Waterlogging Priming at Tillering Stage Confers Stronger Tolerance to Wheat Plants Waterlogged During Anthesis
Abstract
1. Introduction
2. Materials and Methods
2.1. Cultivation Environments and Waterlogging Priming Treatments
2.2. Measurements and Sampling
2.3. Statistical Analysis
3. Results
3.1. Leaf Senescence (Chlorosis and Necrosis)
3.2. Photosynthetic Performance
3.3. Grain Yield and Its Components
3.4. Nitrogen Uptake Capacity and Remobilization
3.5. Correlation Between SPAD and Leaf δ15N or Thousand-Grain Weight
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| 15N | Nitrogen stable isotope |
| δ15N | Nitrogen stable isotope composition |
| Fv′/Fm′ | Quantum yield of photosystem II |
Appendix A
| 2022/23 | |||||||
|---|---|---|---|---|---|---|---|
| Treatment | Culm + Leaf Sheath | Leaf | Grain | ||||
| Nitrogen Content (mg plant−1) | |||||||
| CCC | 11.33 ± 0.47 1 | 2.83 ± 0.47 | 5.60 ± 1.17 | ||||
| WCC | 11.80 ± 2.13 | 3.60 ± 1.10 | 5.53 ± 0.73 | ||||
| CWC | 10.17 ± 1.27 | 2.53 ± 0.27 | 4.57 ± 2.13 | ||||
| CCW | 10.00 ± 0.60 | 2.17 ± 0.10 | 6.00 ± 0.27 | ||||
| WWC | 11.20 ± 0.07 | 3.10 ± 0.20 | 5.50 ± 0.73 | ||||
| WCW | 10.47 ± 0.77 | 3.07 ± 0.20 | 6.57 ± 0.60 | ||||
| CWW | 11.30 ± 1.17 | 2.77 ± 0.20 | 7.50 ± 0.43 | ||||
| WWW | 7.47 ± 0.53 | 2.13 ± 0.17 | 4.90 ± 1.17 | ||||
| 15N Content (μg plant−1) | |||||||
| CCC | 42.17 ± 5.03 | 5.10 ± 1.47 ab 2 | 24.43 ± 8.93 | ||||
| WCC | 62.80 ± 14.63 | 12.10 ± 3.97 a | 41.13 ± 6.70 | ||||
| CWC | 30.80 ± 10.93 | 2.97 ± 1.00 ab | 23.83 ± 17.70 | ||||
| CCW | 27.70 ± 4.73 | 1.23 ± 0.47 b | 23.37 ± 5.73 | ||||
| WWC | 54.83 ± 9.20 | 8.87 ± 2.63 ab | 36.33 ± 5.53 | ||||
| WCW | 42.60 ± 13.93 | 6.53 ± 3.03 ab | 39.80 ± 12.27 | ||||
| CWW | 23.70 ± 4.23 | 0.90 ± 0.57 b | 27.77 ± 1.07 | ||||
| WWW | 19.67 ± 8.30 | 2.77 ± 1.63 ab | 15.90 ± 7.37 | ||||
| 2023/24 | |||||||
| Treatment | Culm + Leaf Sheath | Lower Leaves | Flag Leaf | Glume + Rachis | Grain | ||
| Nitrogen Content (mg plant−1) | |||||||
| CCC | 18.55 ± 2.70 | 1.15 ± 0.17 | 2.22 ± 0.21 | 7.48 ± 1.00 | 11.82 ± 3.47 | ||
| WCC | 18.87 ± 5.03 | 1.27 ± 0.39 | 2.49 ± 0.82 | 6.27 ± 1.84 | 10.91 ± 2.74 | ||
| CWC | 17.43 ± 1.81 | 1.80 ± 0.35 | 2.85 ± 0.64 | 8.36 ± 1.20 | 12.26 ± 3.25 | ||
| CCW | 21.18 ± 3.50 | 2.21 ± 0.68 | 3.62 ± 0.68 | 9.86 ± 1.63 | 7.66 ± 3.72 | ||
| WWC | 13.41 ± 2.06 | 1.95 ± 0.60 | 3.11 ± 0.70 | 6.16 ± 1.08 | 13.03 ± 4.41 | ||
| WCW | 19.41 ± 2.86 | 1.42 ± 0.14 | 2.34 ± 0.36 | 8.79 ± 1.21 | 18.57 ± 3.66 | ||
| CWW | 13.78 ± 1.98 | 1.89 ± 0.37 | 1.98 ± 0.48 | 8.33 ± 1.35 | 11.25 ± 3.43 | ||
| WWW | 16.26 ± 2.62 | 1.28 ± 0.29 | 1.75 ± 0.53 | 7.76 ± 2.01 | 19.24 ± 5.93 | ||
