Impact of Genomic Technologies on Chickpea Breeding Strategies
Abstract
:1. Introduction
2. Breeding Methods in Chickpea
3. Major Constraints to Chickpea Production
4. Breeding Achievements
5. Genetic and Genomic Resources in Chickpea
5.1. Germplasm
Institute | Number of Accessions | |
---|---|---|
1 | International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), India | 20,267 |
2 | National Bureau of Plant Genetics Resource (NBPGR), India | 14,704 |
3 | International Centre for Agricultural Research in Dryland Areas (ICARDA), Syrian Arab Republic | 13,462 |
4 | Australian Temperate Field Crops Collection, Australia | 8,655 |
5 | Western Regional Plant Introduction Station, USDA-ARS, Washington State University, USA | 6,763 |
6 | National Plant Gene Bank of Iran, Iran | 5,700 |
7 | Plant Genetic Resources Institute, Pakistan | 2,146 |
8 | N.I. Vavilov All-Russian Scientific Research Institute of Plant Industry, Russian Federation | 2,091 |
9 | Plant Genetic Resources Department, Turkey | 2,076 |
10 | Institute of Biodiversity Conservation, Ethiopia | 1,173 |
5.2. Mapping Populations
5.3. Development of Molecular Markers
5.4. Linkage Mapping
Trait | Number & Name of Gene/QTL | Marker | References |
---|---|---|---|
Ascochyta blight | AR2, ar1, ar1a, ar1b, ar2a, ar2b, Ar19 | SSRs, RAPDs, DAF | [73,74,75,76,77] |
QTLAR1, QTLAR2 | SCARs, SSRs, RAPDs | [78,79] | |
13 QTL | SSRs, RAPDs | [41,63,67,75,80,81] | |
5 QTL (1-5) | SSRs | [82] | |
3 QTL | SSR | [83] | |
Fusarium wilt | foc-0, foc-1, foc-2, foc-3, foc-4, foc-5 | SSRs, STSs, RAPDs, | [63,68,75,78,84] |
Botrytis grey mold | 3 QTL (1, 2, 3) | SSRs | [70] |
Rust | 1 QTL | SSR | [85] |
Seed size traits | 2 QTL | SSRs | [86,87,88] |
Seed yield | 1 QTL | SSRs | [89] |
Seed yield components | 1 QTL | SSRs | [89] |
Single or double pod | s | SSRs | [66,68,90] |
Flowering time | 2 QTL | SSRs | [87,91] |
2 QTL | SSRs | [83] | |
Beta carotene, leutin, seed weight | 4 QTL for carotene; 3 QTL for seed weight | SSRs | [92] |
Flower color | B/b | SSR | [68] |
5.5. Physical Mapping
6. Integration of Genomic Technologies in Chickpea Breeding
6.1. Marker-Assisted Backcrossing (MABC)
6.2. Introgression of Superior Alleles from Wild Species
6.3. Marker-Assisted Recurrent Selection (MARS)
6.4. Genome Wide Selection (GWS)
7. Concluding Remarks
References
- FAOSTAT. Available online: http://faostat.fao.org/site/567/DesktopDefault.aspx (accessed on 10 January 2012).
- Arumuganathan, K.; Earle, E.D. Nuclear DNA content of some important plant species. Plant. Mol. Biol. Report. 1991, 9, 208–218. [Google Scholar] [CrossRef]
- Moreno, M.; Cubero, J.I. Variation in Cicer arietinum L. Euphytica 1978, 27, 465–485. [Google Scholar] [CrossRef]
- Jukanti, A.K.; Gaur, P.M.; Gowda, C.L.L.; Chibbar, R.N. Nutritional quality and health benefits of chickpea (Cicer arietinum L.): A review. Br. J. Nutr. 2012, 108, S12–S26. [Google Scholar]
- Saraf, C.S.; Rupela, O.P.; Hegde, D.M.; Yadav, R.L.; Shivkumar, B.G.; Bhattarai, S.; Razzaque, M.A.; Sattar, M.A. Biological Nitrogen Fixation and Residual Effects of Winter Grain Legumes in Rice and Wheat Cropping Systems of the Indo-Gangetic Plain. In Residual Effects of Legumes in Rice and wheat Cropping Systems of the Indo-Gangetic Plain; Kumar Rao, J.V.D.K., Johansen, C., Rego, T.J., Eds.; Oxford and IBH Publishing Co. Pvt. Ltd: New Delhi, India, 1998; pp. 14–30. [Google Scholar]
- Gaur, P.M.; Gowda, C.L.L.; Knights, E.J.; Warkentin, T.O.; Acikgoz, N.; Yadav, S.S.; Kumar, J. Breeding Achievements. In Chickpea Breeding and Management; Yadav, S.S., Redden, B., Chen, W., Sharma, B., Eds.; CABI: Wallingford, UK, 2007; pp. 391–416. [Google Scholar]
- Varshney, R.K.; Close, T.J.; Singh, N.K.; Hoisington, D.A.; Cook, D.R. Orphan legume crops enter the genomics era! Curr. Opin. Plant Biol. 2009, 12, 1–9. [Google Scholar] [CrossRef]
- Upadhyaya, H.D.; Thudi, M.; Dronavalli, N.; Gujaria, N.; Singh, S.; Sharma, S.; Varshney, R.K. Genomic tools and germplasm diversity for chickpea improvement. Plant Gen. Res. Char. Util. 2011, 9, 45–48. [Google Scholar] [CrossRef] [Green Version]
- Slinkard, A.E.; Soth, M.B.; Vandenberg, A. Breeding for Yield: The Direct Approach. In Linking Research and Marketing Opportunities for Pulses in the 21st Century; Knight, R., Ed.; Kluwer Academic: Dordrecht, The Netherlands, 2000; pp. 1183–1190. [Google Scholar]
- Varshney, R.K.; Graner, A.; Sorrells, M.E. Genomics-assisted breeding for crop improvement. Trends Plant Sci. 2005, 10, 621–630. [Google Scholar] [CrossRef]
- Varshney, R.K.; Hoisington, D.A.; Tyagi, A.K. Advances in cereal genomics and applications in crop breeding. Trends Biotechnol. 2006, 25, 1. [Google Scholar]
- Varshney, R.K.; Thudi, M.; May, G.D.; Jackson, S.A. Legume Genomics and Breeding. Plant Breed. Rev. 2010, 33, 257–304. [Google Scholar]
