A Dataset for Brazil Nut (Bertholletia excelsa Bonpl.) Fruit Detection in Native Amazonian Forests Using UAV Imagery
Abstract
1. Introduction
2. Materials and Methods
2.1. Dataset Description
2.1.1. Study Area
2.1.2. Data Collection
2.1.3. Data Augmentation and Data Annotation
2.2. Model Description
2.3. Model Training and Evaluation
3. Results
3.1. Detection Results
3.2. Visualization
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- da Costa, K.C.P.; de Carvalho Gonçalves, J.F.; Gonçalves, A.L.; da Rocha Nina Junior, A.; Jaquetti, R.K.; de Souza, V.F.; de Carvalho, J.C.; Fernandes, A.V.; Rodrigues, J.K.; de Oliveira Nascimento, G.; et al. Advances in Brazil Nut Tree Ecophysiology: Linking Abiotic Factors to Tree Growth and Fruit Production. Curr. For. Rep. 2022, 8, 90–110. [Google Scholar] [CrossRef]
- Pinheiro, R.d.M.; Ferreira, E.J.L.; Barros, Q.d.S.; Gadotti, G.I.; Alechandre, A.; Lima, J.M.T. Physical Characterization and Dimensional Analysis of Brazil Nut Seeds: Implications for Germination, Post-Harvest and Optimization of Industrial Processing. Braz. Arch. Biol. Technol. 2024, 67, e24240111. [Google Scholar] [CrossRef]
- Wadt, L.H.O.; Kainer, K.A.; Staudhammer, C.L.; Serrano, R.O.P. Sustainable Forest Use in Brazilian Extractive Reserves: Natural Regeneration of Brazil Nut in Exploited Populations. Biol. Conserv. 2008, 141, 332–346. [Google Scholar] [CrossRef]
- Mariosa, P.H.; Pereira, H.d.S.; Kluczkovski, A.M.; Vinhote, M.L.A. Agroindustrial Cooperatives in the Brazilian Nuts Value Chain: A New Extractive Paradigm in the Amazon. Rev. Econ. Sociol. Rural 2024, 62, e277617. [Google Scholar] [CrossRef]
- Alves, T.C.V.; Silva, K.E. da Valoração do trabalho agroextrativista de produtos da sociobiodiversidade na Amazônia: Atividade de coleta da castanha-do-Brasil na reserva extrativista Chico Mendes, Acre, Brasil. Acta Sci. Hum. Soc. Sci. 2023, 45, e69247. [Google Scholar] [CrossRef]
- Peixoto, L.S.; Santana, C.S.; de Pinho, C.L.C.; Coutinho, L.S.; Plácido, G.R.; Resende, O.; Hendges, M.V.; Oliveira, D.E.C. De O Contexto Da Cadeia Produtiva Da Castanha-Do-Brasil No Período de 2017 a 2021. Obs. Econ. Latinoam. 2023, 21, 9218–9230. [Google Scholar] [CrossRef]
- IBGE—Instituto Brasileiro de Geografia e Estatística. PEVS—Produção de Extração Vegetal e Da Silvicultura. 2023. Available online: https://www.ibge.gov.br/estatisticas/economicas/agricultura-e-pecuaria/9105-producao-da-extracao-vegetal-e-da-silvicultura.html?=&t=destaques (accessed on 16 December 2024).