| 15N Content (μg plant−1) | |||||||
| CCC | 7.58 ± 1.37 | 0.54 ± 0.28 | 0.02 ± 0.02 | 0.59 ± 0.14 | 4.62 ± 1.87 | ||
| WCC | 19.74 ± 8.84 | 0.65 ± 0.21 | 1.81 ± 0.91 | 4.30 ± 2.14 | 16.91 ± 7.44 | ||
| CWC | 16.52 ± 7.14 | 0.32 ± 0.09 | 1.65 ± 1.60 | 3.28 ± 2.42 | 30.67 ± 22.71 | ||
| CCW | 9.30 ± 2.22 | 0.35 ± 0.25 | 0.16 ± 0.18 | 0.66 ± 0.37 | 0.85 ± 0.50 | ||
| WWC | 25.99 ± 14.01 | 0.93 ± 0.15 | 3.10 ± 2.13 | 5.09 ± 2.49 | 21.41 ± 13.83 | ||
| WCW | 33.41 ± 1.97 | 0.66 ± 0.15 | 0.72 ± 0.03 | 4.85 ± 0.84 | 60.56 ± 3.19 | ||
| CWW | 1.01 ± 0.14 | 0.49 ± 0.33 | 0.01 ± 0.01 | 0.09 ± 0.09 | 1.16 ± 0.99 | ||
| WWW | 27.19 ± 12.23 | 0.20 ± 0.02 | 0.76 ± 0.58 | 6.91 ± 3.70 | 76.98 ± 36.37 | ||
| 2022/23 | |||||||
|---|---|---|---|---|---|---|---|
| Treatment | Nitrogen Concentration (%) | ||||||
| Culm + Leaf Sheath | Leaf | Grain | |||||
| During Grain Filling | |||||||
| CCC | 1.27 ± 0.08 1 | 1.61 ± 0.25 | 2.93 ± 0.08 | ||||
| WCC | 1.26 ± 0.06 | 1.97 ± 0.30 | 2.63 ± 0.06 | ||||
| CWC | 1.43 ± 0.24 | 1.51 ± 0.13 | 2.87 ± 0.29 | ||||
| CCW | 1.24 ± 0.08 | 1.47 ± 0.05 | 2.90 ± 0.02 | ||||
| WWC | 1.29 ± 0.02 | 1.86 ± 0.17 | 2.79 ± 0.10 | ||||
| WCW | 1.26 ± 0.07 | 1.73 ± 0.15 | 2.73 ± 0.03 | ||||
| CWW | 1.37 ± 0.05 | 1.69 ± 0.14 | 2.80 ± 0.05 | ||||
| WWW | 1.25 ± 0.09 | 1.35 ± 0.04 | 2.68 ± 0.21 | ||||
| At Harvest | |||||||
| CCC | 1.21 ± 0.08 | 1.59 ± 0.20 | 3.26 ± 0.11 | ||||
| WCC | 0.89 ± 0.11 | 1.14 ± 0.11 | 2.89 ± 0.19 | ||||
| CWC | 0.97 ± 0.10 | 1.62 ± 0.12 | 3.07 ± 0.10 | ||||
| CCW | 0.97 ± 0.05 | 1.23 ± 0.07 | 3.21 ± 0.13 | ||||
| WWC | 0.97 ± 0.08 | 1.20 ± 0.10 | 3.13 ± 0.07 | ||||
| WCW | 0.89 ± 0.03 | 1.11 ± 0.07 | 3.18 ± 0.15 | ||||
| CWW | 1.01 ± 0.13 | 1.43 ± 0.13 | 3.34 ± 0.15 | ||||
| WWW | 0.99 ± 0.10 | 1.43 ± 0.06 | 3.26 ± 0.21 | ||||
| 2023/24 | |||||||
| Treatment | Culm + Leaf Sheath | Lower Leaves | Flag Leaf | Glume + Rachis | Grain | ||
| During Grain Filling | |||||||
| CCC | 0.75 ± 0.10 | 0.86 ± 0.08 bc 2 | 1.69 ± 0.22 ab | 1.26 ± 0.16 | 2.66 ± 0.17 | ||
| WCC | 1.07 ± 0.12 | 1.00 ± 0.07 abc | 1.87 ± 0.17 ab | 1.26 ± 0.02 | 2.51 ± 0.07 | ||
| CWC | 0.91 ± 0.10 | 1.10 ± 0.11 abc | 1.70 ± 0.14 ab | 1.57 ± 0.33 | 3.07 ± 0.56 | ||
| CCW | 1.07 ± 0.13 | 1.25 ± 0.15 ab | 2.16 ± 0.16 a | 1.71 ± 0.18 | 3.05 ± 0.24 | ||
| WWC | 0.74 ± 0.13 | 1.08 ± 0.06 abc | 1.81 ± 0.29 ab | 1.15 ± 0.18 | 2.20 ± 0.25 | ||
| WCW | 0.61 ± 0.01 | 0.71 ± 0.02 c | 1.15 ± 0.09 b | 1.16 ± 0.06 | 2.33 ± 0.06 | ||
| CWW | 0.89 ± 0.04 | 1.31 ± 0.07 a | 1.35 ± 0.18 ab | 1.75 ± 0.14 | 3.12 ± 0.21 | ||
| WWW | 0.75 ± 0.18 | 0.83 ± 0.10 bc | 1.14 ± 0.20 b | 1.18 ± 0.12 | 2.36 ± 0.12 | ||
| At Harvest | |||||||