- Chamarthi, S.K.; Kumar, A.; Vuong, T.D.; Gaur, P.M.; Blair, M.W.; Nguyen, H.T.; Varshney, R.K. (2011) Trait mapping and molecular breeding. In Biology and Breeding of Food Legumes; Aditya, P., Jitendra, K., Eds.; CABI: Wallingford, UK, 2011; pp. 296–313. [Google Scholar]
- Gaur, P.M.; Srinivasan, S.; Gowda, C.L.L.; Rao, B.V. Rapid generation advancement in chickpea. J. SAT Agric. Res. 2007, 3, 1. [Google Scholar]
- Grewal, R.K.; Lulsdorf, M.; Croser, J.; Ochatt, S.; Vandenberg, A.; Warkentin, T.D. Doubled-haploid production in chickpea (Cicer arietinum L.): Role of stress treatments. Plant Cell Rep. 2009, 28, 1289–1299. [Google Scholar]
- Ahmad, F.; Gaur, P.M.; Croser, J. Chickpea (Cicer arietinum L.). In Grain Legumes, Genetic Resources, Chromosome Engineering, and Crop Improvement; Singh, R.J., Jauhar, P.P., Eds.; CRC Press: Boca Raton, FL, USA, 2005. [Google Scholar]
- Gaur, P.M.; Mallikarjuna, N.; Knights, T.; Beebe, S.; Debouck, D.; Mejía, A.; Malhotra, R.S.; Imtiaz, M.; Sarker, A.; Tripathi, S.; et al. Gene Introgression in Grain Legumes. In Grain Legumes: Genetic Improvement, Management and Trade; Gupta, S., Ali, M., Singh, B.B., Eds.; Indian Society of Pulses Research and Development: IIPR, Kanpur, India, 2010; pp. 1–17. [Google Scholar]
- Jayanand, B.; Sudarsanam, G.; Sharma, K.K. An efficient protocol for the regeneration of whole plants of chickpea (Cicer arietinum L.) by using axillary meristem explants derived from in vitro germinated seedlings. In Vitro Cell. Dev. Biol. Plant 2003, 39, 171–179. [Google Scholar]
- Ryan, J.G. A Global Perspective on Pigeonpea And Chickpea Sustainable Production Systems: Present Status and Future Potential. In Recent Advantages in Pulses Research; Asthana, A.N., Ali, M., Eds.; Indian Society of Pulses Research and Development: IIPR, Kanpur, India, 1997; pp. 1–31. [Google Scholar]
- Gaur, P.M.; Kumar, J.; Gowda, C.L.L.; Pande, S.; Siddique, K.H.M.; Khan, T.N.; Warkentin, T.O.; Chaturvedi, S.K.; Than, A.M.; Ketema, D. Breeding Chickpea for Early Phenology: Perspectives, Progress and Prospects. In Food Legumes for Nutritional Security and Sustainable Agriculture, Proceedings of Fourth International Food legumes Research Conference, IARI, New Delhi, India, 18–22 October 2005; Kharkwal, M.C., Ed.;
- Than, A.M.; Maw, J.B.; Aung, T.; Gaur, P.M.; Gowda, C.L.L. Development and adoption of improved chickpea varieties in Myanmar. J. SAT Agric. Res. 2007, 5, 1–3. [Google Scholar]
- Gaur, P.M.; Tripathi, S.; Gowda, C.L.L.; Pande, S.; Sharma, H.C.; Sharma, K.K.; Kashiwagi, J.; Vadez, V.; Krishnamurthy, L.; Varshney, R.K.; et al. International Efforts in Chickpea Improvement. In Legumes for Ecological Sustainability: Emerging Challenges and Opportunities; Ali, M., Gupta, S., Basu, P.S., Niamuddin, G., Eds.; Indian Society of Pulses Research and Development: Kanpur, India, 2009; pp. 359–377. [Google Scholar]
- Kumar, J.; Rao, B.V. Super early chickpea developed at ICRISAT Asia Centre. Int. Chickpea Pigeonpea Newsl. 1996, 3, 17–18. [Google Scholar]
- Saxena, N.P.; Krishnamurthy, L.; Johansen, C. Registration of a drought-resistant chickpea germplasm. Crop Sci. 1993, 33, 1424. [Google Scholar]
- Krishnamurthy, L.; Ito, O.; Johansen, C. Genotypic Differences in Root Growth Dynamics and its Implications for Drought Resistance in Chickpea. In Dynamics of Roots and Nitrogen in Cropping Systems of the Semi-Arid Tropics; JIRCAS Agriculture Series No. 3; Ito, O., Johansen, C., Adu Gyamfi, J.J., Katayama, K., Kumar Rao, J.V.D.K., Rego, T.J., Eds.; Japan International Research Center for Agriculture Sciences: Tsukuba, Japan, 1996; pp. 235–250. [Google Scholar]
- Ali, M.Y.; Johansen, C.; Krishnamurthy, L.; Hamid, A. Genotypic variation in root systems of chickpea (Cicer arietinum L.) across environments. J. Agron. Crop Sci. 2005, 191, 464–472. [Google Scholar] [CrossRef]
- Kashiwagi, J.; Krishnamurthy, L.; Crouch, J.H.; Serraj, R. Variability of root length density and its contribution to seed yield in chickpea (Cicer arietinum L) under terminal drought stress. Field Crops Res. 2006, 95, 171–181. [Google Scholar] [CrossRef]
- Gaur, P.M.; Krishnamurthy, L.; Kashiwagi, J. Improving drought-avoidance root traits in chickpea (Cicer arietinum L.): Current status of research at ICRISAT. Plant Prod. Sci. 2008, 11, 3–11. [Google Scholar] [CrossRef]
- Krishnamurthy, L.; Gaur, P.M.; Basu, P.S.; Chaturvedi, S.K.; Tripathi, S.; Vadez, V.; Rathore, A.; Varshney, R.K.; Gowda, C.L.L. Large genetic variation for heat tolerance in the reference collection of chickpea (Cicer arietinum L.) germplasm. Plant Genet. Res. 2011, 9, 59–69. [Google Scholar]
- Maliro, M.F.A.; McNeil, D.; Kollmorgen, J.; Pittock, C.; Redden, R. Screening Chickpea (Cicer arietinum L.) and Wild Relatives Germplasm from Diverse Country Sources for Salt Tolerance. In Proceedings of the International Crop Science Congress; Brisbane, Australia, 26 September–1 October 2004.