- Scoles, R.; Gribel, R. The Regeneration of Brazil Nut Trees in Relation to Nut Harvest Intensity in the Trombetas River Valley of Northern Amazonia, Brazil. For. Ecol. Manag. 2012, 265, 71–81. [Google Scholar] [CrossRef]
- Jansen, M.; Guariguata, M.R.; Chiriboga-Arroyo, F.; Quaedvlieg, J.; Vargas Quispe, F.M.; Arroyo Quispe, E.; García Roca, M.R.; Corvera-Gomringer, R.; Kettle, C.J. Forest Degradation and Inter-Annual Tree Level Brazil Nut Production in the Peruvian Amazon. Front. For. Glob. Change 2021, 3, 525533. [Google Scholar] [CrossRef]
- Anjos, L.J.S.; Gonçalves, G.S.R.; Dutra, V.A.B.; Rosa, A.G.; Santos, L.B.; Barros, M.N.R.; de Souza, E.B.; Toledo, P.M. de Brazil Nut Journey under Future Climate Change in Amazon. PLoS ONE 2024, 19, e0312308. [Google Scholar] [CrossRef]
- Bertwell, T.D.; Kainer, K.A.; Cropper, W.P., Jr.; Staudhammer, C.L.; de Oliveira Wadt, L.H. Are Brazil Nut Populations Threatened by Fruit Harvest? Biotropica 2018, 50, 50–59. [Google Scholar] [CrossRef]
- Mogili, U.R.; Deepak, B.B.V.L. Review on Application of Drone Systems in Precision Agriculture. Procedia Comput. Sci. 2018, 133, 502–509. [Google Scholar] [CrossRef]
- Maes, W.H.; Steppe, K. Perspectives for Remote Sensing with Unmanned Aerial Vehicles in Precision Agriculture. Trends Plant Sci. 2019, 24, 152–164. [Google Scholar] [CrossRef] [PubMed]
- Sa, I.; Ge, Z.; Dayoub, F.; Upcroft, B.; Perez, T.; McCool, C. DeepFruits: A Fruit Detection System Using Deep Neural Networks. Sensors 2016, 16, 1222. [Google Scholar] [CrossRef]
- Torres-Sánchez, J.; Peña, J.M.; de Castro, A.I.; López-Granados, F. Multi-Temporal Mapping of the Vegetation Fraction in Early-Season Wheat Fields Using Images from UAV. Comput. Electron. Agric. 2014, 103, 104–113. [Google Scholar] [CrossRef]
- Pádua, L.; Vanko, J.; Hruška, J.; Adão, T.; Sousa, J.J.; Peres, E.; Morais, R. UAS, Sensors, and Data Processing in Agroforestry: A Review towards Practical Applications. Int. J. Remote Sens. 2017, 38, 2349–2391. [Google Scholar] [CrossRef]
- Almeida, D.R.A.; Broadbent, E.N.; Zambrano, A.M.A.; Wilkinson, B.E.; Ferreira, M.E.; Chazdon, R.; Meli, P.; Gorgens, E.B.; Silva, C.A.; Stark, S.C.; et al. Monitoring the Structure of Forest Restoration Plantations with a Drone-Lidar System. Int. J. Appl. Earth Obs. Geoinf. 2019, 79, 192–198. [Google Scholar] [CrossRef]
- Lima, F.d.O.; Araki, H. Detecção de Palmeiras Em Imagens Aéreas: Análise Multiescala e Avaliação Da Sanidade. Contrib. A LAS Cienc. Soc. 2024, 17, e5453. [Google Scholar] [CrossRef]
- Ferreira, M.P.; Lotte, R.G.; D’Elia, F.V.; Stamatopoulos, C.; Kim, D.-H.; Benjamin, A.R. Accurate Mapping of Brazil Nut Trees (Bertholletia excelsa) in Amazonian Forests Using WorldView-3 Satellite Images and Convolutional Neural Networks. Ecol. Inform. 2021, 63, 101302. [Google Scholar] [CrossRef]
- Schiefer, F.; Kattenborn, T.; Frick, A.; Frey, J.; Schall, P.; Koch, B.; Schmidtlein, S. Mapping Forest Tree Species in High Resolution UAV-Based RGB-Imagery by Means of Convolutional Neural Networks. ISPRS J. Photogramm. Remote Sens. 2020, 170, 205–215. [Google Scholar] [CrossRef]
- Osman, Y.; Dennis, R.; Elgazzar, K. Yield Estimation and Visualization Solution for Precision Agriculture. Sensors 2021, 21, 6657. [Google Scholar] [CrossRef]
- Xiong, Z.; Wang, L.; Zhao, Y.; Lan, Y. Precision Detection of Dense Litchi Fruit in UAV Images Based on Improved YOLOv5 Model. Remote Sens. 2023, 15, 4017. [Google Scholar] [CrossRef]