| CCC | 0.62 ± 0.13 | 0.81 ± 0.14 ab | 1.74 ± 0.25 a | 1.33 ± 0.23 | 2.82 ± 0.11 | ||
| WCC | 0.32 ± 0.05 | 0.67 ± 0.08 b | 0.78 ± 0.07 b | 0.68 ± 0.11 | 2.38 ± 0.15 | ||
| CWC | 0.45 ± 0.15 | 0.91 ± 0.12 ab | 1.12 ± 0.24 ab | 0.63 ± 0.25 | 2.32 ± 0.33 | ||
| CCW | 0.59 ± 0.08 | 1.19 ± 0.14 a | 1.78 ± 0.07 a | 1.09 ± 0.26 | 3.15 ± 0.25 | ||
| WWC | 0.25 ± 0.02 | 0.70 ± 0.03 ab | 0.73 ± 0.09 b | 0.44 ± 0.07 | 2.32 ± 0.15 | ||
| WCW | 0.29 ± 0.01 | 0.59 ± 0.03 b | 0.91 ± 0.16 ab | 0.63 ± 0.16 | 2.10 ± 0.12 | ||
| CWW | 0.59 ± 0.07 | 1.19 ± 0.06 a | 1.29 ± 0.13 ab | 1.17 ± 0.28 | 2.96 ± 0.32 | ||
| WWW | 0.49 ± 0.23 | 0.74 ± 0.14 ab | 1.02 ± 0.36 ab | 0.98 ± 0.63 | 2.39 ± 0.38 | ||
| 2022/23 | |||||||
|---|---|---|---|---|---|---|---|
| Treatment | δ15N (‰) | ||||||
| Culm + Leaf Sheath | Leaf | Grain | |||||
| During Grain Filling | |||||||
| CCC | 1022.81 ± 107.10 1 | 538.00 ± 174.16 | 1123.88 ± 219.88 | ||||
| WCC | 1145.21 ± 101.67 | 928.87 ± 66.55 | 2046.54 ± 93.79 | ||||
| CWC | 809.00 ± 213.77 | 338.69 ± 134.69 | 1153.42 ± 405.28 | ||||
| CCW | 779.18 ± 172.00 | 150.74 ± 51.56 | 1058.34 ± 213.78 | ||||
| WWC | 1348.05 ± 231.52 | 821.36 ± 278.96 | 1838.84 ± 184.79 | ||||
| WCW | 1077.52 ± 296.83 | 557.20 ± 243.87 | 1599.44 ± 407.20 | ||||
| CWW | 567.85 ± 42.79 | 87.03 ± 51.17 | 1022.32 ± 60.32 | ||||
| WWW | 689.37 ± 248.16 | 388.93 ± 250.50 | 824.91 ± 215.22 | ||||
| At Harvest | |||||||
| CCC | 1791.43 ± 102.88 ab 2 | 602.52 ± 150.91 | 1684.05 ± 165.08 ab | ||||
| WCC | 2046.98 ± 137.81 a | 732.22 ± 215.02 | 2233.92 ± 369.62 ab | ||||
| CWC | 1489.05 ± 99.21 ab | 218.19 ± 13.62 | 1285.27 ± 28.22 b | ||||
| CCW | 1409.97 ± 153.52 ab | 395.13 ± 207.38 | 1557.26 ± 189.04 ab | ||||
| WWC | 1948.78 ± 258.98 a | 930.59 ± 313.80 | 2187.61 ± 313.99 ab | ||||
| WCW | 2078.62 ± 100.35 a | 892.71 ± 65.95 | 2342.49 ± 46.80 a | ||||
| CWW | 1483.49 ± 29.16 ab | 239.11 ± 7.67 | 1399.51 ± 169.63 ab | ||||
| WWW | 1040.20 ± 286.05 b | 198.12 ± 49.60 | 1250.79 ± 111.89 b | ||||
| 2023/24 | |||||||
| Treatment | Culm + Leaf Sheath | Lower Leaves | Flag Leaf | Glume+Rachis | Grain | ||
| During Grain Filling | |||||||
| CCC | 113.39 ± 17.44 | 130.95 ± 56.87 | 2.76 ± 2.20 | 20.77 ± 2.36 | 94.84 ± 24.78 | ||
| WCC | 259.65 ± 87.54 | 140.45 ± 30.60 | 176.22 ± 74.67 | 166.95 ± 55.05 | 393.63 ± 126.97 | ||
| CWC | 273.15 ± 135.92 | 56.54 ± 24.98 | 134.43 ± 127.25 | 138.94 ± 114.62 | 523.18 ± 361.66 | ||
| CCW | 127.48 ± 39.12 | 35.67 ± 17.47 | 19.19 ± 20.70 | 22.50 ± 15.55 | 48.86 ± 23.86 | ||
| WWC | 504.07 ± 211.60 | 148.65 ± 38.80 | 256.25 ± 140.47 | 228.43 ± 90.66 | 1046.13 ± 295.19 | ||