- Vadez, V.; Krishnamurthy, L.; Serraj, R.; Gaur, P.M.; Upadhyaya, H.D.; Hoisington, D.A.; Varshney, R.K.; Turner, N.C.; Siddique, K.H.M. Large variation in salinity tolerance in chickpea is explained by differences in sensitivity at the reproductive stage. Field Crops Res. 2007, 104, 123–129. [Google Scholar] [CrossRef] [Green Version]
- Pande, S.; Siddique, K.H.M.; Kishore, G.K.; Bayaa, B.; Gaur, P.M.; Gowda, C.L.L.; Bretag, T.W.; Crouch, J.H. Ascochyta blight of chickpea (Cicer arietinum L.): A review of biology pathogenicity and disease management. Aust. J. Agric. Res. 2005, 56, 317–332. [Google Scholar] [CrossRef]
- Pande, S.; Galloway, J.; Gaur, P.M.; Siddique, K.H.M.; Tripathi, H.S.; Taylor, P.; MacLeod, M.W.J.; Basandrai, A.K.; Bakr, A.; Joshi, S.; Krishna Kishore, G.; Isenegger, D.A.; Narayana Rao, J.; Sharma, M. Botrytis grey mould of chickpea: A review of biology, epidemiology, and disease management. Aust. J. Agric. Res. 2006, 57, 1137–1150. [Google Scholar] [CrossRef]
- Sharma, H.C.; Pampapathy, G.; Lanka, S.K.; Ridsdill-Smith, T.J. Antibiosis mechanism of resistance to pod borer, Helicoverpa armigera in wild relatives of chickpea. Euphytica 2005, 142, 107–117. [Google Scholar] [CrossRef]
- Upadhyaya, H.D.; Bramel, P.J.; Singh, S. Development of a chickpea core subset using geographic distribution and quantitative traits. Crop Sci. 2001, 41, 206–210. [Google Scholar]
- Upadhyaya, H.D.; Ortiz, R. A mini core subset for capturing diversity and promoting utilization of chickpea genetic resources. Theor. Appl. Genet. 2001, 102, 1292–1298. [Google Scholar] [CrossRef]
- Upadhyaya, H.D.; Dwivedi, S.L.; Baum, M.; Varshney, R.K.; Udupa, S.M.; Gowda, C.L.L.; Hoisington, D.; Singh, S. Genetic structure, diversity, and allelic richness in composite collection and reference set in chickpea (Cicer arietinum L.). BMC Plant Biol. 2008, 8, 106. [Google Scholar]
- Glaszmann, J.C.; Kilian, B.; Upadhyaya, H.D.; Varshney, R.K. Accessing genetic diversity for crop improvement. Curr. Opin. Plant Biol. 2010, 13, 1–7. [Google Scholar]
- Gaur, P.M.; Slinkard, A.E. Genetic control and linkage relations of additional isozymes markers in chickpea. Theor. Appl. Genet. 1990a, 80, 648–653. [Google Scholar]
- Gaur, P.M.; Slinkard, A.E. Inheritance and linkage of isozyme coding genes in chickpea. J. Hered. 1990b, 81, 455–459. [Google Scholar]
- Kottapalli, P.; Gaur, P.M.; Katiyar, S.K.; Crouch, J.H.; Buhariwalla, H.K.; Pande, S.; Gali, K.K. Mapping and validation of QTLs for resistance to an Indian isolate of ascochyta blight pathogen in chickpea. Euphytica 2009, 165, 79–88. [Google Scholar] [CrossRef]
- Varshney, R.K.; Hoisington, D.A.; Upadhyaya, H.D.; Gaur, P.M.; Nigam, S.N.; Saxena, K.B.; Vadez, V.; Sethy, N.K.; Bhatia, S.; Aruna, R.; Gowda, M.V.C.; Singh, N. Molecular Genetics and Breeding of Grain Legume Crops for the Semi-Arid Tropics. In Genomics Assisted Crop Improvement, Genomics Applications in Crops; Varshney, R.K., Tuberosa, R., Eds.; Springer: Dordrecht, the Netherlands, 2007; Volume II, pp. 207–242. [Google Scholar]
- Simon, C.J.; Muehlbauer, F.J. Construction of a chickpea linkage map and its comparison with maps of pea and lentil. J. Hered. 1997, 88, 115–119. [Google Scholar]
- Gupta, P.K.; Varshney, R.K. The development and use of microsatellite markers for genetics and plant breeding with emphasis on bread wheat. Euphytica 2000, 113, 163–185. [Google Scholar] [CrossRef]
- Hüttel, B.; Winter, P.; Weising, K.; Choumane, W.; Weigand, F.; Kahl, G. Sequence-tagged microsatellite site markers for chickpea (Cicer arietinum L.). Genome 1999, 42, 210–217. [Google Scholar]
- Winter, P.; Pfaff, T.; Udupa, S.M.; Sharma, P.C.; Sahi, S.; Arreguin-Espinoza, R.; Weigand, F.; Muehlbauer, F.J.; Kahl, G. Characterization and mapping of sequence-tagged microsatellite sites in the chickpea (C. arietinum L.) genome. Mol. Gen. Genet. 1999, 262, 90–101. [Google Scholar]
- Sethy, N.K.; Choudhary, S.; Shokeen, B.; Bhatia, S. Identification of microsatellite markers from Cicer reticulatum: Molecular variation and phylogenetic analysis. Theor. Appl. Genet. 2006, 112, 347–357. [Google Scholar]
- Sethy, N.K.; Shokeen, B.; Edwards, K.J.; Bhatia, S. Development of microsatellite markers and analysis of intraspecific genetic variability in chickpea (Cicer arietinum L.). Theor. Appl. Genet. 2006, 112, 1416–1428. [Google Scholar] [CrossRef]
