.20 |
Genotypes (G) | 9 | 27.40 ** | 14.60 | |
G × E | 99 | 3.80 ** | 22.20 | |
PC1 | 19 | 8.90 ** | 45.30 | |
PC2 | 17 | 6.00 ** | 27.10 | |
PC3 | 15 | 3.70 ** | 14.80 | |
Residuals | 240 | 0.10 | ||
Recommend | Environments (E) | 5 | 42.15 ** | 29.52 |
Genotypes (G) | 9 | 36.50 ** | 46.00 | |
G × E | 45 | 3.88 ** | 24.48 | |
PC1 | 13 | 6.74 ** | 50.13 | |
PC2 | 11 | 4.82 ** | 30.36 | |
PC3 | 9 | 2.25 ** | 11.59 | |
Residuals | 120 | 0.19 | ||
late | Environments (E) | 5 | 3.48 ** | 12.99 |
Genotypes (G) | 9 | 7.23 ** | 48.57 | |
G × E | 45 | 1.14 ** | 38.44 | |
PC1 | 13 | 2.42 ** | 61.16 | |
PC2 | 11 | 1.20 ** | 25.59 | |
PC3 | 9 | 0.54 ** | 9.41 | |
Residuals | 120 | 0.03 |
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elbasyoni, I.S. Performance and Stability of Commercial Wheat Cultivars under Terminal Heat Stress. Agronomy 2018, 8, 37. https://doi.org/10.3390/agronomy8040037
Elbasyoni IS. Performance and Stability of Commercial Wheat Cultivars under Terminal Heat Stress. Agronomy. 2018; 8(4):37. https://doi.org/10.3390/agronomy8040037
Chicago/Turabian StyleElbasyoni, Ibrahim S. 2018. "Performance and Stability of Commercial Wheat Cultivars under Terminal Heat Stress" Agronomy 8, no. 4: 37. https://doi.org/10.3390/agronomy8040037
APA StyleElbasyoni, I. S. (2018). Performance and Stability of Commercial Wheat Cultivars under Terminal Heat Stress. Agronomy, 8(4), 37. https://doi.org/10.3390/agronomy8040037