| WCW | 500.49 ± 94.68 | 130.12 ± 30.70 | 88.08 ± 13.81 | 149.99 ± 6.20 | 948.42 ± 135.29 | ||
| CWW | 20.99 ± 4.34 | 60.04 ± 34.76 | 3.30 ± 3.30 | 3.08 ± 2.69 | 20.64 ± 14.40 | ||
| WWW | 405.60 ± 169.59 | 46.89 ± 10.68 | 88.84 ± 50.85 | 205.64 ± 109.92 | 886.58 ± 369.78 | ||
| At Harvest | |||||||
| CCC | 371.90 ± 105.21 | 99.71 ± 55.83 | 14.17 ± 3.44 | 84.75 ± 35.77 | 363.52 ± 111.12 bc | ||
| WCC | 713.29 ± 252.70 | 166.23 ± 26.54 | 91.95 ± 39.58 | 370.29 ± 181.71 | 1053.50 ± 221.98 ab | ||
| CWC | 476.49 ± 103.27 | 91.64 ± 35.29 | 20.62 ± 11.54 | 172.49 ± 46.24 | 817.74 ± 302.48 abc | ||
| CCW | 328.76 ± 79.99 | 61.88 ± 7.59 | 67.29 ± 64.40 | 178.42 ± 96.20 | 284.07 ± 144.27 bc | ||
| WWC | 518.69 ± 122.23 | 108.88 ± 28.88 | 201.45 ± 122.13 | 460.99 ± 147.45 | 1280.49 ± 124.28 a | ||
| WCW | 888.05 ± 165.75 | 207.94 ± 16.95 | 130.75 ± 94.77 | 440.41 ± 218.05 | 950.69 ± 142.02 abc | ||
| CWW | 217.77 ± 44.75 | 116.89 ± 21.67 | 7.85 ± 5.27 | 51.81 ± 16.09 | 147.57 ± 65.66 c | ||
| WWW | 675.44 ± 173.67 | 148.33 ± 30.72 | 67.99 ± 29.00 | 477.93 ± 269.93 | 1090.80 ± 90.96 ab | ||
References
- Donat, M.G.; Angélil, O.; Ukkola, A.M. Intensification of precipitation extremes in the world’s humid and water-limited regions. Environ. Res. Lett. 2019, 14, 065003. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, X.; Geng, S.; Zhang, X. A review of soil waterlogging impacts, mechanisms, and adaptive strategies. Front. Plant Sci. 2025, 16, 1545912. [Google Scholar] [CrossRef] [PubMed]
- Tian, L.; Zhang, Y.; Chen, P.; Zhang, F.; Li, J.; Yan, F.; Dong, Y.; Feng, B. How does the waterlogging regime affect crop yield? A global meta-analysis. Front. Plant Sci. 2021, 12, 634898. [Google Scholar] [CrossRef]
- Kawaguchi, K. Wet Injury of Wheat in Upland Field Converted from Paddy Field in Japan. In Proceedings of the 7th Asian Crop Science Association Conference, Bogor, Indonesia, 27–30 September 2011; pp. 147–152. [Google Scholar]
- Cannell, R.Q.; Belford, R.K.; Gales, K.; Dennis, C.W.; Prew, R.D. Effects of waterlogging at different stages of development on the growth and yield of winter wheat. J. Sci. Food Agric. 1980, 31, 117–132. [Google Scholar] [CrossRef]
- Araki, H.; Hamada, A.; Hossain, M.A.; Takahashi, T. Waterlogging at jointing and/or after anthesis in wheat induces early leaf senescence and impairs grain filling. Field Crops Res. 2012, 137, 27–36. [Google Scholar] [CrossRef]
- de San Celedonio, R.P.; Abeledo, L.G.; Miralles, D.J. Identifying the critical period for waterlogging on yield and its components in wheat and barley. Plant Soil 2014, 378, 265–277. [Google Scholar] [CrossRef]