- Nayak, S.N.; Zhu, H.; Varghese, N.; Datta, S.; Choi, H.-K.; Horres, R.; Jüngling, R.; Singh, J.; Kavi Kishor, P.B.; Sivaramakrishnan, S.; et al. Integration of novel SSR and gene-based SNP marker loci in the chickpea genetic map and establishment of new anchor points with Medicago truncatula genome. Theor. Appl. Genet. 2010, 120, 1415–1441. [Google Scholar] [CrossRef] [Green Version]
- Varshney, R.K.; Graner, A.; Sorrells, M.E. Genic microsatellite markers in plants: Features and applications. Trends Biotechnol. 2005, 23, 48–55. [Google Scholar] [CrossRef]
- Gujaria, N.; Kumar, A.; Dauthal, P.; Dubey, A.; Hiremath, P.; Bhanu Prakash, A.; Farmer, A.; Bhide, M.; Shah, T.; Gaur, P.M.; et al. Development and use of genic molecular markers (GMMs) for construction of a transcript map of chickpea (Cicer arietinum L.). Theor. Appl. Genet. 2011, 122, 1577–1589. [Google Scholar] [CrossRef] [Green Version]
- Varshney, R.K.; Hiremath, P.J.; Lekha, P.; Kashiwagi, J.; Balaji, J.; Deokar, A.A.; Vadez, V.; Xiao, Y.; Srinivasan, R.; Gaur, P.M.; et al. A comprehensive resource of drought- and salinity- responsive ESTs for gene discovery and marker development in chickpea (Cicer arietinum L.). BMC Genomics 2009, 10, 523. [Google Scholar]
- Hiremath, P.J.; Farmer, A.; Cannon, S.B.; Woodward, J.; Kudapa, H.; Tuteja, R.; Kumar, A.; Bhanu Prakash, A.; Mulaosmanovic, B.; Gujaria, N.; et al. Large-scale transcriptome analysis in chickpea (Cicer arietinum L.), an orphan legume crop of the semi-arid tropics of Asia and Africa. Plant Biotechnol. J. 2011, 9, 922–931. [Google Scholar]
- Lichtenzveig, J.; Scheuring, C.; Dodge, J.; Abbo, S.; Zhang, H.-B. Construction of BAC and BIBAC libraries and their applications for generation of SSR markers for genome analysis of chickpea, (Cicer arietinum L.). Theor. Appl. Genet. 2005, 110, 492–510. [Google Scholar] [CrossRef]
- Thudi, M.; Bohra, A.; Nayak, S.N.; Varghese, N.; Shah, T.M.; Penmetsa, R.V.; Thirunavukkarasu, N.; Gudipati, S.; Gaur, P.M.; Kulwal, P.L.; et al. Novel SSR markers from BAC-end sequences, DArT arrays and a comprehensive genetic map with 1,291 marker Loci for chickpea (Cicer arietinum L.). PLoS One 2011, 6, e27275. [Google Scholar]
- Rajesh, P.N.; Muehlbauer, F.J. Discovery and detection of single nucleotide polymorphism (SNP) in coding and genomic sequences in chickpea (Cicer arietinum L.). Euphytica 2008, 162, 291–300. [Google Scholar] [CrossRef]
- Jaccoud, D.; Peng, K.; Feinstein, D.; Kilian, A. Diversity arrays: A solid state technology for sequence information independent genotyping. Nucleic Acids Res. 2001, 29, E25. [Google Scholar]
- Hearnden, P.R.; Eckermann, P.J.; McMichael, G.L.; Hayden, M.J.; Eglinton, J.K.; Chalmers, K.J. A genetic map of 1,000 SSR and DArT markers in a wide barley cross. Theor. Appl. Genet. 2007, 115, 383–391. [Google Scholar] [CrossRef]
- Peleg, Z.; Saranga, Y.; Suprunova, T.; Ronin, Y.; Röder, M.S. High-density genetic map of durum wheat × wild emmer wheat based on SSR and DArT markers. Theor. Appl. Genet. 2008, 117, 103–115. [Google Scholar] [CrossRef]
- Supriya, A.; Senthilvel, S.; Nepolean, T.; Eshwar, K.; Rajaram, V.; Shaw, R.; Hash, C.T.; Kilian, A.; Yadav, R.C.; Narasu, M.L. Development of a molecular linkage map of pearl millet integrating DArT and SSR markers. Theor. Appl. Genet. 2011, 123, 239–250. [Google Scholar] [Green Version]
- Xia, L.; Peng, K.; Yang, S.; Wenzl, P.; de Vicente, M.C.; Fregene, M.; Kilian, A. DArT for high throughout genotyping of cassava (Manihot esculenta) and its wild relatives. Theor. Appl. Genet. 2005, 110, 1092–1098. [Google Scholar] [CrossRef]
- Mace, E.S.; Xia, L.; Jordan, D.R.; Halloran, K.; Parh, D.K.; Huttner, E.; Wenzl, P.; Kilian, A. DArT markers: Diversity analyses and mapping in Sorghum bicolor. BMC Genomics. 2008, 9, 26. [Google Scholar] [CrossRef]
- Winter, P.; Benko-Iseppon, A.M.; Hüttel, B.; Ratnaparkhe, M.; Tullu, A.; Sonnante, G.; Pfaff, T.; Tekeoglu, M.; Santra, D.; Sant, V.J.; Rajesh, P.N.; Kahl, G.; Muehlbauer, F.J. A linkage map of the chickpea (Cicer arietinum L.) genome based on the recombinant inbred lines from a C. arietinum × C. reticulatum cross: Localization of resistance genes for Fusarium races 4 and 5. Theor. Appl. Genet. 2000, 101, 1155–1163. [Google Scholar]
- Choi, H.K.; Kim, D.; Uhm, T.; Limpens, E.; Lim, H.; Mun, J.H.; Kalo, P.; Penmetsa, R.V.; Seres, A.; Kulikova, O.; et al. A sequence-based genetic map of Medicago truncatula and comparison of marker colinearity with M. sativa. Genetics 2004, 166, 1463–1502. [Google Scholar]
