Next Article in Journal
Biological Control of Spreading Dayflower (Commelina diffusa) with the Fungal Pathogen Phoma commelinicola
Next Article in Special Issue
Extracellular Trapping of Soil Contaminants by Root Border Cells: New Insights into Plant Defense
Previous Article in Journal
Performance of Northwest Washington Heirloom Dry Bean Varieties in Organic Production
Open AccessArticle

Polyethylene Glycol (PEG)-Treated Hydroponic Culture Reduces Length and Diameter of Root Hairs of Wheat Varieties

Department of Genetics and Plant Breeding, Bangladesh Agricultural University, Mymensingh 02202, Bangladesh
Author to whom correspondence should be addressed.
Academic Editor: Leslie A. Weston
Agronomy 2015, 5(4), 506-518;
Received: 24 July 2015 / Revised: 12 October 2015 / Accepted: 22 October 2015 / Published: 27 October 2015
(This article belongs to the Special Issue Interactions between Plant Rhizosphere and Soil Organisms)
Wheat is an important cereal crop worldwide that often suffers from moisture deficits at the reproductive stage. Polyethylene glycol (PEG)-treated hydroponic conditions create negative osmotic potential which is compared with moisture deficit stress. An experiment was conducted in a growth chamber to study the effects of PEG on root hair morphology and associated traits of wheat varieties. Plants of 13 wheat varieties were grown hydroponically and three different doses of PEG 6000 (w/v): 0% (control), 0.3% and 0.6% (less than −1 bar) were imposed on 60 days after sowing for 20 days’ duration. A low PEG concentration was imposed to observe how initial low moisture stress might affect root hair development. PEG-treated hydroponic culture significantly decreased root hair diameter and length. Estimated surface area reduction of root hairs at the main axes of wheat plants was around nine times at the 0.6% PEG level compared to the control plants. Decrease in root hair diameter and length under PEG-induced culture decreased “potential” root surface area per unit length of main root axis. A negative association between panicle traits, length and dry weight and the main axis length of young roots indicated competition for carbon during their development. Data provides insight into how a low PEG level might alter root hair development. View Full-Text
Keywords: wheat; root hairs; root morphology; phytomer; PEG wheat; root hairs; root morphology; phytomer; PEG
Show Figures

Figure 1

MDPI and ACS Style

Robin, A.H.K.; Uddin, M.J.; Bayazid, K.N. Polyethylene Glycol (PEG)-Treated Hydroponic Culture Reduces Length and Diameter of Root Hairs of Wheat Varieties. Agronomy 2015, 5, 506-518.

Show more citation formats Show less citations formats

Article Access Map by Country/Region

Only visits after 24 November 2015 are recorded.
Search more from Scilit
Back to TopTop