- Hossain, M.A.; Araki, H.; Takahashi, T. Poor grain filling induced by waterlogging is similar to that in abnormal early ripening in wheat in Western Japan. Field Crops Res. 2011, 123, 100–108. [Google Scholar] [CrossRef]
- Distelfeld, A.; Avni, R.; Fischer, A.M. Senescence, nutrient remobilization, and yield in wheat and barley. J. Exp. Bot. 2014, 65, 3783–3798. [Google Scholar] [CrossRef]
- Zhou, B.; Serret, M.D.; Pie, J.B.; Shah, S.S.; Li, Z. Relative contribution of nitrogen absorption, remobilization, and partitioning to the ear during grain filling in Chinese winter wheat. Front. Plant Sci. 2018, 9, 01351. [Google Scholar] [CrossRef]
- Jiang, D.; Fan, X.; Dai, T.; Cao, W. Nitrogen fertiliser rate and post-anthesis waterlogging effects on carbohydrate and nitrogen dynamics in wheat. Plant Soil 2008, 304, 301–314. [Google Scholar] [CrossRef]
- Sinclair, T.R.; de Wit, C.T. Analysis of the carbon and nitrogen limitations to soybean yield. Agron. J. 1976, 68, 319–322. [Google Scholar] [CrossRef]
- Sakuraba, Y. Molecular basis of nitrogen starvation-induced leaf senescence. Front. Plant Sci. 2022, 13, 1013304. [Google Scholar] [CrossRef]
- Bruce, T.J.A.; Matthes, M.C.; Napier, J.A.; Pickett, J.A. Stressful memories of plants: Evidence and possible mechanisms. Plant Sci. 2007, 173, 603–608. [Google Scholar] [CrossRef]
- Liu, H.; Able, A.J.; Able, J.A. Priming crops for the future: Rewiring stress memory. Trends Plant Sci. 2022, 27, 699–716. [Google Scholar] [CrossRef]
- Sharma, M.; Kumar, P.; Verma, V.; Sharma, R.; Bhargava, B.; Irfan, M. Understanding plant stress memory response for abiotic stress resilience: Molecular insights and prospects. Plant Physiol. Biochem. 2022, 179, 10–24. [Google Scholar] [CrossRef] [PubMed]
- Siddique, A.; Parveen, S.; Rahman, M.Z.; Rahman, J. Revisiting plant stress memory: Mechanisms and contribution to stress adaptation. Physiol. Mol. Biol. Plants 2024, 30, 349–367. [Google Scholar] [CrossRef] [PubMed]
- Aswathi, K.P.R.; Ul-Allah, S.; Puthur, J.T.; Siddique, K.H.M.; Frei, M.; Farooq, M. The Plant Mind: Unraveling Abiotic Stress Priming, Memory, and Adaptation. Physiol. Plant. 2025, 177, e70372. [Google Scholar] [CrossRef]
- Agualongo, D.A.P.; Da-Silva, C.J.; Garcia, N.; de Oliveira, F.K.; Shimoia, E.P.; Posso, D.A.; de Oliveira, A.C.B.; de Oliveira, D.D.C.; do Amarante, L. Waterlogging priming alleviates the oxidative damage, carbohydrate consumption, and yield loss in soybean (Glycine max) plants exposed to waterlogging. Funct. Plant Biol. 2022, 49, 1029–1042. [Google Scholar] [CrossRef] [PubMed]