- Stein, N.; Prasad, M.; Scholz, U.; Thiel, T.; Zhang, H.; Wolf, M.; Kota, R.; Varshney, R.K.; Perovic, D.; Grosse, I.; Graner, A. A 1,000-loci transcript map of the barley genome: New anchoring points for integrative grass genomics. Theor. Appl. Genet. 2007, 114, 823–839. [Google Scholar] [CrossRef] [Green Version]
- Cho, S.; Kumar, J.; Shultz, J.F.; Anupama, K.; Tefera, F.; Muehlbauer, F.J. Mapping genes for double podding and other morphological traits in chickpea. Euphytica 2002, 125, 285–292. [Google Scholar]
- Flandez-Galvez, H.; Ades, P.K.; Ford, R.; Pang, E.C.K.; Taylor, P.W.J. QTL analysis for ascochyta blight resistance in an intraspecific population of chickpea (Cicer arietinum L.). Theor. Appl. Genet. 2003, 107, 1257–1265. [Google Scholar] [CrossRef]
- Cobos, M.J.; Fernandez, M.; Rubio, J.; Kharrat, M.; Moreno, M.T.; Gil, J.; Millan, T. A linkage map of chickpea (Cicer arietinum L.) based on populations from Kabuli × Desi crosses: Location of genes for resistance to Fusarium wilt race 0. Theor. Appl. Genet. 2005, 110, 1347–1353. [Google Scholar] [CrossRef]
- Radhika, P.; Gowda, S.J.M.; Kadoo, N.Y.; Mhase, L.B.; Jamadagni, B.M.; Sainani, M.N.; Chandra, S.; Gupta, V.S. Development of an integrated intraspecific map of chickpea (Cicer arietinum L.) using two recombinant inbred line populations. Theor. Appl. Genet. 2007, 115, 209–216. [Google Scholar]
- Anuradha, C.; Gaur, P.M.; Pande, S.; Gali, K.K.; Ganesh, M.; Kumar, J.; Varshney, R.K. Mapping QTL for resistance to botrytis grey mould in chickpea. Euphytica 2011, 182, 1–9. [Google Scholar] [CrossRef]
- Millán, T.; Winter, P.; Jungling, R.; Gil, J.; Rubio, J.; Cho, S.; Cobos, M.J.; Iruela, M.; Rajesh, P.N.; Tekeoglu, M.; et al. A consensus genetic map of chickpea (Cicer arietinum L.) based on 10 mapping populations. Euphytica 2010, 175, 175–189. [Google Scholar] [CrossRef]
- Santra, D.K.; Tekeoglu, M.; Ratnaparkhe, M.; Kaiser, W.J.; Muehlbauer, F.J. Identification and mapping of QTLs conferring resistance to ascochyta blight in chickpea. Crop Sci. 2000, 40, 1606–1612. [Google Scholar] [CrossRef]
- Cho, S.H.; Chen, W.D.; Muehlbauer, F.J. Pathotype-specific genetic factors in chickpea (Cicer arietinum L.) for quantitative resistance to Aschochyta blight. Theor. Appl. Genet. 2004, 109, 733–739. [Google Scholar] [CrossRef]
- Collard, B.C.Y.; Pang, E.C.K.; Ades, P.K.; Taylor, P.W.J. Preliminary investigations of QTL associated with seedlings resistance to Ascochyta blight from Cicer echinospermum, a wild relative of chick pea. Theor. Appl. Genet. 2003, 107, 719–729. [Google Scholar] [CrossRef]
- Tekeoglu, M.; Rajesh, P.N.; Muehlbauer, F.J. Integration of sequence tagged microsatellite sites to the chickpea genetic map. Theor. Appl. Genet. 2002, 105, 847–854. [Google Scholar]
- Rakshit, S.; Winter, P.; Tekeoglu, M.; Juarez Muñoz, J.; Pfaff, T.; Benko-Iseppon, A.M.; Muehlbauer, F.J.; Kahl, G. DAF marker tightly linked to a major locus for ascochyta blight resistance in chickpea (Cicer arietinum L.). Euphytica 2003, 132, 23–30. [Google Scholar] [CrossRef]
- Udupa, S.M.; Baum, M. Genetic dissection of pathotype-specific resistance to ascochyta blight disease in chickpea (Cicer arietinum L.) using microsatellite markers. Theor. Appl. Genet. 2003, 106, 1196–1202. [Google Scholar]
- Iruela, M.; Castro, P.; Rubio, J.; Cubero, J.I.; Jacinto, C.; Millan, T.; Gil, J. Validation of a QTL for resistance to Ascochyta blight linked to resistance to Fusarium wilt race 5 in chickpea (Cicer arietinum L.). Eur. J. Plant Path. 2007, 199, 29–37. [Google Scholar]
- Iruela, M.; Rubio, J.; Barro, F.; Cubero, J.I.; Millan, T.; Gil, J. Detection of two quantitative trait loci for resistance to Ascochyta blight in an intra-specific cross of chickpea (Cicer arietinum L.): development of SCAR markers associated with resistance. Theor. Appl. Genet. 2006, 112, 278–287. [Google Scholar]
- Millán, T.; Rubio, J.; Iruela, M.; Daly, K.; Cubero, J.I.; Gil, J. Markers associated with Ascochyta blight resistance in chickpea and their potential in marker-assisted selection. Field Crops Res. 2003, 84, 373–384. [Google Scholar]
- Cobos, M.J.; Rubio, J.; Strange, R.N.; Moreno, M.T.; Gil, J.; Millan, T. A new QTL for Ascochyta blight resistance in an RIL population derived from an interspecific cross in chickpea. Euphytica 2006, 149, 105–111. [Google Scholar] [CrossRef]
- Anbessa, Y.; Taran, B.; Warkentin, T.D.; Tullu, A.; Vandenberg, A. Genetic analyses and conservation of QTL for ascochyta blight resistance in chickpea (Cicer arietinum L.). Theor. Appl. Genet. 2009, 119, 757–765. [Google Scholar]