- Anushi; Jain, S.; Bhujel, S.; Shrivastava, U.; Rishabh; Mohapatra, A.; Rimpika; Mishra, G. Advancements in Drone Technology for Fruit Crop Management: A Comprehensive Review. Int. J. Environ. Clim. Change 2023, 13, 4367–4378. [Google Scholar] [CrossRef]
- Mesquita, C. De o Clima do Estado do Acre; IMAC: Rio Branco, Brazil, 1996. [Google Scholar]
- Peter, N.R.; Raja, N.R.; Rengarajan, J.; Radhakrishnan Pillai, A.; Kondusamy, A.; Saravanan, A.K.; Changaramkumarath Paran, B.; Kumar Lal, K. A Comprehensive Study on Ecological Insights of Ulva lactuca Seaweed Bloom in a Lagoon along the Southeast Coast of India. Ocean Coast. Manag. 2024, 248, 106964. [Google Scholar] [CrossRef]
- Wu, X.; Tang, R.; Mu, J.; Niu, Y.; Xu, Z.; Chen, Z. A Lightweight Grape Detection Model in Natural Environments Based on an Enhanced YOLOv8 Framework. Front. Plant Sci. 2024, 15, 1407839. [Google Scholar] [CrossRef]
- Zheng, Z.; Hu, Y.; Yang, H.; Qiao, Y.; Huang, Y. A Real-Time Winter Jujubes Detection Approach Based on Improved YOLOv4. In 2nd International Conference on Signal Image Processing and Communication (ICSIPC 2022); SPIE: Bellingham, WA, USA, 2022; Volume 12246, pp. 506–511. [Google Scholar]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR); IEEE: New York, NY, USA, 2016; pp. 779–788. [Google Scholar]
- Bradski, G. The Opencv Library. Dr. Dobb’s J. Softw. Tools Prof. Program. 2000, 25, 120–123. [Google Scholar]
- Harris, C.R.; Millman, K.J.; van der Walt, S.J.; Gommers, R.; Virtanen, P.; Cournapeau, D.; Wieser, E.; Taylor, J.; Berg, S.; Smith, N.J.; et al. Array Programming with NumPy. Nature 2020, 585, 357–362. [Google Scholar] [CrossRef]
- McKinney, W. Data Structures for Statistical Computing in Python. In Proceedings of the 9th Python in Science Conference, Austin, Texas, 28 June–3 July 2010; van der Walt, S., Millman, J., Eds.; SciPy: Austin, TX, USA, 2010; pp. 56–61. [Google Scholar] [CrossRef]
- Hunter, J.D. Matplotlib: A 2D Graphics Environment. Comput. Sci. Eng. 2007, 9, 90–95. [Google Scholar] [CrossRef]
- Waskom, M.L. Seaborn: Statistical Data Visualization. J. Open Source Softw. 2021, 6, 3021. [Google Scholar] [CrossRef]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-Learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Zhai, M.; Jing, J.; Dou, S.; Du, J.; Wang, R.; Yan, J.; Song, Y.; Mei, Z. Deriving Early Citrus Fruit Yield Estimation by Combining Multiple Growing Period Data and Improved YOLOv8 Modeling. Sensors 2025, 25, 4718. [Google Scholar] [CrossRef]
- Yang, R.; Yuan, D.; Zhao, M.; Zhao, Z.; Zhang, L.; Fan, Y.; Liang, G.; Zhou, Y. Camellia Oleifera Tree Detection and Counting Based on UAV RGB Image and YOLOv8. Agriculture 2024, 14, 1789. [Google Scholar] [CrossRef]
- Li, R.; Sun, X.; Yang, K.; He, Z.; Wang, X.; Wang, C.; Wang, B.; Wang, F.; Liu, H. A Lightweight Wheat Ear Counting Model in UAV Images Based on Improved YOLOv8. Front. Plant Sci. 2025, 16, 1536017. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Hou, Y.; Cui, T.; Li, H.; Shangguan, F.; Cao, L. YOLOv8-CML: A Lightweight Target Detection Method for Color-Changing Melon Ripening in Intelligent Agriculture. Sci. Rep. 2024, 14, 14400. [Google Scholar] [CrossRef] [PubMed]
- Ang, G.; Zhiwei, T.; Wei, M.; Yuepeng, S.; Longlong, R.; Yuliang, F.; Jianping, Q.; Lijia, X. Fruits Hidden by Green: An Improved YOLOV8n for Detection of Young Citrus in Lush Citrus Trees. Front. Plant Sci. 2024, 15, 1375118. [Google Scholar] [CrossRef]