- Zhou, R.; Jiang, F.; Yu, X.; Abdelhakim, L.; Li, X.; Rosenqvist, E.; Ottosen, C.; Wu, Z. Dominant and priming role of waterlogging in tomato at e[CO2] by multivariate analysis. Int. J. Mol. Sci. 2022, 23, 12121. [Google Scholar] [CrossRef]
- Li, C.; Jiang, D.; Wollenweber, B.; Li, Y.; Dai, T.; Cao, W. Waterlogging pretreatment during vegetative growth improves tolerance to waterlogging after anthesis in wheat. Plant Sci. 2011, 180, 672–678. [Google Scholar] [CrossRef]
- Zhang, Y.F.; Wang, X.; Malko, M.M.; Zhou, Q.; Cai, J.; Zhong, Y.; Huang, M.; Jiang, D. Unravelling the long-term beneficial effects of stress priming-induced tolerance to waterlogging stress in wheat. Plant Growth Regul. 2025, 105, 2067–2084. [Google Scholar] [CrossRef]
- Jin, N.; Cai, Z.; Ye, L.; Shen, Q.; Zhang, G.; Xu, Z. Improvement of waterlogging tolerance in wheat by the stress priming through inducing aerenchyma formation. Plant Growth Regul. 2025, 105, 245–255. [Google Scholar] [CrossRef]
- Taulemesse, F.; Le Gouis, J.; Gouache, D.; Gibon, Y.; Allard, V. Post-flowering nitrate uptake in wheat is controlled by N status at flowering, with a putative major role of root nitrate transporter NRT2.1. PLoS ONE 2015, 10, e0120291. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Alcántara, B.; Quiñones, A.; Polo, C.; Primo-Millo, E.; Legaz, F. Use of nitrification inhibitor DMPP to improve nitrogen uptake efficiency in citrus trees. J. Agric. Sci. 2013, 5, 1–18. [Google Scholar] [CrossRef]
- de San Celedonio, R.P.; Abeledo, L.G.; Brihet, J.M.; Miraalles, D.J. Waterlogging affects leaf and tillering dynamics in wheat and barley. J. Agron. Crop Sci. 2016, 202, 409–420. [Google Scholar] [CrossRef]
- Pais, I.P.; Moreira, R.; Semedo, J.N.; Ramalho, J.C.; Lidon, F.C.; Coutinho, J.; Maças, B.; Scotti-Campos, P. Wheat crop under waterlogging: Potential soil and plant effects. Plants 2023, 12, 149. [Google Scholar] [CrossRef]
- Li, L.; Dong, X.; He, M.; Huang, M.; Cai, J.; Zhou, Q.; Zhong, Y.; Jiang, D.; Wang, X. Unravelling the role of adventitious roots under priming-induced tolerance to waterlogging stress in wheat. Environ. Exp. Bot. 2023, 216, 105516. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, X.; Malko, M.M.; Zhou, Q.; Cai, J.; Zhong, Y.; Huang, M.; Jiang, D. The physiological mechanisms of waterlogging priming on aerenchyma formation in secondary roots of wheat under waterlogging stress. Environ. Exp. Bot. 2025, 237, 106207. [Google Scholar] [CrossRef]
- Herzog, M.; Striker, G.G.; Colmer, T.D.; Pedersen, O. Mechanisms of waterlogging tolerance in wheat—A review of root and shoot physiology. Plant Cell Environ. 2016, 39, 1068–1086. [Google Scholar] [CrossRef]