- Aryamanesh, N.; Nelson, M.N.; Yan, G.; Clarke, H.J.; Siddique, K.H.M. Mapping a major gene for growth habit and QTLs for ascochyta blight resistance and flowering time in a population between chickpea and Cicer reticulatum. Euphytica 2010, 173, 307–319. [Google Scholar] [CrossRef]
- Sharma, K.D.; Winter, P.; Kahl, G.; Muehlbauer, F.J. Molecular mapping of Fusarium oxysporum f. sp. ciceris race 3 resistance gene in chickpea. Theor. Appl. Genet. 2004, 108, 1243–1248. [Google Scholar]
- Madrid, E.; Rubiales, D.; Moral, A.; Moreno, M.T.; Millan, T.; Gil, J.; Rubio, J. Mechanism and molecular markers associated with rust resistance in a chickpea interspecific cross (Cicer arietinum × Cicer reticulatum). Eur. J. Plant Path. 2008, 121, 45–53. [Google Scholar]
- Hossain, S.; Ford, R.; McNeil, D.; Pittock, C.; Panozzo, J.F. Inheritance of seed size in chickpea (Cicer arietinum L.) and identification of QTL based on 100-seed weight and seed size index. Aust. J. Crop Sci. 2010, 4, 126–135. [Google Scholar]
- Cobos, M.J.; Rubio, J.; Fernandez-Romero, M.D.; Garza, R.; Moreno, M.T.; Millan, T.; Gil, J. Genetic analysis of seed size, yield and days to flowering in a chickpea recombinent inbred line population derived from a kabuli × desi cross. Ann. Appl. Biol. 2007, 151, 33–42. [Google Scholar] [CrossRef]
- Cobos, M.J.; Winter, P.; Kharrat, M.; Cubero, J.I.; Gil, J.; Millan, T.; Rubio, J. Genetic analysis of Agronomic traits in a wide cross of chickpea. Field Crops Res. 2009, 111, 130–136. [Google Scholar] [CrossRef]
- Vadez, V.; Krishnamurthy, L.; Thudi, M.; Anuradha, C.; Colmer, T.; Turner, N.; Siddique, K.; Gaur, P.; Varshney, R.K. Assessment of ICCV 2 × JG 62 chickpea progenies shows sensitivity of reproduction to salt stress and reveals QTL for seed yield and yield components. Mol. Breed. 2012, 30, 9–21. [Google Scholar]
- Rajesh, P.N.; Tullu, A.; Gil, J.; Gupta, V.S.; Ranjekar, P.K.; Muehlbauer, F.J. Identification of an STMS marker for the double-podding gene in chickpea. Theor. Appl. Genet. 2002, 105, 604–607. [Google Scholar] [CrossRef]
- Lichtenzveig, J.; Bonfil, D.J.; Zhang, H.B.; Shtienberg, D.; Abbo, S. Mapping quantitative trait loci in chickpea associated with time to flowering and resistance to Didymella rabiei the causal agent of ascochyta blight. Theor. Appl. Genet. 2006, 113, 1357–1369. [Google Scholar]
- Abbo, S.; Molina, C.; Jungmann, R.; Grusak, M.A.; Berkovitch, Z.; Reifen, R.; Kahl, G.; Winter, P.; Reifen, R. Quantitative trait loci governing carotenoid concentration and weight in seeds of chickpea (Cicer arietinum L.). Theor. Appl. Genet. 2005, 111, 185–195. [Google Scholar] [CrossRef]
- Rajesh, P.N.; Coyne, C.; Meksem, K.; Sharma, K.D.; Gupta, V.; Muehlbauer, F.J. Construction of a HindIII Bacterial Artificial Chromosome library and its use in identification of clones associated with disease resistance in chickpea. Theor. Appl. Genet. 2004, 108, 663–669. [Google Scholar]
- Ren, C.; Xu, Z.Y.; Sun, S.; Lee, M.-K.; Wu, C.; Zhang, H.-B. Genomic Libraries for Physical Mapping. In Handbook of Plant Genome Mapping: Genetic and Physical Mapping; Meksem, K., Kahl, G., Eds.; Wiley-VCH: Weinheim, Germany, 2004. [Google Scholar]
- Wu, C.; Xu, Z.; Zhang, H.-B. DNA Libraries. In Encyclopedia of Molecular Cell Biology and Molecular Medicine, 2nd; Meyers, R.A., Ed.; Wiley-VCH: Weinheim, Germany, 2004; Volume 3, pp. 385–425. [Google Scholar]
- Wu, C.; Nimmakayala, P.; Santos, F.A.; Springman, R.; Tao, Q.; Meksem, K.; Lightfoot, D.A.; Zhang, H.-B. Construction and characterization of a soybean bacterial artificial chromosome library and use of multiple complementary libraries for genome physical mapping. Theor. Appl. Genet. 2004, 109, 1041–1050. [Google Scholar]
- Zhang, X.; Scheuring, C.F.; Zhang, M.; Dong, J.J.; Zhang, Y.; Huang, J.J.; Lee, M-K.; Abbo, S.; Sherman, A.; Shtienberg, D.; Chen, W.; Muehlbauer, F.; Zhang, H-B. A BAC/BIBAC-based physical map of chickpea, Cicer arietinum L. BMC Genomics. 2010, 11, 501. [Google Scholar]
- Zatloukalová, P.; Hřibová, E.; Kubaláková, M.; Suchánková, P.; Šimková, H.; Adoración, C.; Kahl, G.; Millán, T.; Doležel, J. Integration of genetic and physical maps of the chickpea (Cicer arietinum L.) genome using flow-sorted chromosomes. Chromosome Res. 2011, 19, 729–739. [Google Scholar] [CrossRef]
- Berkman, P.J.; Skarshewski, A.; Lorenc, M.T.; Lai, K.; Duran, C.; Ling, E.Y.S.; Stiller, J.; Smits, L.; Imelfort, M.; Manoli, S.; et al. Sequencing and assembly of low copy and genic regions of isolated Triticum aestivum chromosome arm 7DS. Plant Biotechnol. 2011, 9, 768–775. [Google Scholar]