- Veras, H.F.P.; Ferreira, M.P.; da Cunha Neto, E.M.; Figueiredo, E.O.; Corte, A.P.D.; Sanquetta, C.R. Fusing Multi-Season UAS Images with Convolutional Neural Networks to Map Tree Species in Amazonian Forests. Ecol. Inform. 2022, 71, 101815. [Google Scholar] [CrossRef]
- Gao, X.; Zhang, Y. Detection of Fruit Using YOLOv8-Based Single Stage Detectors. Int. J. Adv. Comput. Sci. Appl. (IJACSA) 2023, 14, 83–91. [Google Scholar] [CrossRef]
- Carneiro, G.A.; Santos, J.; Sousa, J.J.; Cunha, A.; Pádua, L. Chestnut Burr Segmentation for Yield Estimation Using UAV-Based Imagery and Deep Learning. Drones 2024, 8, 541. [Google Scholar] [CrossRef]
- Adão, T.; Pádua, L.; Pinho, T.M.; Hruška, J.; Sousa, A.; Sousa, J.J.; Morais, R.; Peres, E. Multi-purpose chestnut clusters detection using deep learning: A preliminary approach. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, XLII-3-W8, 1–7. [Google Scholar] [CrossRef]
- Arakawa, T.; Tanaka, T.S.T.; Kamio, S. Detection of On-Tree Chestnut Fruits Using Deep Learning and RGB Unmanned Aerial Vehicle Imagery for Estimation of Yield and Fruit Load. Agron. J. 2024, 116, 973–981. [Google Scholar] [CrossRef]
- Comba, L.; Biglia, A.; Sopegno, A.; Grella, M.; Dicembrini, E.; Ricauda Aimonino, D.; Gay, P. Convolutional Neural Network Based Detection of Chestnut Burrs in UAV Aerial Imagery. In AIIA 2022: Biosystems Engineering Towards the Green Deal; Ferro, V., Giordano, G., Orlando, S., Vallone, M., Cascone, G., Porto, S.M.C., Eds.; Springer International Publishing: Cham, Switzerland, 2023; pp. 501–508. [Google Scholar]
- Li, Y.; Zhu, X.; Tian, X.; Jin, G. Research on Identification and Detection Fruits of Citrus Canopy Based on Yolovs. 2023. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4498586 (accessed on 12 September 2025).
- Yang, H.; Wu, J.; Liang, A.; Wang, S.; Yan, Y.; Zhang, H.; Li, N.; Liu, Y.; Wang, J.; Qiu, J. Fruit Recognition, Task Plan, and Control for Apple Harvesting Robots. Rev. Bras. Eng. Agrícola Ambient. 2024, 28, e277280. [Google Scholar] [CrossRef]
- Zheng, Z.; Hu, Y.; Qiao, Y.; Hu, X.; Huang, Y. Real-Time Detection of Winter Jujubes Based on Improved YOLOX-Nano Network. Remote Sens. 2022, 14, 4833. [Google Scholar] [CrossRef]
- Corte, A.P.D.; Souza, D.V.; Rex, F.E.; Sanquetta, C.R.; Mohan, M.; Silva, C.A.; Zambrano, A.M.A.; Prata, G.; Alves de Almeida, D.R.; Trautenmüller, J.W.; et al. Forest Inventory with High-Density UAV-Lidar: Machine Learning Approaches for Predicting Individual Tree Attributes. Comput. Electron. Agric. 2020, 179, 105815. [Google Scholar] [CrossRef]
- Barros, Q.S.; d’ Oliveira, M.V.N.; da Silva, E.F.; Görgens, E.B.; de Mendonça, A.R.; da Silva, G.F.; Reis, C.R.; Gomes, L.F.; de Carvalho, A.L.; de Oliveira, E.K.B.; et al. Indicators for Monitoring Reduced Impact Logging in the Brazilian Amazon Derived from Airborne Laser Scanning Technology. Ecol. Inform. 2024, 82, 102654. [Google Scholar] [CrossRef]
- Veras, H.F.P.; Neto, E.M.d.C.; Brasil, I.D.S.; Madi, J.P.S.; Araujo, E.C.G.; Camaño, J.D.Z.; Figueiredo, E.O.; Papa, D.d.A.; Ferreira, M.P.; Corte, A.P.D.; et al. Estimating tree volume based on crown mapping by UAV pictures in the Amazon Forest. Sci. Electron. Arch. 2023, 16. [Google Scholar] [CrossRef]
- Berra, E.F.; Gaulton, R.; Barr, S. Assessing Spring Phenology of a Temperate Woodland: A Multiscale Comparison of Ground, Unmanned Aerial Vehicle and Landsat Satellite Observations. Remote Sens. Environ. 2019, 223, 229–242. [Google Scholar] [CrossRef]