- Fradgley, N.S.; Bentley, A.R.; Swarbreck, S.M. Defining the physiological determinants of low nitrogen requirement in wheat. Biochem. Soc. Trans. 2021, 49, 609–616. [Google Scholar] [CrossRef]
- de San Celedonio, R.P.; Abeledo, L.G.; Miralles, D.J. Nitrogen accumulation and remobilisation in wheat and barley plants exposed to waterlogging at different developmental stages. Crop Pasture Sci. 2022, 73, 615–626. [Google Scholar] [CrossRef]
- Ren, B.; Dong, S.; Zhao, B.; Liu, P.; Zhang, J. Responses of nitrogen metabolism, uptake and translocation of Maize to water logging at different growth stages. Front. Plant Sci. 2017, 8, 01216. [Google Scholar] [CrossRef] [PubMed]







| Treatment | Grain Number per Spike | Thousand-Grain Weight (g) | Grain Yield (g plant−1) |
|---|---|---|---|
| 2022/23 | |||
| CCC | 14.17 ± 1.49 1 | 22.41 ± 3.55 b 2 | 0.31 ± 0.05 b |
| WCC | 15.54 ± 1.57 | 35.69 ± 0.86 a | 0.56 ± 0.07 a |
| CWC | 13.73 ± 1.25 | 33.03 ± 0.86 a | 0.45 ± 0.04 ab |
| CCW | 15.40 ± 1.27 | 25.77 ± 3.72 ab | 0.39 ± 0.05 ab |
| WWC | 13.93 ± 0.53 | 36.45 ± 1.01 a | 0.51 ± 0.03 ab |
| WCW | 13.63 ± 1.53 | 34.94 ± 2.60 a | 0.48 ± 0.07 ab |
| CWW | 8.73 ± 1.62 | 31.88 ± 2.68 ab | 0.28 ± 0.05 b |
| WWW | 11.67 ± 2.07 | 27.40 ± 1.84 ab | 0.32 ± 0.05 ab |
| 2023/24 | |||
| CCC | 15.93 ± 2.67 | 21.39 ± 3.45 ab | 0.62 ± 0.15 |
| WCC | 23.80 ± 3.28 | 28.24 ± 1.58 ab | 1.40 ± 0.27 |
| CWC | 24.82 ± 5.00 | 23.67 ± 2.12 ab | 1.47 ± 0.38 |
| CCW | 25.18 ± 3.05 | 20.47 ± 4.18 ab | 0.80 ± 0.18 |
| WWC | 24.95 ± 2.59 | 31.20 ± 1.30 a | 1.61 ± 0.18 |
| WCW | 22.66 ± 3.58 | 28.80 ± 1.20 ab | 1.49 ± 0.33 |
| CWW | 22.43 ± 3.34 | 17.24 ± 3.16 b | 0.66 ± 0.16 |
| WWW | 20.71 ± 4.19 | 27.07 ± 1.85 ab | 1.48 ± 0.41 |
| 2022/23 | |||||||
|---|---|---|---|---|---|---|---|
| Treatment | Culm + Leaf Sheath | Leaf | Grain | ||||
| Nitrogen Content (mg plant−1) | |||||||
| CCC | 8.67 ± 1.01 a 1,2 | 2.24 ± 0.51 | 9.18 ± 1.45 | ||||
| WCC | 5.06 ± 0.49 b | 1.53 ± 0.13 | 16.20 ± 1.59 | ||||
| CWC | 5.38 ± 0.60 b | 2.51 ± 0.17 | 15.09 ± 1.24 | ||||
| CCW | 6.50 ± 0.31 ab | 1.50 ± 0.25 | 14.67 ± 2.06 | ||||
| WWC | 5.33 ± 0.25 b | 1.75 ± 0.07 | 14.86 ± 0.76 | ||||
| WCW | 4.50 ± 0.87 b | 1.57 ± 0.12 | 16.98 ± 1.51 | ||||
| CWW | 4.87 ± 0.60 b | 1.72 ± 0.16 | 10.29 ± 2.34 | ||||
| WWW | 4.26 ± 0.48 b | 2.43 ± 0.12 | 11.50 ± 1.74 | ||||
| 15N Content (μg plant−1) | |||||||
| CCC | 55.89 ± 5.48 a | 5.33 ± 2.48 | 57.62 ± 13.33 bc | ||||
| WCC | 37.58 ± 4.78 ab | 4.18 ± 1.48 | 127.72 ± 12.18 ab | ||||
| CWC | 28.70 ± 1.44 b | 1.99 ± 0.19 | 70.68 ± 7.27 bc | ||||
| CCW | 33.60 ± 5.08 ab | 1.98 ± 0.89 | 84.99 ± 21.53 abc | ||||
| WWC | 38.11 ± 6.92 ab | 6.07 ± 2.29 | 117.63 ± 16.84 abc | ||||