- Wicker, T.; Mayer, K.F.X.; Gundlach, H.; Martis, M.; Steuernagel, B.; Scholz, U.; Šimková, H.; Kubaláková, M.; Choulet, F.; Taudien, S.; Platzer, M.; Feuillet, C.; Fahima, T.; Budak, H.; Doležel, J.; Keller, B.; Stein, N. Frequent gene movement and pseudogene evolution is common to the large and complex genomes of wheat, barley, and their relatives. Plant Cell 2011, 23, 1706–1718. [Google Scholar]
- Mayer, K.F.X.; Martis, M.; Hedley, P.E.; Šimková, H.; Liu, H.; Morris, J.A.; Steuernagel, B.; Taudien, S.; Roessner, S.; Gundlach, H.; et al. Unlocking the barley genome by chromosomal and comparative genomics. Plant Cell 2011, 23, 1249–1263. [Google Scholar] [CrossRef] [Green Version]
- Mayer, K.F.X.; Taudien, S.; Martis, M.; Šimková, H.; Suchánková, P.; Gundlach, H.; Wicker, T.; Petzold, A.; Felder, M.; Steuernagel, B.; et al. Gene content and virtual gene order of barley chromosome 1H. Plant Physiol. 2009, 151, 496–505. [Google Scholar]
- Collard, B.C.Y.; Mackill, D.J. Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Philos. Trans. R. Soc. B 2008, 363, 557–572. [Google Scholar] [CrossRef]
- Moose, S.; Mumm, R.H. Molecular plant breeding as the foundation for 21st century crop improvement. Plant Physiol. 2008, 147, 969–977. [Google Scholar] [CrossRef]
- Ribaut, J.M.; de Vicente, M.C.; Delannay, X. Molecular breeding in developing countries: Challenges and perspectives. Curr. Opin. Plant Biol. 2010, 13, 1–6. [Google Scholar]
- Hospital, F.; Charcosset, A. Marker assisted introgression of quantitative trait loci. Genetics 1997, 147, 1469–1485. [Google Scholar]
- Frisch, M.; Bohn, M.; Melchinger, A.E. Minimum sample size and optimal positioning of flanking markers in marker assisted backcrossing for transfer of a target gene. Crop Sci. 1999, 39, 967–975. [Google Scholar] [CrossRef]
- Ribaut, J.M.; Hoisington, D. Marker-assisted selection: New tools and strategies. Trends Plant Sci. 1998, 3, 236–239. [Google Scholar] [CrossRef]
- Salina, E.; Dobrovolskaya, O.; Efremova, T.; Leonova, I.; Roder, M.S. Microsatellite monitoring of recombination around the Vrn-B1 locus of wheat during early backcross breeding. Plant Breed. 2003, 122, 116–119. [Google Scholar]
- Hospital, F. Selection in backcross programmes. Philos. Trans. R. Soc. B 2005, 360, 1503–1511. [Google Scholar] [CrossRef]
- Zamir, D. Improving plant breeding with exotic genetic libraries. Nature Rev. Genet. 2001, 2, 983–989. [Google Scholar] [CrossRef]
- Zhang, X.; Zhou, S.; Fu, Y.; Su, Z.; Wang, X.; Sun, C. Identification of a drought tolerant introgression line derived from Dongxiang common wild rice (O. rufipogon Griff.). Plant Mol. Biol. 2006, 62, 247–259. [Google Scholar]
- Rangel, P.N.; Brondani, R.P.; Rangel, P.H.; Brondani, C. Agronomic and molecular characterization of introgression lines from the interspecific cross Oryza sativa (BG90-2) × Oryza glumaepatula (RS-16). Genet. Mol. Res. 2008, 7, 184–195. [Google Scholar] [CrossRef]
- Gutiérrez, A.G.; Carabalí, S.J.; Giraldo, O.X.; Martínez, C.P.; Correa, F.; Prado, G.; Tohme, J.; Lorieux, M. Identification of a rice stripe necrosis virus resistance locus and yield component QTLs using Oryza sativa × O. glaberrima introgression lines. BMC Plant Biol. 2010, 10, 6. [Google Scholar]
- Eshed, Y.; Zamir, D. An introgression line population of Lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield-associated QTL. Genetics 1995, 141, 1147–1162. [Google Scholar]
- Kamenetzky, L.; Asís, R.; Bassi, S.; de Godoy, F.; Bermúdez, L.; Fernie, A.R.; Sluys, M.A.V.; Vrebalov, J.; Giovannoni, J.J.; Rossi, M.; et al. Genomic analysis of wild tomato introgressions determining metabolism- and yield-associated traits. Plant Physiol. 2010, 152, 1772–1786. [Google Scholar] [CrossRef]
- Concibido, V.C.; La Vallee, B.; Mclaird, P.; Pineda, N.; Meyer, J.; Hummel, L.; Yang, J.; Wu, K.; Delannay, X. Introgression of a quantitative trait locus for yield from Glycine soja into commercial soybean cultivars. Theor. Appl. Genet. 2003, 106, 575–582. [Google Scholar]
- Foncéka, D.; Hodo-Abalo, T.; Rivallan, R.; Faye, I.; Sall, M.N.; Ndoye, O.; Fávero, A.P.; Bertioli, D.J.; Glaszmann, J.C.; Courtois, B.; et al. Genetic mapping of wild introgressions into cultivated peanut: A way toward enlarging the genetic basis of a recent allotetraploid. BMC Plant Biol. 2009, 9, 103. [Google Scholar] [CrossRef]