- Lambertini, A.; Mandanici, E.; Tini, M.A.; Vittuari, L. Technical Challenges for Multi-Temporal and Multi-Sensor Image Processing Surveyed by UAV for Mapping and Monitoring in Precision Agriculture. Remote Sens. 2022, 14, 4954. [Google Scholar] [CrossRef]
- Pádua, L.; Marques, P.; Martins, L.; Sousa, A.; Peres, E.; Sousa, J.J. Monitoring of Chestnut Trees Using Machine Learning Techniques Applied to UAV-Based Multispectral Data. Remote Sens. 2020, 12, 3032. [Google Scholar] [CrossRef]
- Pádua, L.; Chiroque-Solano, P.M.; Marques, P.; Sousa, J.J.; Peres, E. Mapping the Leaf Area Index of Castanea Sativa Miller Using UAV-Based Multispectral and Geometrical Data. Drones 2022, 6, 422. [Google Scholar] [CrossRef]
- Pierdicca, R.; Nepi, L.; Mancini, A.; Malinverni, E.S.; Balestra, M. Uav4tree: Deep learning-based system for automatic classification of tree species using RGB optical images obtained by an unmanned aerial vehicle. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2023, X-1-W1-2023, 1089–1096. [Google Scholar] [CrossRef]
- Messinger, M.; Asner, G.P.; Silman, M. Rapid Assessments of Amazon Forest Structure and Biomass Using Small Unmanned Aerial Systems. Remote Sens. 2016, 8, 615. [Google Scholar] [CrossRef]
- Vaglio Laurin, G.; Chen, Q.; Lindsell, J.A.; Coomes, D.A.; Frate, F.D.; Guerriero, L.; Pirotti, F.; Valentini, R. Above Ground Biomass Estimation in an African Tropical Forest with Lidar and Hyperspectral Data. ISPRS J. Photogramm. Remote Sens. 2014, 89, 49–58. [Google Scholar] [CrossRef]










| Argument | Value |
|---|---|
| Model | yolov8l.pt |
| Data | data/castanheira.yaml |
| Image size | 640 |
| Workers | 0 |
| Batch size | 2 |
| Device | 0 |
| Epochs | 300 |
| Patience | 300 |
| Metric | Value |
|---|---|
| True positives | 2371 |
| False positives | 427 |
| False negatives | 259 |
| Precision | 0.847 |
| Recall | 0.902 |
| F1-score | 0.874 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Pereira de Carvalho, H.; Barros, Q.S.; Ferreira, E.J.L.; Ferreira, L.; Rodrigues, N.M.M.; Silva, L.F.d.; Almeida, B.T.d.; Gomes Cruz, E.; Pinheiro, R.d.M.; Pádua, L. A Dataset for Brazil Nut (Bertholletia excelsa Bonpl.) Fruit Detection in Native Amazonian Forests Using UAV Imagery. Agronomy 2026, 16, 341. https://doi.org/10.3390/agronomy16030341
Pereira de Carvalho H, Barros QS, Ferreira EJL, Ferreira L, Rodrigues NMM, Silva LFd, Almeida BTd, Gomes Cruz E, Pinheiro RdM, Pádua L. A Dataset for Brazil Nut (Bertholletia excelsa Bonpl.) Fruit Detection in Native Amazonian Forests Using UAV Imagery. Agronomy. 2026; 16(3):341. https://doi.org/10.3390/agronomy16030341
Chicago/Turabian StylePereira de Carvalho, Henrique, Quétila Souza Barros, Evandro José Linhares Ferreira, Leilson Ferreira, Nívea Maria Mafra Rodrigues, Larissa Freire da Silva, Bianca Tabosa de Almeida, Erica Gomes Cruz, Romário de Mesquita Pinheiro, and Luís Pádua. 2026. "A Dataset for Brazil Nut (Bertholletia excelsa Bonpl.) Fruit Detection in Native Amazonian Forests Using UAV Imagery" Agronomy 16, no. 3: 341. https://doi.org/10.3390/agronomy16030341
APA StylePereira de Carvalho, H., Barros, Q. S., Ferreira, E. J. L., Ferreira, L., Rodrigues, N. M. M., Silva, L. F. d., Almeida, B. T. d., Gomes Cruz, E., Pinheiro, R. d. M., & Pádua, L. (2026). A Dataset for Brazil Nut (Bertholletia excelsa Bonpl.) Fruit Detection in Native Amazonian Forests Using UAV Imagery. Agronomy, 16(3), 341. https://doi.org/10.3390/agronomy16030341