| WCW | 34.05 ± 7.36 ab | 5.09 ± 0.48 | 143.72 ± 11.97 a | ||||
| CWW | 26.14 ± 3.04 b | 1.50 ± 0.16 | 55.10 ± 19.40 c | ||||
| WWW | 15.45 ± 3.85 b | 1.74 ± 0.41 | 50.91 ± 3.85 c | ||||
| 2023/24 | |||||||
| Treatment | Culm + Leaf Sheath | Lower Leaves | Flag Leaf | Glume + Rachis | Grain | ||
| Nitrogen Content (mg plant−1) | |||||||
| CCC | 11.90 ± 2.52 a | 2.62 ± 0.37 b | 2.70 ± 0.54 | 7.38 ± 1.41 | 20.37 ± 5.55 | ||
| WCC | 6.92 ± 0.87 ab | 2.83 ± 0.58 b | 1.47 ± 0.23 | 5.06 ± 0.67 | 45.84 ± 1.69 | ||
| CWC | 7.66 ± 1.58 ab | 4.03 ± 1.28 ab | 1.55 ± 0.06 | 3.08 ± 0.65 | 35.12 ± 6.32 | ||
| CCW | 9.20 ± 1.88 ab | 3.75 ± 0.66 ab | 2.02 ± 0.26 | 5.72 ± 1.94 | 22.07 ± 4.28 | ||
| WWC | 3.83 ± 0.39 b | 1.97 ± 0.15 b | 0.96 ± 0.20 | 2.33 ± 0.42 | 38.12 ± 3.04 | ||
| WCW | 7.62 ± 0.27 ab | 2.10 ± 0.29 b | 2.04 ± 0.55 | 5.07 ± 1.36 | 40.02 ± 3.55 | ||
| CWW | 9.94 ± 1.91 ab | 6.16 ± 0.87 a | 2.09 ± 0.61 | 6.02 ± 1.76 | 20.06 ± 4.92 | ||
| WWW | 6.56 ± 0.60 ab | 2.07 ± 0.16 b | 1.43 ± 0.17 | 3.85 ± 1.41 | 32.90 ± 11.09 | ||
| 15N Content (μg plant−1) | |||||||
| CCC | 15.16 ± 4.71 | 1.06 ± 0.70 | 0.15 ± 0.06 | 2.18 ± 1.04 | 25.88 ± 7.79 bc | ||
| WCC | 19.54 ± 9.34 | 1.73 ± 0.43 | 0.51 ± 0.22 | 7.63 ± 4.60 | 178.23 ± 42.65 a | ||
| CWC | 14.22 ± 5.76 | 1.59 ± 1.03 | 0.11 ± 0.06 | 1.84 ± 0.38 | 114.19 ± 57.48 abc | ||
| CCW | 10.53 ± 2.95 | 0.88 ± 0.24 | 0.62 ± 0.60 | 4.59 ± 3.61 | 24.25 ± 15.85 bc | ||
| WWC | 7.00 ± 1.20 | 0.75 ± 0.15 | 0.62 ± 0.33 | 3.97 ± 1.30 | 174.72 ± 6.95 ab | ||
| WCW | 24.63 ± 4.80 | 1.57 ± 0.14 | 1.06 ± 0.84 | 9.76 ± 6.67 | 141.50 ± 31.63 abc | ||
| CWW | 7.48 ± 1.18 | 2.58 ± 0.51 | 0.04 ± 0.03 | 0.97 ± 0.22 | 12.96 ± 6.26 c | ||
| WWW | 16.87 ± 5.82 | 1.14 ± 0.31 | 0.38 ± 0.20 | 9.43 ± 7.56 | 123.16 ± 33.72 abc | ||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Tsuji, W.; Kawase, M. Waterlogging Priming at Tillering Stage Confers Stronger Tolerance to Wheat Plants Waterlogged During Anthesis. Agronomy 2026, 16, 362. https://doi.org/10.3390/agronomy16030362
Tsuji W, Kawase M. Waterlogging Priming at Tillering Stage Confers Stronger Tolerance to Wheat Plants Waterlogged During Anthesis. Agronomy. 2026; 16(3):362. https://doi.org/10.3390/agronomy16030362
Chicago/Turabian StyleTsuji, Wataru, and Motoki Kawase. 2026. "Waterlogging Priming at Tillering Stage Confers Stronger Tolerance to Wheat Plants Waterlogged During Anthesis" Agronomy 16, no. 3: 362. https://doi.org/10.3390/agronomy16030362
APA StyleTsuji, W., & Kawase, M. (2026). Waterlogging Priming at Tillering Stage Confers Stronger Tolerance to Wheat Plants Waterlogged During Anthesis. Agronomy, 16(3), 362. https://doi.org/10.3390/agronomy16030362