- Tanksley, S.D.; Nelson, J.C. Advanced backcross QTL analysis: a method of the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines. Theor. Appl. Genet. 1996, 92, 191–203. [Google Scholar] [CrossRef]
- McCouch, S.; Sweeney, M.; Li, J.; Jiang, H.; Thomson, M.; Septiningsih, E.; Edwards, J.; Moncada, P.; Xiao, J.; Garris, A. Through the genetic bottleneck: O. rufipogon as a source of trait-enhancing alleles for O. sativa. Euphytica 2007, 154, 317–339. [Google Scholar] [CrossRef]
- Naz, A.A.; Kunert, A.; Lind, V.; Pillen, K.; Léon, J. AB-QTL analysis in winter wheat: II. Genetic analysis of seedling and field resistance against leaf rust in a wheat advanced backcross population. Theor. Appl. Genet. 2008, 116, 1095–1104. [Google Scholar]
- Blair, M.W.; Astudillo, C.; Restrepo, J.; Bravo, L.C.; Villada, D.; Beebe, S.E. Análisis multi-locacional de líneas de fríjol arbustivo con alto contenido de hierro en el departamento de Nariño. Fitotec. Colomb. 2005, 5, 20–27. [Google Scholar]
- Chaky, J.M.; Specht, J.E.; Cregan, P.B. Advanced backcross QTL analysis in a mating between Glycine max and Glycine soja. In Proceedings of the Plant and Animal Genome XII Conference Abstracts, San Diego, CA, USA, 10–14 January 2004; p. 545.
- Stam, P. Marker-Assisted Breeding. In Proceedings of the IX Meeting of EUCARPIA Section on Biometrics in Plant Breeding, Wageningen, the Netherlands, 1994; pp. 32–44.
- Gupta, P.K.; Kumar, J.; Mir, R.R.; Kumar, A. Marker assisted selection as a component of conventional plant breeding. Plant Breed. Rev. 2010, 33, 145–217. [Google Scholar]
- Gupta, P.K.; Langridge, P.; Mir, R.R. Marker-assisted wheat breeding: present status and future possibilities. Mol. Breed. 2010, 26, 145–161. [Google Scholar] [CrossRef]
- Tester, M.; Langridge, P. Breeding technologies to increase crop production in a changing world. Science 2010, 327, 818–822. [Google Scholar] [CrossRef]
- Bernardo, R.; Charcosset, A. Usefulness of gene information in marker-assisted recurrent selection: A simulation appraisal. Crop Sci. 2006, 46, 614–621. [Google Scholar] [CrossRef]
- Mayor, P.J.; Bernardo, R. Genome wide selection and marker-assisted recurrent selection in doubled haploid versus F2 populations. Crop Sci. 2009, 49, 1719–1725. [Google Scholar] [CrossRef]
- Charcosset, A.; Moreau, L. Use of molecular markers for the development of new cultivars and the evaluation of genetic diversity. Euphytica 2004, 137, 81–94. [Google Scholar] [CrossRef]
- Meuwissen, T.H.E.; Hayes, B.J.; Goddard, M.E. Prediction of total genetic value using genome-wide dense marker maps. Genetics 2001, 157, 1819–1829. [Google Scholar]
- Bernardo, R.; Yu, J. Prospects for genome-wide selection for quantitative traits in maize. Crop Sci. 2007, 47, 1082–1090. [Google Scholar] [CrossRef]
- Heffner, E.L.; Sorrells, M.E.; Jannink, J.L. Genomic selection for crop improvement. Crop Sci. 2009, 49, 1–12. [Google Scholar] [CrossRef]
- Jannink, J.L.; Lorenz, A.J.; Iwata, H. Genomic selection in plant breeding: from theory to practice. Brief. Funct. Genomics Proteom. 2010, 9, 166–177. [Google Scholar]
- Robinson, G.K. That BLUP is a good thing: The estimation of random effects. Stat. Sci. 1991, 6, 15–32. [Google Scholar] [CrossRef]
- Streeck, T.S.; Piepho, H.P. Genome-wide selection by mixed model ridge regression and extensions based on geo statistical models. BMC Proc. 2010, 4, S1–S8. [Google Scholar] [CrossRef]
- Bernardo, R. Genome wide selection with minimal selection in self-pollinated crops. Crop Sci. 2010, 50, 624–627. [Google Scholar] [CrossRef]
- Bernardo, R. Potential and practicality of genome wide selection in plants. In Proceedings of the Plant & Animal Genomes XVIII Conference, San Diego, CA, USA, 9–13 January 2010.
© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Gaur, P.M.; Jukanti, A.K.; Varshney, R.K. Impact of Genomic Technologies on Chickpea Breeding Strategies. Agronomy 2012, 2, 199-221. https://doi.org/10.3390/agronomy2030199
Gaur PM, Jukanti AK, Varshney RK. Impact of Genomic Technologies on Chickpea Breeding Strategies. Agronomy. 2012; 2(3):199-221. https://doi.org/10.3390/agronomy2030199
Chicago/Turabian StyleGaur, Pooran M., Aravind K. Jukanti, and Rajeev K. Varshney. 2012. "Impact of Genomic Technologies on Chickpea Breeding Strategies" Agronomy 2, no. 3: 199-221. https://doi.org/10.3390/agronomy2030199
APA StyleGaur, P. M., Jukanti, A. K., & Varshney, R. K. (2012). Impact of Genomic Technologies on Chickpea Breeding Strategies. Agronomy, 2(3), 199-221. https://doi.org/10.3390/agronomy2030199